无人机平台运动目标检测与跟踪及其视觉辅助着陆系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人机因其特有优势而一直备受各国军事专家的青睐。特别是在最近几次局部战争中,无人机更因其赫赫战功,而成为各国军事发展的重要方向之一。论文以无人机平台对运动目标检测跟踪和无人机辅助着落导航系统为背景,研究了图像角点特征提取、像机自运动消除、复杂背景下运动目标跟踪、目标尺度方向自适应跟踪、小目标实时高精度跟踪和无人机辅助着陆系统等方面的相关算法,系统总结了作者在攻读博士学位期间所做的研究和取得的成果。论文创新点如下:
     (1)传统梯度算子抗噪性不好,而且在梯度方向计算准确性上存在一定误差,论文在分析Gabor小波的基础上,提出了一种新梯度算子。新算子在抗噪性和梯度方向计算的准确性上优于传统梯度算子。针对图像角点特征提取问题,本文提出一种基于Gabor梯度的角点检测算法。新算法在定位精度、噪声抑制等方面比经典算法有一定的提高。
     (2)对于像机自身存在运动情况下对运动目标进行检测跟踪问题,常用的一类算法是先消除像机自身运动,然后再对目标进行检测跟踪。论文针对像机运动消除问题,提出了一种基于Gabor特征描述的像机自运动消除方法。实验结果表明,新算法可以有效地消除像机自身运动,检测出和像机存在相对运动的目标。
     (3)目标在复杂背景中运动时,变化的背景会在一定程度上影响跟踪算法的稳定性和可靠性,所以应尽量抑制背景。对于目标跟踪而言,目标中和背景差异大的区域对于跟踪的有效性、稳定性贡献较大。根据以上原则,论文提出了一种目标区域差异性权值计算方法。实验结果表明,权值计算方法有效地抑制了背景,权值计算结果符合人类直观感受。在获取目标差异性权值的基础上,本文提出了一种基于目标差异性加权的最小二乘影像匹配运动目标跟踪算法。仿真实验分析和自然图像跟踪结果表明,对于复杂背景下运动目标进行跟踪,新方法比传统方法更为有效准确。论文将差异性权值与Mean Shift跟踪算法结合起来,提出了一种基于目标差异性加权的Mean Shift运动目标跟踪算法,并对算法的收敛性及收敛条件进行了讨论。实验结果表明,改进的Mean Shift算法比传统跟踪算法在目标跟踪稳定性、可靠性等方面有一定提高。
     (4)对于目标跟踪问题,目标的初始特征建立或目标的描述区域是否准确是整个跟踪过程中至关重要的一环。针对该问题,本文在分析尺度空间理论的基础上,提出了一种目标最佳椭圆描述区域计算方法,该方法为准确描述目标区域特性奠定了基础。针对图像上同时存在旋转缩放变化的运动目标进行自适应跟踪问题,在分析Mean Shift跟踪算法和尺度空间理论的基础上,本文提出了一种尺度方向自适应Mean Shift跟踪算法。实验表明,新算法比现有的Mean Shift改进算法更为有效,即可以准确获得目标的位置、大小、方向信息。
     (5)针对小目标实时高精度检测跟踪问题,提出一种基于正负正则化LOG算子的尺度自适应小目标实时高精度检测跟踪方法。实验证明,新方法在实时性、尺度自适应性、检测准确性以及抗噪声性上均有较好的表现。
     (6)无人机安全进场着陆过程中,其引导控制尤为关键。目前GPS导航因其精度高、使用简单而普遍使用,但信号易受干扰,特别是战争时期不能获得准确的GPS信息。论文提出了一种基于摄影测量的无人机辅助着陆导航系统。实验表明,该系统可以实时高精度地获得无人机相对跑道的相对位置,同时可以实时保存无人机着陆过程图像,为事后分析提供有效数据。
Unmanned Aerial Vehicle (UAV) is extra favored by the military experts for its own dominance. Specially,UAV has already been one of the very important military development fields for its success in the last brushfires. Moving target tracking on the platform of UAV and the assistant landing system of UAV are taken as the backgrounds of this dissertation. The image corner detection, camera ego motion compensation, moving target tracking in the cluttering background, the scale and rotation adaptive tracking of the target, puny target real-time and high-accurate detection, the assistant landing system and other relative technologies are investigated in this dissertation. The main contents and achievements of this dissertation are as follows:
     (1) There is definite error to calculate the gradient orientation by traditional gradient operators. Based on the analysis of the gabor wavelet, a new gradient calculating operator is proposed. The new operator can obtain the orientation of the gradient more accurately, and restrains the noise more effectively than the traditional gradient operators. And a new corner detecting algorithm based on gabor gradient operator is proposed. Experimental results with some synthetic and real images show that this new algorithm detects the corner more efficiently, locates the corner more accurately, and restrains the noise more effectively than the classical algorithms.
     (2) For the tracking of the moving target on the moving platform, one commonly used algorithm is to eliminat the camera ego motion firstly, and then track the moving target. An camera ego motion compensation algorithm based on the gabor feature descriptions is proposed. Experimental results show that the new method can effectively compensate the camera ego motion and detect the moving targets.
     (3) When a target moves in the cluttering backgrounds, the variational backgrounds can reduce the stability and reliability of the tracking algorithms. So the backgrouds must be restrained. For the heterogeneous target, the target areas in the image are different for the target’s ununiformity. If some areas in the target are more different from the backgrounds, it shows that the diversity of these areas is stronger and these areas are more helpful for target tracking. Based on the above-mentioned principle, a diversity weight calculation algorithm is proposed. Experimental results show that the new algorithm can restrain the backgrounds effectively, and that the weights accord with the human intuitionistic recept. Based on the diversity weights, a diversity weighted least square image matching method is proposed. Simulation experimental analysis and real image tracking results show that the new method can track moving target in the cluttering backgrounds more effectively and accurately than the traditional tracking methods. A new diversity weighted Mean Shift tracking method (DWMS) is proposed. Its convergence condition is discussed. And its convergence is proved. Experimental results show that DWMS can effectively track moving targets in the cluttering background too.
     (4) It is one of the most important problem for target tracking whether the initial features and the describing areas of the target are accurate. Based on the scale-space theory, a new method of the optimal ellipse describing area of the target is proposed. The new method provide a foundation for the feature analysis of the target. It is one of the most difficult research fields of computer vision to track target which takes the change of rotation and scales at the same time. Based on the analysis of the scale-space theory , the current Mean Shift algorithms and the optimal ellipse describing area of the target, a scale and rotation adaptive Mean Shift tracking algorithm is proposed. Experimental results show that the new Mean Shift tracking algorithm can more effectively track the target which takes the change of both rotation and scale than the current mean shift algorithms. At the same time, the new algorithm can supply the size and angle information of the target.
     (5) To detect and track puny target high-accurately and in real-time, a new scale adaptive little target detecting and tracking method based on the positive and negative LOG operator is proposed. Experimental results demonstrate that the new method has great capability in real time detection, precise detection and noise restraint.
     (6) In the landing process of UAV, navigation control is very important. At present, the GPS navigation is usually used because it is very accurate and easy. But its signal can be easily disturbed during the war. The vision-based navigation system becomes one of the most important research fields for its superiority. A assistant landing system based on the photogrammetry is proposed. Experimental results show that the system can obtain the accurate location of UAV according to the runway, and save the images of the whole landing process of UAV synchronously. which can provide effective information for post analysis.
引文
[1] Marr D. Vision:a computational investigation into the human representation and processing of visual information[J]. Freeman W.H. and Company, San Francisco,1982
    [2] Aloimonos J, Weiss I, Bandopadhay A. Active vision. International Journal of Computer Vision,1988:333~356
    [3] Armen F, Aggarwai J K. Model-based object recognition in dense range images a review, ACM Computer Surveys,1993,25(1):5~43
    [4] Pau L F. Behavioral knowledge in sensor/data fusion system. Robotic System,1990,7(3):295~372
    [5] Pal N R, Pal S K. A review on image segmentation techniques. Pattern Recognition,1993,26(9):1227~1294
    [6] Jain A K, Zhong Y, Lakshmanan S. Object Matching using deformable templates. IEEE Trans. On Pattern Analysis and Machine Intelligence,1996,18(3):267~278
    [7] Starovoitov V V, Kose C, Sankur B. Generalized distance based matching of nonbinary images, IEEE International conference on Image Processing,1998:803~907
    [8] Barron J L, Fleet D J, Beauchemin S S. Systems and experiment: performance of optical flow techniques. International Journal of Computer Vision,1994,12(1):43~77
    [9] Lee K W, Ryu S W, Lee S J, Park K T. Motion based object tracking with mobile camera. Electronics Letters,1998,34 (3):256~258
    [10] Song S W, Liao M Y, Qin J M. Mulitiresolution image motion detection and displacement estimation. Machine Vision and Applications,1990,3(1):17~20
    [11] Erdem C E, Karabulut G Z, Yanmaz E, Anarim E. Motion estimation in the frequency domain using fuzzy c-planes clustering. IEEE Trans. On Image Processing,2001,10(12):1873~1879
    [12] Rosenfeld A. From image analysis to computer vision: An annotated bibliography [J]. Computer Vision and Image Understanding,2001,84(2):298~324
    [13] Horn B K, Shunck B G.. Determine Optical Flow[J]. Artificial Intelligence,1981,17(1-3):185~204
    [14] Hou Z Q, Han C Z. A background reconstruction algorithm based on pixel intensity classification[J]. Chinese Journal of Software,2005,16(9):1568~1576
    [15] Wang S, Ai H.Z. Difference image based multiple motion targets detection andtracking[J]. Chinese Journal of Software,1999,4(6):470~475
    [16] Pavlidis I, Morellas V, Tsiamyrtzis P, Harp S. Urban surveillance system: From the laboratory to the commercial world[J]. Proceedings of the IEEE,2001,89 (10):1478~1496 [ 17 ] Collins R, Lipton A, Fujiyoshi H, Kanade T. Algotithms for cooperative multisensor surveillance[J]. Proceedings of the IEEE,2001,89(10):1456~1477
    [18] Masoud O, Papanikolopoulos N P. A novel method for tracking and counting pedestrians in real-time using a single camera[J]. IEEE Trans on Vehicular Technology,2001,50(5):1267~1278
    [19] Bar-shalom Y, Fortmann T. Tracking and data association[M]. Academic Press,1988
    [20] Rabiner L. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of IEEE,1989,77(2):257~285
    [21] Salmond D, Gordon N, Smith A. A novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEEE Proceedings on Radar, Sonar and Navigation, 1993,140(2):107~113
    [22] Arulampalam M, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online/non-Gaussian Bayesian tracking[J]. IEEE Trans on Signal Processing,2002,50(2):174~188
    [23] Isard M, Blake A. CONDENSATION-conditional density propagation for visual tracking[J]. International Journal of Computer Vision,1998,29(1) :5~28
    [24] Meyer F, Bouthemy P. Region-based tracking using affine motion models in long time sequences[C]. CVGIP Image understanding,1994,60(2):119~140
    [25] Bascle B, Deriche R. Region tracking through image sequences[J]. Proceedings of IEEE International Conference of Computer Vision,1995:302~307
    [26] Jepson A, Fleet D, EI-Maraghi T. Robust online appearance models for visual tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(10):1296~1311
    [27] Nguyen H, Smeulders A. Fast occluded object tracking by a robust appearance filter[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence. 2004, 26(8): 1099~1104 [ 28 ] Kaneko T, Hori O. Feature selection for reliable tracking using template matching[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003,1:796~802 [ 29 ] MItra P, Murthy C, Pal S. Unsupervised feature selection using featuresimilarity[C]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(3):301~312
    [30] Koller D, Daniilidis K, Nagel H. Model-based object tracking in monocular image sequences of road traffic scene[J]. International Journal of Computer Vision, 1993, 10(3):257~281
    [31] Smith S, Brady J. SUSAN- A new approach to low level image processing[J]. International Journal of Computer Vision,1997,23(1):45~78
    [32] Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean Shift[J]. IEEE Computer Vision and Pattern Recognition,2000:142~149
    [33] YANG C J, et al. Similarity measure for nonparametric kernel density based object tracking[C]. Eighteenth Annual Conference on Neural Information Processing Systems.Victoria, British Columbia, Canada: NIPS,2004.
    [34] Collins R T. Mean-shift blob tracking through scale space[C]. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003,2:234~240
    [35] Nummiaro K , Koller - Meier E , Van Gool L. An adaptive color-based particle filter[J] . Image and Vision Computing,2003,21(1):99~110
    [36] Jurie F. Tracking objects with a recognition algorithm[J]. Pattern Recognition Letters,1998,19(3-4):331~340
    [37] Drummond T, Cipolla R. Real-time visual tracking of complex structures[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence,2002,24(7):932~946
    [38] Gerard P, Gagalowicz A. Three dimensional model-based tracking using texture learning and matching[J]. Pattern Recognition Letters, 2000 , 21(13-14) :1095~1102
    [39] Jung S K, Wohn K Y. A model-based 3-D tracking of rigid objects from a sequence of multiple perspective views[J]. Pattern Recognition Letters,1998,19(5-6):499~512
    [40] Kass M, Witkin A, Terzopoulos. Snakes: Active contour models[J]. International Journal of Computer Vision,1988,1(4):321~331 [ 41 ] Cohen L D. On active contour models and balloons[C]. CVGIP:Image Understanding,1991,53(2):211~218
    [42] Xu C, Prince J L. Snakes, shapes and gradient vector flow[C]. IEEE Transactions on Image Processing, 1998,7(3):359~369
    [43] Szeliski R, Terzopoulos D.Physically-Based and probalistic modeling for computer vision[C]. In:Vemuri B C, Proceedings SPIE 1570,Geometric Methods inComputer Vision,1991:140~152
    [44] Vieren C, Cabestaing F, Postaire J. Catching moving objects with snakes for motion tracking[J]. Pattern Recognition Letters,1995,16(7):679~685
    [45] Osher S, Sethian J A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation[J]. Journal of Computational Physics,1998,79(1):12~49
    [46] Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: A level set approach[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence,1995,17(2):158~179
    [47] Kitchen L, Rosenfeld A . Gray level corner detection[J]. Pattern Recognition Letters,1982,3(1):95~102
    [48]田原,梁德群,吴更石.直接基于灰度图像的多尺度角点检测方法[J].信号处理,1998,14(7):6~9
    [49] Witkin A. Scale-space filtering[J]. In IJCAI,1983,1019~1023
    [50] Kitchen L, Rosenfeld A. Analysis of gray level corner detection[J]. Pattern Recognition Letters,1999,20(2):149~162
    [51] Harris C, Stephens M. A Combined corner and edge detector[J]. Proc 4th Alvey Vision Conference,1988:189~192
    [52] Tomasi C, Kande T. Detection and tracking of point features[R]. Camegie Mellon University,1991
    [53] Smith S M, Brady J M. SUSAN-A new approach to low level image processing[R]. Internal Technical Report TR95SM S1, Defence Research Agency, Chobham Lane, Chertsey, Surry,UK,1995
    [54]杨莉,初秀琴,李玉山.最小亮度变化角点自适应检测算法研究[J].西安电子科技大学学报,2003,30(4):530~533
    [55]费旭东,荆仁杰.基于知识的快速角点提取[J].计算机学报,1994,17(1):30~36
    [56]陈燕新,戚飞虎.一种新的提取轮廓特征点的方法[J].红外与毫米波学报, 1998,17(3):171~176
    [57]王栓等.基于差分图像的多运动目标的检测与跟踪[J].中国图像图形学报, 1999,4(6):470~475
    [58] Qu Y S ,Tian W J ,Li Y C. Detecting small moving target in images sequences using optical flow based on the discontinuous frame difference[C]. Proceedings of the Third SPIE Multi-spectra Image Processing and Pattern Recognition Conference,2003,52(6):915~918
    [59] Kim C , Hwang J N. Fast and automatic video object segmentation and tracking for content- based applications[J] . IEEE Trans on Circuits and Systems,2002,12 (2) :122~129
    [60] Duda R O, Hart P E. Pattern classification and Scene analysis[M]. Wiley, New-York,1973
    [61] Rosin P L, Ellis T. Image difference threshold strategies and shadow detection[C]. 6th British Machine Vision Conf., Birmingham,1995:347~356
    [62] Jain R, Nagel H. On the analysis of accumulative difference of picture from image sequences of real world scenes[J]. IEEE Trans. PAMI,1979:206~214
    [63]陈朝阳,张桂林.基于图像对称差分运算的运动小目标检测方法[J].华中理工大学学报,1998,26(9): 34~38
    [64] Lipton A, Fujiyoshi H and Patil R. Moving target classification and tracking from real time video[C]. Proc of the 1998 DARPA Image Understanding Workshop, 1998
    [65] Changick K. Fast and automatic video object segmentation and tracking for content bassed application[J]. IEEE Transaction on Circuits and System for Video Technology,2002,12(2):122~129
    [66]杨志华,曾禹村.背景移动补偿技术的研究[J].北京理工大学学报,2000,20(3) :333~337
    [67] Araki S, Matsuoaka T, Yokoya N, Takemura H. Real-time tracking of multiple moving object contours in a moving camera image sequence[J]. IEICE Trans. Inf.&Syst.,2000,(7):131~137
    [68] Collins R T, Lipton A J, Kanade T. Special section on vidieo surveillance[J]. IEEE Trans On Pattern Analysis and Machine Intelligence, 2000,22(8):745~746
    [69] Viola P, Jones M J, Snow D. Detecting pedestrians using patterns of motion and appearancep[C]. International Conference on Computer Vision,2003:1234~1245
    [70] Eun J H, Robyn O. Segmenting occluded objects using a motion snake[C]. Asian Conference on Computer Vision,2004
    [71] Alexei A E, Alexander C B, Greg M, Jitendra M. Recognizing Action at a distance[C]. International Conference on Computer Vision,2003:560~566
    [72] Mae Y, Shirai Y, Miura J, et al. Object tracking in cluttered background based on optical flow and edges[C]. Proceedings of the 13th International Conference on Pattern Recognition,1996,1:196~200
    [73] Mae Y, Yamamoto S, Shirai Y, Miura Jun.Optical flow based realtime object tracking by active vision system[C]. Proc. 2nd Japan-France Congress onMechatronics,1994,2:545~548
    [74] Okada R, Shirai Y , Miura J. Object tracking based on optical flow and depth[C]. Proc. of RWC,1997:432~439
    [75] Lowe D G . Object recognition from scale-invariant features[C]. International Conference of Computer Vision,1999:1150~1157
    [76]魏波.点时空约束图像目标跟踪理论与实时实现技术研究[D].西安:电子科技大学,2000
    [77] Rosenberg Y , Werman M. Representinglocal motion as a probability distribution matrix and object tracking[C]. Image Undersading Workshop,1997:153~158
    [78] Grimson, Stauffer C, Romano C and Lee L. Using adaptive tracking to classify and monitor activitics in a site[C]. Proc. IEEE conference on Computer Vsion and Pattern Recognition,1998:758~764
    [79] Ahmed E, David H, Larry D. Non-parametric Model for background subtraction[C]. European Conference on Computer Vision,2000:654~659
    [80] Henry S and Takeo K. Object detection using the statistics of parts[J]. International Journal of Computer Vision,2004,56(3):151~177
    [81]谢敏.视频序列图像中运动目标的分割和识别研究[D].苏州大学硕士论文, 2002 [ 82 ] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans on PAMI,1989,11(7):674~693
    [83] Yu X, Reed I S, Kraske W. A robust adaptive multispectral object detection by using wavelet transform[C]. Proc. ICASSP-92,1992:141~144
    [84] Casasent D P, Smokelin J S, Ye A. Wavelet and Gabor transforms for detection[J]. Opt. Eng.,1992,9,31(4):1893~1898
    [85]李红艳.图像低信噪比小目标检测与跟踪算法研究[D].西安电子科技大学博士论文,2000
    [86] Mohanty N C. Computer tracking of moving point targets in space[J]. IEEE Trans. on PAMI,1981,3(5):606~611.
    [87] Pohlig S C .An algorithm for detection of moving optical targets[J]. IEEE Trans on AES,1989,1,25(1):56~63
    [88] Blosten S D, Huang T S. Detecting small moving objects in image sequences using sequential hypothesis testing[J]. IEEE Trans. on SP,1991,39(7):1611~1629.
    [89] Blostein S D, Richardson H S. A sequential detection approach to target tracking[J]. IEEE Trans.on AES,1994,30(1):197~211
    [90] Barniv Y. Dynamic programming solution for detecting dim moving targets[J].IEEE Trans. on AES,1985,21(1):144~156
    [91] Wang G, Inigo R M and Mcvey E S. A pipeline algorithm for detection and tracking of pixel-sized target trajectories[J]. Single and Data Processing of Small Targets 1990, Proceedings of the SPIE,1990,1305:53~62
    [92] Ren L J, Mahmood R, Dim Target Detection and Clutter Rejection using modified high order correlation[C]. IEEE International joint conference on Neural Netword,1993,29(3):841~856
    [93] Nanbara J H, Mahmood R. Target detection utilizing neural networks and modified high order correlation method[C]. SPIE,2496(1995):687~697
    [94] Ren J L, Mahmood R. Multiple target detection using modified high order correlation[C]. IEEE Trans on Aerospace and Electronic Systems,1993,34(2):553~568
    [95] Liou R, Azimi_sadjadi. Dim target detection using high order correlation method[J]. IEEE Trans on AES. 1993,29(3):841~856
    [96] Bolstein S D, Huang T S. Detecting small, moving objects in image sequences using sequential hypothesis testing[J]. IEEE Trans. On SP-39,1991,7:1611~1629
    [97] Blostein S D, Richardson H S. A sequential detection approach to target tracking[J]. IEEE Trans on AES. 1994,30(1):197~212
    [98]李红艳,吴成柯.一种基于小波与遗传算法的小目标检测算法[J].电子学报. 2001,21(4):81~83
    [99]李红艳,吴成柯.一种基于小波变换的序列图像中小目标检测与跟踪算法[J].电子与信息学报. 2001,23(10):943~948
    [100] Barniv Y. Dynamic programming solution for detecting dim moving targets[J]. Part II, Analysis, IEEE Trans On AES-23,1987,6:776~788
    [101] Amold J, Shaw S, Pasternack H. Efficient target tracking using dynamic programming[J]. IEEE Trans on AES. 1993,29:44~56
    [102] Tonissen S M, Evans R J. Target tracking using dynamic programming algorithm and performance[C]. Proceedings of IEEE Conferece on Decision and Control. 1995
    [103] Tonissen S M, Evans R J. Performance of dynamic programming track before detect algorithm[J]. IEEE Trans on AES. 1996,32(4):1440~1451
    [104] Johnston L A, Krishnamuthy V. Performance of a dynamic programming track before detect algorithm[J]. IEEE Trans on AES. 2002,38(1):228~242
    [105]李斌,彭嘉雄.基于动态规划的红外小目标检测与识别[J].华中理工大学学报. 2000,28(6):68~70
    [106] Qiang Yong, Jiao Licheng, Bao zheng. Study on mechanism of dynamic programming algorithm for dim targets[C]. ICSP 2002 Proceedings. 2002:1403~1406
    [107]陈华明,孙广富,卢焕章等.基于动态规划和置信度检验的小目标检测[J].系统工程与电子技术. 2003,(4):472~476
    [108]陈尚峰,陈华明,卢焕章.基于加权动态规划和航迹关联的小目标检测技术[J].国防科技大学学报. 2003,25(2):46~50
    [109]钟圣芳,张兵,卢焕章.一种基于动态规划的点目标轨迹关联算法[J].计算机测量与控制. 2004,12(8):772~775
    [110]黄林梅,张桂林,王新余.基于动态规划的红外运动小目标检测算法[J].红外与激光工程. 2004,33(3)
    [111] Reed I S, Gagliardi R M, Shao H M. Application of three-dimensional filtering to moving target detection[J]. IEEE Trans On AES-19,1983, 6:898~905
    [112] Stocker A. D, Jensen P. Algorithm and architectures for implementing large velocity filter banks[C]. SPIE,1991,1481:140~155
    [113] Chen Y. On suboptimal detection of 3-dimensional moving targets[J]. IEEE Trans on AES. 1989,25(3):343~350
    [114] Porat B, Friedlander. A frequency domain algorithm for multiframe detection and estimation of dim targets[J]. IEEE Trans on Pattern Analysis and Machine Intelligence.1990:398~401
    [115] Reed I S, Gagliardi R M., Stotts L. A recursive moving target indication algorithm for optical image sequence[J]. IEEE Trans on AES. 1990,26(3):434~440
    [116] Xiong Y, Ding M Y, Peng X. An extended track before detect algorithm for infared target detection[J]. IEEE Trans on AES. 1997,33(3):1087~1092 [ 117 ] Jauffret C, Bar-Shalom Y. Track formation with bearing and frequency measurements in clutter[J]. IEEE Trans on AES. 1990,26:999~1010
    [118]宋柳平,孙仲康,沈振康.红外制导系统中的点目标检测技术[J].电子学报. 1994,22(1):78~81
    [119] Qian Z B, Liu X H, Li J G. A real-time system for detecting moving point target in low SNR image sequence[C]. IEEE International Conference on Intelligent Processing Systems,1997,1005~1008
    [120]廖斌,杨卫平,沈振康.低信噪比线性运动红外小目标检测方法[J].红外技术. 2001,23(5):11~13
    [121]艾斯卡尔,李在铭.最优分布变换与微弱点状动目标检测技术[J].系统工程与电子技术. 2003,25(1):103~106
    [122] Gordon N J, Salmond J. Smith A F M. Novel approach to nonlinear/non Gaussian Bayesian state estimation[J]. IEEE Proceedings on Radar, Sonar and Navigation. 1993,140(2):107~113
    [123] Doucet A, Freitas, Gordon N J. Sequential Monte Carlo methods in practice[M]. New York:Springer-Verlag. 2001
    [124] Samond D J, Brich H. A particle filter for track-before-detect[A]. IEEE Proceedings of the American Control Conferece. Washington. 2001:3755~3760
    [125] Ristic B. Detection and tracking of stealthy targets , beyong the kalman filter: particle filter for tracking application[M]. Artech House. 2004
    [126] Rutten M G, Gordon N J. Maskell S. Efficient particle based track before detect in Rayleigh Noise[A]. In Fusion 2004: Proceedings of the 7th International Conference on Information Fusion. Sweden. June. 2004
    [127]杨小军,潘泉,张洪才.基于粒子滤波和似然比的联合检测与跟踪[J].控制与决策. 2005, 20(7).
    [128] Seera J . Image analysis and mathematical morphology[M]. NewYork : Academic Press , 1982.
    [129] Wang Y , Zhen Q B , Zhang J P. Real2time detection of small target in IR grey image based on mathematical morphology[J]. Infrared and Laser Engineering, 2003,32(1):28~31
    [130] Yan Z, Guilin Z. A morphology based on detection of small moving target in infrared image sequence[J]. Journal of Data Acquisition & Processing,1997,12 (4): 276~279
    [131] Cassasent D. Sub-pixel target detection and tracking[C] . Proc of the SPIE,1986,726:1206~1210
    [132] Rauch H E , Futterman W I , Kemmer D B. Background suppression and tracking with a staring Mosaic sensor[J] . Optical Engineering,1981,20 (1):128~133
    [133] Horn B K, Schunck B G.. The image flow constraint equation[J]. CVGIP,1986,35(3): 26~31
    [134] Horn B K, Schunck B G. Determining optical flow[R]. MIT : AIMemoAI Lab MIT,1986:88~933
    [135] Uras S , Girosi F , Verri A. A computational approach to motion perception[J]. Biol Cybern,1988,60:79~87
    [136] Reichardt W E , Schlêgl R W. A two dimensional field theory for motion computation[J]. Biol Cybern,1988,60:23~25
    [137] Markandey V. Motion estimation for moving target detection[J]. IEEE Trans on AES,1996,32(3):866~874
    [138]李晓春,孙陪懋,金国藩,等.复杂场景中动目标图像分割的一种快速算法[J].清华大学学报(自然科学版),1997,37(8):59~64
    [139] Verri A , Poggio T. Motion field and optical flow:qualitative properties[J]. IEEE Trans PAMI ,1989,11 (5):477~489
    [140] Li G K, Peng J X, Li H. Small target detection based on multiwavelet transform[J]. J Huazhong Univ of Sci &Tech,2000,28(1):72~75.
    [141] Zuo Z, Zhang T X. Algorithm based on wavelet transform for small target detection on sea surface in infrared image [J]. Infrared and Laser Engineering, 1998, 27(3) : 42~45
    [142] Sheng W , Deng b ,Liu J. Multi2resolution distance map based small target detection in infrared image [J] . Acta Electronica Sinica,2002,30 (1):42~45
    [143] Li H , Zheng C Y, Gao J L. Detecting small moving object based on wavelet multi-scale image registration[J]. Infrared and Laser Engineering,2003,32(3): 268~270
    [144] Giuseppe B. Small target detection using wavelets[A]. IEEE 1998 Fourteenth International Conference on Pattern Recognition,1998: 1776~1778
    [145] Hongyan L, Chengke W. Detecting dim small targets in image sequences based on wavelet transforms and genetic algorithms[J]. Acta Electronica Sinica,2001,29(4):439~442
    [146] Mahmoud S A. Motion analysis of multiple moving object using Hartley transform[J]. IEEE Trans on Systems , Man and Cybernetics,1991,21:280~287
    [147] Mahmoud S A. Motion detection and estimation of multiple moving object in an image sequence using cosine area transform(CAT) [J] . IEEE Proc,1991,138 (5):351~356
    [148] Falconer D G. Target tracking with the Hough transform[A]. Proceedings of 11th Asilomar Conference on Circuits , System, and Computer,1977:249~252
    [149] Snyder W E , Rajola S A. Tracking acquisition of sub-pixel target[J]. BATI ASUS Series,1983: 227~233
    [150] Yongqiang D, Ran T, Siyong Z, et al. SAR moving target detection and imaging based on WHH Transform[J]. Journal of Beijing Institute of Technology,1999, 8(1):94~100
    [151]张良云.惯性导航系统[M].北京:国防工业出版社,1992
    [152]周忠谟,易杰军. GPS卫星测量原理与应用[M].北京:测绘出版社,1992
    [153]董绪荣,张守信,华仲春. GPS/INS组合导航定位及其应用[M].长沙:国防科技大学出版社,1998
    [154] Courtney S. Sharp, Omid Shakenia, S.Shankar Sastry. A Vision System for Landing an Unmanned Aerial Vehicle[C]. Proceedings of the 2001 IEEE International Conference on Robotics and Automation,2001:1720~1727
    [155] Srikanth S,James F M and Gaurav S S. Vision-based Autonomous landing of an Unmanned Aerial Vehicle[C]. Proceedings of the 2002 IEEE International Conference on Robotics & Automation,2002:2799~2804
    [156] Srikanth S, James F M, Gaurav S S. Visually Guided Landing of an Unmanned Aerial Vehicle[J]. IEEE Transactions on Robotics and Automation,2003,19(3):371~380
    [157]邱力为,宋子善,沈为群.用于无人直升机着舰控制的计算机视觉技术研究[J],航空学报,2003,24(4):351~354
    [158] Marr D C and Hildreth E C. Theory of edge detection[J]. Proc Roy Soc, London, 1980, 207:187~217
    [159] Lindeberg T. Junction detection with automatic selection of detection scales and localization scales[C]. Proceedings of IEEE International Conference on Image Processing,1994:924~928
    [160] Gabor D. Theory of communication[J]. Journal of the Institute of Electrical Engineers,1946,93(26):429~457
    [161]Marcelja S. Mathematical description of simple cortical cells [J]. J. Opt. Soc. Am A,1980,70:1297~1300
    [162] Daugman J. Uncertainty relation for relation for resolution in space, spatial frequency and orientation Optimized by two-dimensional visual cortical filters[J]. J. Opt. Soc. Am A, 1985,2:1160~1168
    [163] Pollen D A, Ronner S F. Visual cortical neurons as localized spatial frequency filters[J]. IEEE Transaction in Systems, Man and Cybernetics,1983,13(5):907~916
    [164] Daugman J G.. Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters[J]. Journal of the Optical Society of America A,1985,2(7):1160~1169
    [165] Jones J P, Palmer L A. An evaluation of the two-dimensional Gabor filte rmodel of simple receptive fields in cat striate cortex[J]. Journal of Neurophysiology,1987,58 (6):1233~1258
    [166] Fukunaga K and Hostetler L D. The estimation of the gradient of a densityfunction with application in pattern recognition[J], IEEE Trans. Inform. Theory, 1975,21:32~40
    [167] Cheng Y. Mean Shift, mode seeking, and clustering[J]. IEEE Trans. Pattern Anal. 1995,17(8):790~799
    [168] Comaniciu D and Meer P. Mean Shift: A robust approach toward feature space analysis[J]. IEEE Trans. Pattern Anal. 2002,24(5):603~619
    [169] Maneesh K. Mean shift segmentation with wavelet-based bandwidth selection[C]. Sixth IEEE Workshop on Applications of Computer Vision, 2002 : 43~51
    [170] Comaniciu D and Meer P. The variable bandwidth Mean Shift and data-driven scale selection[C]. 8th International Conference on Computer Vision, Vancouver, BC, Canada, July 2001,1:438~445
    [171] Collins R T. Mean-Shift blob tracking through scale space[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003:1063~1069
    [172] Georgescu B, Shimshoni I and Meer P. Mean shift based clustering in high dimensions: A texture classification example[C]. In Proc. Int. Conf. Computer Vision,2003:456~463
    [173] Yang C J, Duraiswami R, DeMenthon D and Davis L. Mean Shift Analysis Using Quasi-Newton Methods[C]. In IEEE International Conference on Image Processing,2003,3:447~450
    [174] Yang C J, Duraiswami R, Gumerov N and Davis L. Improved Fast Gauss Transform and Efficient Kernel Density Estimation[C]. In IEEE International Conference on Computer Vision,2003:464~471
    [175] Parzen E. On estimation of a probalility density function and mode[J]. Ann. Math. Stat.,1962,33(3):1065~1076
    [176] Benjamin J R. The Detection of 2D Image Feature Using Local Energy[D]. Australia : The University of Western Australia,1996
    [177] Moravec H P. Towards automatic visual obstacle avoidance[C]. In 5th International Joint Conference on Artificial Intelligence,1977:584~590
    [178] Forstner W, Gulch E. A fast operator for detection and precise location of distinct points[C]. Corners and Centres of Circular Feature. Intercommision Conference on Fast Processing o f Photogrammetric Data, Interlaken, Switzerland,1987
    [179] Mehrotra R, Namuduri K R, Ranganathan N. Odd Gabor filter-based edge detection[J]. Pattern Recognition,1992,25(12):1479~1494
    [180] LEE Tai Sing. Image representation using 2D Gabor wavelet[J]. IEEE Trans onPattern Analysis and Machine Intelligence,1996,18(10):959~971
    [181]陈泽志,吴成柯。一种高精度估计的基础矩阵的线性算法[J]。软件学报,2002, 13(14)
    [182] Peter Sturm and Bill Triggs. A Factorization Based Algorithm for Mulit-Image Projective Structure and Motion [C]. 4th European Conference on Computer Vision,Cambridge,1996:709~720
    [183] L. S. Shapiro, A.Zisserman, and M. Brady. 3D Motion Recovery via Affine Epipolar Geometry [J]. International Jounal of Computer Vsion,1995,16(2): 147~182
    [184] Paulo R. S. Mendonc and Roberto Cipolla. Estimation of epipolar geometry from apparent contours: Affine and circular motion cases [C]. In Proceeding Conf. Computer Vision and Pattern Recognition,1999:9~14
    [185] Ilan Shimshoni, Ronen Basri, Ehud Rivlin. A Geometric Interpretation of Weak-Perspective Motion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(3):252~257
    [186] G L Brown.A Survey of Image Registration Techniques[J].ACM Computing Survey,1992,24(4):325~376
    [187] Barbara Zitova, Jan Flusser.Image registration methods : A survey[J].Image and Vision Computing,2003,24(11):977~1000
    [188] Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors[C]. International Journal of Computer Vision,2004,60(1):63~86
    [189] Harris G, Stephens M. A Comblined corner and edge detector[J],1988
    [190]黄世奇,禹春来.成像精确制导技术分析与研究[J].导弹与航天运载技术, 2005,278:20~24
    [191] Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery[J]. Image and Vision Computing,2003,(21):623~635
    [192] Haritaoglu I, Harwood D, Davis L. W4: Real-time surveillance of people and their activities[J]. IEEE Trans Patern Analysis and Machine Intelligence,2000,22 (8):809~830
    [193] Tsuji T, Hattori H, Watanabe M, et al. Development of night vision system[J]. IEEE Transactions on Intelligent Transportation Systems,2002,3 (3):203~209
    [194] Yang Dakai, Cai Baigen, et al. An improved map-matching algorithm used in vehicle navigation system[C]. Proc IEEE Intelligent Transportation Systems,2003,2:1246~1250
    [195] Aggarwal J K, Cai Q. Human motion analysis: A Review[J]. Computer Vision and Image Understanding,1999,73 (3);428~432
    [196]赵骅,吕科.中国虚拟人数据的配准算法[J].计算机工程与应用, 2004, (34) : 64~67
    [197]孙即祥等.现代模式识别[M].长沙:国防科技大学出版社,2002:31~34
    [198] Kenneth R Castleman. Digital image processing[M].北京:电子工业出版社,2001 : 408~410
    [199]贾云得.机器视觉[M].北京:科学出版社,2000:36~37
    [200] Zhang Z X, Zhang J Q, Wu X L. Global image matching with relaxation method[C]. Proceedings of the Intercommission Colloquium on Photogrammetry, Remote Sensing and Geographic Information System. Wuhan:WTUSM Press, 1992:11~14
    [201] Lai S H , Fang M. Robust and efficient image alignment with spatially varying illumination models[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Fort Collins, Colorado:Colorado State University Press, 1999,2:167~172
    [202]李峰,周源华.变形系数相关的最小二乘匹配算法[J].上海交通大学学报, 1999, 23(11) : 1391~1394
    [203] Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. Cambridge University Press 2000
    [204] Collins R T. Mean-shift blob tracking through scale space[C]. In proceedings of the conference on computer vision and pattern recognition,2003:1069~1076
    [205] Rosenfeld A K. Digital picture processing[M]. New York: American Press,1982
    [206] Kenneth R C. Digital Image Processing[M]. Prentice-Hall Press,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700