碘乙烷的激发态动力学和芳香族化合物的离子态光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子激发态动力学和离子态光谱都是激光化学研究的重要内容。通过对分子激发态动力学和离子态光谱的研究,可以获得分子的激发态和离子态信息,为我们深入了解化学反应的实质提供依据。具有飞秒时间尺度分辨率是飞秒时间分辨光电子影像技术的一大特点,可以实现对分子激发态动力学行为的实时观察。而质量分辨阈值电离光谱作为高分辨的离子态光谱可以实现质量分辨。本文将飞秒时间分辨的光电子影像技术运用于碘乙烷的激发态动力学研究,而将质量分辨阈值电离光谱技术运用于3,4-二氟苯甲醚和间甲氧基苯乙烯的离子态光谱研究。主要工作可以分为三个部分。
     第一部分利用飞秒时间分辨光电子影像技术和飞秒时间分辨质谱技术研究碘乙烷的激发态动力学。实验测得当分子吸收一个267nm光子后被激发到解离带A带,运用飞秒时间分辨质谱技术测得A带对应的时间常数为57fs。母体分子在吸收两个400nm光子的情况下,可以被激发到B带,对应的预解离寿命为1.42ps。当分子吸收三个400nm光子后会到达更高里德堡态,通过时间分辨光电子能谱分布观察到更高里德堡态会快速转移到B带,这一过程所对应的时间尺度为50fs。
     第二部分利用共振增强双光子电离(R2PI)和质量分辨的阈值电离光谱(MATI)技术来研究顺式和反式3,4-二氟苯甲醚S1和Do态的振动光谱。从实验中测得顺式和反式3,4-二氟苯甲醚S1←S0跃迁能的带源分别为35505±2和35711±2cm-1,它们各自的绝热电离势分别为67780±5和68125±5cm-1。并且发现3,4-二氟苯甲醚的S1←So跃迁能和绝热电离势的能移都存在着加法定则。这一定则对于光谱学家在研究涉及多取代苯的衍生物的实验中选取合适的扫描范围很有帮助。通过比较3,4-二氟苯甲醚Sl和D0态的振动光谱,发现分子D0←S1跃迁中倾向于保持原有的振动模式,这表明分子的两种构型D0态的分子构型,对称性和振动坐标都与S1态类似。
     第三部分利用共振增强双光子电离(R2PI)和质量分辨的阈值电离光谱(MATI)技术来研究间甲氧基苯乙烯四个构型的S1和D0态的振动光谱。从实验中测得四个异构体Sl←So跃迁能的带源分别为32767±2,32907±2,33222±2和33281±2cm-1。它们的绝热电离势分别为65391±5,64977±5,65114±5和64525±5cm-1。通过比较间甲氧基苯乙烯与对甲氧基苯乙烯的MATI光谱发现对于一些面内环振动来说,振动频率除了依赖于振动模式以外,还依赖于两个取代基的相对位置。
Molecular excited state dynamics and ionic spectroscopy are the important components of laser chemistry. Research of excited state dynamics and ionic spectroscopy can help us to obtain more information of the excited states and ionic states of the molecules. Femtosecond time resolution is an important feature of femtosecond time-resolved photoelectron imaging. It makes the real-time investigating of the dynamics of molecules to become a reality. Mass Analyzed Threshold Ionization Spectroscopy (MATI) is a powerful technique for studies of molecular ions and can offer a very high resolution with mass resolved.
     Excited state dynamics of Iodine ethane has been investigated by femtosecond time-resolved photoelectron imaging. The ionic spectroscopies of3.4-difuoroanisole and m-methoxystyrene have been investigated by mass analyzed threshold spectroscopy. The dissertation is mainly composed of three parts:
     The first part is the study of ultrafast dynamics of electronically excited states in ethyl iodine using femtosecond timeresolved photoelectron imaging coupled with mass spectroscopy. The dissociation constant of the A band was measured to be about57fs. Upon two400nm photon excitation to the B band, the time evolution of the parent ion with consists of two components. The fast component with a time constant of50fs revealed the energy transfer from the higher Rydberg states to the B band. The slow one was determined to be1.42ps, which was due to predissociation relaxation from the B band to the repulsive A band.
     The second part is the vibronic and cation spectra of3,4-difluoroanisole recorded by R2PI and MATI techniques. The band origins of the S1S0electronic transition of the cis and trans rotamers appear at35505±2and35711±2cm-1and the adiabatic ionization energies are determined to be67780±5and68125±5cm-1, respectively. We find that there may have an additivity rule associated with the energy shifts in the E1and IE of3,4-difluoroanisole. This rule may be useful for spectroscopists to make an initial guess in setting proper scanning ranges of their lasers for their experiments involving multiple substituted benzenes. Analysis of the obtained vibronic and cation spectra shows that a propensity rule maintaining the same vibration in the D0←S1transition exists. This indicates that the molecular geometry, symmetry, and vibrational coordinates of the cation in the Do state are like those of the neutral species in the Si state for both cisandtransrotamers of3,4-difluoroanisole. In addition, investigations on the frequencies of the active vibrations suggest that the geometry is more rigid in the cationic Do state than that in the neutral S1state.
     The Third part is the vibronic and cation spectra of m-methoxystyrene recorded by R2PI and MATI techniques. The band origin of the S1←S0electronic excitation for conformer a, b, c, and d of m-methoxystyrene are found to be32767±2,32907±2,33222±2, and33281±2cm-1. And, the adiabatic IE are determined to be65391±5,64977±5,65114±5, and64525±5cm-1, respectively. Analysis on the MATI spectra of m-methoxystyrene and p-methoxystyrene shows that the frequencies of these in-plane ring vibrations depend on the relative location two substituent groups on the aromatic ring as well as the vibrational pattern.
引文
[1]V. Blanchet, M. Z. Zgierski, T. Seideman, A. Stolow. Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy[J]. Nature.,1999 (401):52-54.
    [2]H. Studzinski. PhD thesis[D], Kiel:Kiel University,2007.
    [3]T. Suzuki, L. Wang, H. Kohguchi. Femtosecond time-resolved photoelectron imaging on ultrafast electronic dephasing in an isolated molecule[J]. J. Chem. Phys., 1999 (111):4859-4861.
    [4]R. M. Young, G B. Griffin, A. Kammrath, O. T. Ehrler, D. M. Neumark. Time-resolved dynamics in acetonitrile cluster anions (CH3CN)n[J]. Chem. Phys. Lett.,2010 (485):59-63.
    [5]K. Ohta, Y. Naitoh, K. Tominaga, N. Hirota, K. Yoshihara. Femtosecond transient absorption studies of trans-and cis-1,3,5-hexatriene in solution[J]. J. Phys. Chem. A., 1998 (102):35-44.
    [6]S. Garrett-Roe, S. T. Shipman, P. Szymanski, M. L. Strader, A. Yang, C. B. Harris. Ultrafast electron dynamics at metal interfaces:intraband relaxation of image state electrons as friction[J]. J. Phys. Chem. B.,2005 (109):20370-20378.
    [7]M. P. Critten, D. Burns, J. M. Evans, K. Lamb, C. Yelland, W. Sibbet. All-solid state femtosecond Cr:LiSAF lasers pumped at 532 nm and 670 nm[J]. J. Modern. Optics.,1996 (43):919-923.
    [8]J. Pan, M. Byrdin, C. Aubert, A. P. M. Eker, K. Brettel, M. H. Vos. Excited-state properties of flavin radicals in flavoproteins:femtosecond spectroscopy of DNA photolyase, glucose oxidase, and flavodoxin[J]. J. Phys. Chem. B.,2004 (108): 10160-10167.
    [9]W. Radloff, P. Farmanara, V. Stert, E. Schreiber, J. R. Huber. Ultrafast photodissociation dynamics of electronically excited CF2I2 molecules[J]. Chem. Phys. Lett.,1998 (291):173-178.
    [10]P. Ludowise, M. Blackwell, Y. Chen. Femtosecond time-resolved mass and photoelectron spectroscopic study of OC1O photodissociation. Coherent energy transfer in a stepwise reaction[J]. Chem. Phys. Lett.,1997 (273):211-218.
    [11]W. G Roeterdink, M. H. M. Janssen. Phys. Femtosecond velocity map imaging of dissociative ionization dynamics in CF3I[J]. Phys. Chem. Chem. Phys.,2002 (4): 601-612.
    [12]F. Renth, M. Foca, A. Petter, F. Temps. Ultrafast transient absorption spectroscopy of the photo-induced Z-E isomerization of a photochromic furylfulgide[J]. Chem. Phys. Lett.,2006 (428):62-67.
    [13]N. K. Schwalb, F. Temps. Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine[J], J. Am. Chem. Soc.,2007 (129): 9272-9278.
    [14]T. Baumert, S. Pedersen, A. H. Zewail. Femtosecond real-time probing of reactions.12. vectorial dynamics of transition-states[J]. J. Phys. Chem.,1993 (97): 12447-12459.
    [15]J. W. Ho, W. K. Chen, P. Y. Cheng. A direct observation of a concerted two-bond breaking reaction[J]. J. Am. Chem. Soc.,2007 (129):3784-3785.
    [16]H. Studzinski, S. Zhang, Y. Wang, F. Temps. Ultrafast nonradiative dynamics in electronically excited hexafluorobenzene by femtosecond time-resolved mass spectrometry[J]. J. Chem. Phys.,2008 (128):164314 (1-10).
    [17]A. Stolow. Time-resolved photoelectron spectroscopy:Non-adiabatic dynamics in polyatomic molecules[J]. Int. Rev. Phys. Chem.,2003 (22):377-405.
    [18]A. Stolow. Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules[J]. Annu. Rev. Phys. Chem.,2003 (54):89-119.
    [19]A. Stolow, A. E. Bragg, D. M. Neumark. Femtosecond time-resolved photoelectron spectroscopy[J]. Chem. Rev.,2004 (104):1719-1757.
    [20]M. P. Minitti, P. M. Weber. Time-resolved conformational dynamics in hydrocarbon chains[J]. Phys. Rev. Lett.,2007 (98):253004.
    [21]C. Reichardt, R. A. Vogt, C. E. Crespo-Hernandez. On the origin of ultrafast nonradiative transitions in nitro-polycyclic aromatic hydrocarbons:Excited-state dynamics in 1-nitronaphthalene[J]. J. Chem. Phys.,2009(131):22451-22453.
    [22]K. Kleinermanns, D. Nachtigallova, and M. S. de Vries. Excited state dynamic of DNA bases[J]. Int. Rev. Phys. Chem.,2013 (32):308-342.
    [23]H. Yasushi, Y. Hiroharu, S.Tsuguo. Effect of potential energy gap between the n-π* and the π-π* state on ultrafast photoisomerization dynamics of an azobenzene derivative[J]. J. Phys. Chem. A,2002 (106):3067-3071.
    [24]I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore. Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene:dependence on excitation wavelength[J]. Chem. Phys. Lett.1998 (290):68-74.
    [25]S. G Mayer, C. L.Thomsen, M. P. Philpott, and P. J. Reid. The solvent-dependent isomerization dynamics of 4-(dimethylamino)azobenzene (DMAAB) studied by subpicosecond pump-probe spectroscopy[J]. Chem. Phys. Lett.,1999 (314): 246-254.
    [26]K. Watanabe. Photoionization and total absorption cross section of gases. I. ionization potentials of several molecules, cross sections of NH3 and NO[J], J. Chem. Phys.,1954(22):1564-1570.
    [27]M. I. AI-Joboury, D. W. Turner. Determination of ionization potentials by photoelectron energy measurement[J]. J. Chem. Phys.,1962 (37):3007-3008.
    [28]D. W. Turner, A. D. Baker, C. Barker, C. R. Brundle. Molecular photoelectron spectroscopy:A handbook of He 584A spectra [M], London:Interscience,1970
    [29]M. I. AI-Joboury, D. W. Turner. Molecular photoelectron spectroscopy.1. Hydrogen and nitrogen molecules[J]. J. Chem. Soc,1963:5141-5147.
    [30]R. R. Herm, M. G Inghram. Measurement of threshold electrons in photoionization of Ar Kr and Xe [J]. J. Chem. Phys.,1967 (46):4995-4996.
    [31]T. Baer, W. B. Peatman, E. W. Schlag. Photoionization resonance studies with a steradiancy analyzer. II. The Photoionization of CH3I[J]. Chem. Phys. Lett.,1969 (4): 243-247.
    [32]W. B. Peatman, T. B. Borne, E. W. Schlag. Photoionization resonance spectra I. Nitric oxide and benzene[J]. Chem. Phys. Lett.,1969 (3):492-497.
    [33]R. Spohr, P. M. Guyon, W. A. Chupka, Berkowit. J. Threshold photoelectron detector for sse in vacuum ultraviolet[J]. Rev. Sci. Instrum.,1971 (42):1872-1879.
    [34]P. M. Guyon, R. Spohr, W. A. Chupka, J. Berkowitz. Threshold photoelectron-spectra of H2, D2, and F2[J]. J. Chem. Phys.,1976 (65):1650-1658.
    [35]K. Mullerdethlefs, M. Sander, E. W. Schlag, A Novel method capable of resolving rotational ionic states by the detection of threshold photoelectrons with a resolution of 1.2cm-1[J]. Z.Naturforsch. A.,1984 (39):1089-1091.
    [36]C. Linton, B. Simard, H. P. Loock, S. Wallin, G. K. Rothschopf, R. F. Gunion, M. D. Morse, P. B. Armentrout. Rydberg and pulsed field ionization-zero electron kinetic energy spectra of YO[J]. J. Chem. Phys.,1999 (111):5017-5026.
    [37]L. C. Zhu, P. Johnson. Mass analyzed threshold ionization spectroscopy[J]. J. Chem. Phys.,1991 (94):5769-5771.
    [38]W. B. Tzeng, J. L. Lin. Ionization energy of p-fluoroaniline and vibrational levels of p-fluoroaniline cation determined by mass-analyzed threshold ionization spectroscopy[J]. J. Phys. Chem. A.,1999 (103):8612-8619.
    [39]C. E. H. Dessent, S. R. Haines, K. Muller-Dethlefs. A new detection scheme for synchronous, high resolution ZEKE and MATI spectroscopy demonstrated on the Phenol center dot Ar complex[J]. Chem. Phys. Lett.,1999 (315):103-108.
    [40]J. Solomon. Photodissociation as studied by photolysis mapping[J]. J. Chem. Phys.,1967(47):889-895.
    [41]J. Solomon, C. Jonah, P. Chandra, R. Bersohn. Photolysis mapping studies of aliphatic carbonyl compounds[J]. J. Chem. Phys.,1971 (55):1908-1914.
    [42]G. E. Busch, K. R. Wilson. Triatomic photofragment spectra.1. energy partitioning in NO2 photodissociation[J]. J. Chem. Phys.,1972 (56):3626-3638.
    [43]M. Mons, I. Dimicoli. State selective kinetic distribution of photofragments[J]. Chem. Phys. Lett.,1986 (131):298-302.
    [44]H. L. Kim, M. A. Wickramaaratchi, X. N. Zheng, G. E. Hall. Reactions of velocity-aligned atoms probed by doppler profiles:H+O2→OH+O[J]. J. Chem. Phys., 1994 (101):2033-2050.
    [45]M. N. R. Ashfold, N. H. Nahler, A. J. Orr-Ewing, O. P. J. Vieuxmaire, R. L. Toomes, T. N. Kitsopoulos, I. A. Garcia, D. A. Chestakov, S. M. Wu, D. H. Parker. Imaging the dynamics of gas phase reactions[J]. Phys. Chem. Chem. Phys.,2006 (8): 26-53.
    [46]D. W. Chandler, P. L. Houston. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization [J]. J. Chem. Phys., 1987 (87) 1445-1447.
    [47]A. T. J. B. Eppink, D. H. Parker. Velocity map imaging of ions and electrons using electrostatic lenses:Application in photoelectron and photofragment ion imaging of molecular oxygen[J]. Rev. Sci. Instrum.,1997 (68):3477-3484.
    [48]M. Szilagyi, Electron and ion optics [M], New York:Plenum,1988.
    [49]A. Bodi, M. Johnso, Z. Gengeliczki, B. Sztaray, T. Bear. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics[J]. Rev. Sci. Instrum.,2009 (80):034101-034107.
    [50]J. J. Lin, J. Zhou, W. Shui, K. Liu. Application of time-sliced ion velocity imaging to crossed molecular beam experiments[J]. Rev. Sci. Instrum.,2003 (74):2495-2500.
    [51]D. Townsend, M. P. Minitti, A. G Suits. Direct current slice imaging[J]. Rev. Sci. Instrum.,2003 (74):2530-2539.
    [52]L. Wang, H. Kohguchi, T. Suzuki, Femtosecond time-resolved photoelectron imaging[J]. Faraday Discuss.,1999 (113):37-46.
    [53]J. A. Davies, J. E. Leclaire, R. E. Continetti, C. C. Hayden. Femtosecond timeresolved photoelectron-photoion coincidence imaging studies of dissociation dynamics[J]. J. Chem. Phys.,1999(111):1-4.
    [54]M. Tsubouchi, B. J. Whitaker, L. Wang, H. Kohguchi, T. Suzuki. Photoelectron imaging on time-dependent molecular alignment created by a femtosecond laser pulse[J]. Phys. Rev. Lett.,2001 (86):4500-4503.
    [55]T. Horio, T. Fuji, Y. I. Suzuki, T. Suzuki. Probing ultrafast internal conversion through conical intersection via time-energy map of photoelectron angular anisotropy[J]. J. Am. Chem. Soc.,2009 (131):10392-10393.
    [56]J. A. Davies, R. E. Continetti, D. W. Chandler, C. C. Hayden. Femtosecond time-resolved photoelectron angular distributions probed during photodissociation of NO2[J]. Phys. Rev. Lett.,2000 (84):5983-5986.
    [57]J. B. Kim, T. I. Yacovitch, C. Hock, D. M. Neumark. Slow photoelectron velocity-map imaging spectroscopy of the phenoxide and thiophenoxide anions[J]. Phys. Chem. Chem. Phys.,2012 (13):17378-17383.
    [58]D. M. Neumark. Slow electron velocity-map imaging of negative ions: Applications to spectroscopy and dynamics[J]. J. Phys. Chem. A.,2008 (112): 13287-13301.
    [59]E. Gloaguen, J. M. Mestdagh, L. Poisson, F. Lepetit, J. P. Visticot, B. Soep, M. Coroiu, A. J. B. Eppink, D. H. Parker. Experimental evidence for ultrafast electronic relaxation in molecules, mediated by diffuse states[J]. J. Am. Chem. Soc.,2005 (127): 16529-16534.
    [60]E. Peronne, M. D. Poulsen, C. Z. Bisgaard, H. Stapelfeldt. Nonadiabatic alignment of asymmetric top molecules:field-free alignment of Iodobenzene[J]. Phys. Rev. Lett.,2003 (91):043003 (1-4).
    [61]S. De, I. Znakovskaya, D. Ray, F. Anis, N. G.Johnson, I. A. Bocharova, M. Magrakvelidze, B. D. Esry, C. L. Cocke, I. V. Litvinyuk, M. F. Kling. Field-free orientation of CO molecules by femtosecond two-color laser fields[J]. Phys. Rev. Lett., 2009 (103):153002-153005.
    [62]J. Dura, R. D. Nalda, G. A. Amaral, L. Banares. Imaging transient species in the femtosecond a-band photodissociation of CH3I[J]. J. Chem. Phys.,2009 (131): 134311-134324.
    [63]G Gitzinger, M. E. Corrales, V. Loriot, G A. Amaral, R. D. Nalda, L. Banares. A femtosecond velocity map imaging study on b-band predissociation in CH3I. I. The band origin[J]. J. Chem. Phys.,2010 (132):234313-234319.
    [64]N. Thire, R. Cireasa, V. Blanchet, S. T. Pratt. Time-resolved photoelectron spectroscopy of the CH3I B'E 6s[2] state[J]. Phys. Chem. Chem. Phys.,2010 (12): 15644-15652.
    [65]C. J. Hammond, K. L. Reid, K. L. Ronayne. Observation of a simple vibrational wavepacket in a polyatomic molecule via time-resolved photoelectron velocity-map imaging:A prototype for time-resolved ivr studies[J]. J. Chem. Phys.,2006 (124): 201102-201105.
    [66]E. Peronne, M. D. Poulsen, C. Z. Bisgaard, H. Stapelfeldt. Nonadiabatic alignment of asymmetric top molecules:field alignment of Iodobenzene[J]. Phys. Rev. Lett.,2003 (91):043003 (1-4).
    [67]T. Horio, T. Fuji, Y. Suzuki and T. Suzuki. Probing ultrafast internal conversion through conical intersection via time-energy map of photoelectron angular anisotropy[J]. J. Am. Chem. Soc.,2009 (131):10392-10393.
    [68]B. J. Sussman, D. Townsend, M. Y. Ivanov, A. Stolow. Dynamic stark control of photochemical processes[J]. Science,2006 (314):278-281.
    [69]A. Kuntrowitz, J. Grev. A high intensity source for the molecular beam. Part I. theoretical[J]. Rev. Sci. Instrum.,1951 (22):328-332.
    [70]G B. Kistiakowsky, W. P. Slichter. A high intensity source for the molecular beam. Part Ⅱ. Experimental[J]. Rev. Sci. Instrum.,1951 (22):333-337.
    [71]J. E. Dahl, A. D. Delmore. SIMONPC/PS2 electrostatic lens design program[J]. Rev. Sci. Instrum.,1990 (61):607-609.
    [72]姚建拴,非线性光学频率变换及激光调谐技术[M],北京:科学出版社,1995.
    [73]蓝信钜,激光技术[M],北京:科学出版社,2000.
    [74]E. W. Schlag. ZEKE spectroscopy[M]. Cambridge:Cambridge University press, 1998.
    [75]A. Held, E. W. Schlag. Zero kinetic energy spectroscopy[J]. Acc. Chem. Rev., 1998 (31):467-473.
    [76]K. Muller-Dethlefs, M. Sander, E. W.Schlag. Two-colour photoionization resonance spectroscopy of NO:Complete separation of rotational levels of NO+ at the ionization threshold[J]. Chem. Phys. Lett.,1984 (112):291-294
    [77]K. Miiller-Dethlefs, E. W. Schlag. High-resolution zero kinetic energy (ZEKE) photoelectron spectroscopy of molecular systems[J]. Annu. Rev. Phys. Chem.,1991 (42):109-136.
    [78]D. W. Turner, A. D. Baker, C. Barker, C. R. Brundle. Molecular photoelectron spectroscopy:A handbook of He 584A spectra[M], London:Interscience,1970
    [79]J. Berkowitz. Photoabsorption, photoionization and photoelectron spectroscopy [M]. New York:Academic Press,1979
    [80]K. Kimura, S. Katsamuta, Y. Achiba, T. Yamazaki, S. Iwata. Handbook of Hel-photoelectron spectra of fundamental organic molecules[M]. Tokyo:Japan Science Societ Press,1981
    [81]G Reiser, W.Habenicht, K. Muller-Dethlefs, E. W. Schlag. The ionization energy of nitric oxide[J]. Chem. Phys. Lett.,1988 (152):119-123.
    [82]J. L. Lin, R. H. Wu, W. B. Tzeng. Mass analyzed threshold ionization spectroscopy of 2-aminopyridine cation[J]. Chem. Phys. Lett.,2002 (353):55-62.
    [83]J, Lin, J. L. Lin, W. B.Tzeng. Mass analyzed threshold ionization spectroscopy of deuterium substituted N-methylaniline and N-ethylaniline cations:isotope effect on transition energy and large amplitude vibrations[J]. Chem. Phys.,2003 (295): 97-107.
    [84]J. L. Lin, K. C. Lin, W. B. Tzeng. Mass-analyzed threshold ionization spectroscopy of o-, m-, and p-methylaniline cations:vicinal substitution effects on electronic transition, ionization, and molecular vibration[J]. J. Phys. Chem. A,2002 (106):6462-6468.
    [85]S. C. Yang, J. L. Lin, W. B. Tzeng. Mass analyzed threshold ionization spectroscopy of p-ethylaniline cation:alkyl chain effects on ionization and molecular vibration[J]. Chem. Phys. Lett.,2002 (362):19-25.
    [86]L. C. L. Huang, J. L. Lin, W.B. Tzeng. Mass analyzed threshold ionization spectroscopy of 4-aminobenzonitrile cation[J]. Chem. Phys.,2002 (261):449-455.
    [87]J. L. Lin, L. C. L. Huang, W. B. Tzeng. Mass-analyzed threshold ionization spectroscopy of the selected rotamers of hydroquinone and p-dimethoxybenzene cations[J]. J. Phys. Chem. A,2001 (105):11455-11461.
    [88]J. L. Lin, W. B. Tzeng. Mass analyzed threshold ionization spectroscopy of 1-methylindole cation[J]. Chem. Phys. Lett.,2003 (377):620-626.
    [89]J. Lin, J. L. Lin, W. B. Tzeng. Mass analyzed threshold ionization spectroscopy of p-methoxyaniline cation and influence of the OCH3 substituent[J]. Chem. Phys. Lett.,2003 (370):44-51.
    [90]J. L. Lin, W. B. Tzeng. Ionization energy of o-fluoroaniline and vibrational levels of o-fluoroaniline cation determined by mass-analyzed threshold ionization spectroscopy[J]. Phys. Chem. Chem. Phys.,2000 (2):3759-3763.
    [91]K. Miiller-Dethlefs, E.W. Schlag. Chemical applications of zero kinetic energy (ZEKE) photoelectron spectroscopy[J]. Angew. Chem. Int. Ed.,1998 (37):1346-1374.
    [92]I. Powis, T. Bear. High resolution laser photoionization and photoelectron studies[M]. Chichester:Wiley,1995.
    [93]F. Merkt, R. N. Zare. On the lifetimes of Rydberg states probed by delayed pulsed field ionization[J]. J. Chem. Phys.,1994 (101):3495-3505.
    [94]J. Jortner, M. Bixon. On the dynamics of high Rydberg states of large molecules[J]. J. Chem. Phys.,1995 (102):5636-5646.
    [95]J. W. Hepburn. Photoelectron spectroscopy in a new light:zero kinetic energy (ZEKE) photoelectron spectrosocopy with coherent vacuum ultraviolet light[J]. Chem. Soc. Rev.1996 (25):281-287.
    [96]H. J. Dietrich, K. Miiller-Dethlefs. Fractional stark state selective electric field ionization of very high-n Rydberg states of molecules[J]. Phys. Rev. Lett.1996 (76): 3530-3533.
    [97]E. Miescher. High resolution absorption spectrum of nitric oxide (NO) in the region of the first ionization limit[J]. Can. J. Phys.1976 (54):2074-2092.
    [98]J.Manz, L.Woests. Femtosecond Chemistry [M], New York:VGH Weinheim, 1995.
    [99]I. Fisch, M. J. J. Vrakking, D. M. Villeneuve, A. Stolow. Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics[J]. Chem. Phys.,1996 (207):331-354.
    [100]A. Zavriyev, I. Fisch, D. M. Villeneuve, A. Stolow. Ponderomotive effects in zero kinetic energy photoelectron spectroscopy with intense femtosecond pulses[J]. Chem. Phys. Lett.,1995 (234):281-288.
    [101]A. J. Dobbyn, J. M. Hutson. The influence of the ionisation potential on the simulated ion signal from femtosecond pump-probe experiments[J]. Chem. Phys. Lett., 1995 (236):547-552.
    [102]I. Fisch, D. M. Villeneuve, M. J. J. Vrakking, A. Stolow. Femtosecond wave-packet dynamics studied by time-resolved zero-kinetic energy photoelectron spectroscopy[J]. J. Chem. Phys.,1995 (102):5566-5569.
    [103]I. V. Hertel, W. Radloff. Ultrafast dynamics in isolated molecules and molecular clusters[J]. Rep. Prog. Phys.,2006 (69):1897-2003.
    [104]A. H. Zewail. Femtochemistry:atomic-scale dynamics of the chemical bond[J]. J. Phys. Chem. A.,2000 (104):5660-5694.
    [105]M. Dantus, A.H. Zewail. Introduction:femtochemistry[J]. Chem. Rev.,2004 (104):1717-1718.
    [106]A. W. Castleman, M.L. Kimble. Femtochemistry Ⅶ:fundamental ultrafast processes in chemistry, physics, and biology[M], New York:Elsevier,2006.
    [107]I. Kovacs, F. Solymosi. Thermal and photoinduced dissociation of ethyl iodide to yield ethyl on a palladium(100) surface[J]. J. Phys. Chem.,1993 (97): 11056-11063.
    [108]W. K. Kang, K. W. Jung, D. C. Kim. Energy partitioning in photodissociation of methyl, ethyl and n-propyl iodides at 304 nm[J]. Chem. Phys.,1995 (196):363-370.
    [109]N. Knoblauch, A. Strobel. Two-photon ionization and dissociation of ethyl iodide[J]. J. Chem. Phys.1995 (103):5417-5427.
    [110]O. V. Rattigan, D.E. Shallcross, R.A. Cox. UV absorption cross-sections and atmosphericphotolysis rates of CF3I, CH3IH5I andCH2ICl[J]. J. Chem. Soc. Faraday Trans.1997 (93):2839-2846.
    [111]D. X. Dai, C. Tao, J.H. Zhang. Photofragment imaging of state-selective iodine atoms via the photodissociation of C2H5I at 280 nm[J]. Abstr. Pap. Am. Chem. Soc. 1999 (218):386-387.
    [112]P. Brewer, P. Das, G.S. Ondrey. Measurement of the relative populations of I(2P01/2) and I(2P03/2) by laser induced vacuum ultraviolet fluorescence[J]. J. Chem. Phys.1983 (79):720-723.
    [113]F. G. Godwin, P.A. Gorry, P.M. Hughes. Two-photon VUV laser-induced fluorescence detection of I*(2P1/2) and I (2P1/2) from alkyl iodide photodissociation at 248 nm[J]. Chem. Phys. Lett.1987 (135):163-169.
    [114]W. B. Bi, X. L. Xu, J. G Huang, D. Q. Xiao, Q. H. Zhu. High-resolution photofragment translational spectroscopy for the UV photodissociation of C2H5I[J]. Sci. China Ser. B:Chem.,2007 (50):476-482.
    [115]Y. Tang, W.B. Lee, Z.F. Hu, B. Zhang, K.C. Lin. Productions of I, I*, and C2H5 in the A-band photodissociation of ethyl iodide in the wavelength range from 245 to 283 nm by using ion-imaging detection[J]. J. Chem. Phys.,2007 (126): 064302-064309.
    [116]A. Giulian. Electronic excitation and oscillator strength of ethyl iodide by VUV photoabsorption and electron energy loss spectroscopy[J]. J. Chem. Phys.1999 (110): 10307-10315.
    [117]Y. Z. Liu, B.F. Tang, H. Shen, S. Zhang, B. Zhang. Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging[J]. Opt. Express.,2010 (18):5791-5801.
    [118]Q. S. Zheng, C.C. Qin, J.Y. Long, B.F. Tang, S. Zhang, B. Zhang. Ultrafast dynamics of o-fluorophenol studied with femtosecond time-resolve photoelectron imaging[J]. Sci. China.,2010 (53):1040-1044.
    [119]Z. Z. Cao, Z.R. Wei, L.Q. Hua, C.J. Hu, S. Zhang, B. Zhang. The intersystem crossing process of p-bromofluorobenzene studied with time-resolved photoelectron imaging[J]. J. Chem. Phys.,2009 (130):144309-144314.
    [120]Y. M. Wang, H. Shen, L.Q. Hua, C.J. Hu, B. Zhang. Predissociation dynamics of the B state of CH3I by femtosecond pump-probe technique[J]. Opt. Express 2009 (17):10506-10513.
    [121]Z. Z. Cao, Z. R. Wei, L. Q. Hua, C. J. Hu, S. Zhang, B. Zhang. Ultrafast dynamics of o-bromofluorobenzene studied by time-resolved photoelectron imaging[J]. Chem. Phys. Chem.,2009 (10):1299-1304.
    [122]A. Gedanken. The magnetic circular dichroism of the A band in CF3I, C2H5I and t-BuI[J]. Chem. Phys. Lett.,1987 (137):462-466.
    [123]M. Dantus, M. H. M. Janssen, A. H. Zewail. Femtosecond probing of molecular dynamics by mass-spectrometry in a molecular beam[J]. Chem. Phys. Lett.,1991 (181):281-287.
    [124]M. H. M. Janssen, M. Dantus, H. Guo, A. H. Zewail. Femtosecond reaction dynamics ofRydbergstates[J]. Chem. Phys. Lett.,1993 (214):281-289.
    [125]J. C. Traeger, R. G McLoughlin. Absolute heats of formation for gas-phase cations[J]. J. Am. Chem. Soc.1981 (103):3647-3652.
    [126]G Varsanyi. Assignments of Vibrational spectra of seven hundred benzene derivatives[M]. New York:Wiley,1974.
    [127]R. Rao, M. K. Aralakkanavar, K. S. Rao, M. A. Shashidhar. Infrared and electronic absorption spectra of some trisubstituted benzenes[J]. Spectrochim. Acta A 1989(45):103-116.
    [128]T. Itoh, N. Tanaka, Y. Tsukada, H. Nishikiori, T. Fujii. Matrix-isolation infrared spectroscopy of 2,3-,2,4-,2,5- and 3,4-difluorobenzaldehydes[J]. J. Mol. Struct.,2011 (1000):35-38.
    [129]W. C. Huang, W. B. Tzeng. Cation spectroscopy of 3,4-difluoroaniline by two-color resonant two-photon mass-analyzed threshold ionization[J]. J. Mol. Spectrosc.,2011 (266):52-56.
    [130]W. C. Huang, P.S. Huang, C.H. Hu, W.B. Tzeng, Vibronic and cation spectroscopy of 2,4-difluoroaniline[J]. Spectrochim. Acta A.,2012 (93):176-179.
    [131]H.H. Telle, A.G Urena, R.J. Donovan. Laser Chemistry[M]. England:John Wiley & Sons, Ltd.2007.
    [132]S. Ullrich, W. D. Geppert, C. E. H. Dessent, K. Muller-Dethlefs. Observation of rotational isomers I:A ZEKE and hole-burning spectroscopy study of 3-methoxyphenol[J]. J. Phys. Chem. A.,2000 (104):11864-11869.
    [133]W. D. Geppert, C. E. H. Dessent, K. Muller-Dethlefs. ZEKE and hole-burning spectroscopy of the rotational isomers of resorcinol-CO[J]. J. Phys. Chem. A.,1999 (103):9687-9692.
    [134]X. Xie, H. Su, W. B. Tzeng. Rotamers of m-aminophenol cation studied by mass analyzed threshold ionization spectroscopy and theoretical calculations[J]. Chem. Phys. Lett.,2004 (394):182-187.
    [135]D. G. Lister, N. L. Owen. J. Chem. Soc. Faraday Trans.,1973 (69):1304-1309.
    [136]D. Xiao, D. Yu, X. Xu, Z. Yu, Y. Du, Z. Gao, Q. Zhu, C. Zhang. Vibrational spectrum ofp-fluoroanisole in the first excited state (S1) and ab initio calculations[J]. J. Mol. Struct.,2008 (882):56-62.
    [137]K. S. Shiung, D. Yu, S. Y. Tzeng, W. B. Tzeng. Cation spectroscopy of o-fluoroanisole and p-fluoroanisole by two-color resonant two-photon mass-analyzed threshold ionization[J]. Chem. Phys. Lett.,2012 (524):38-41.
    [138]K. S. Shiung, D. Yu, W. B. Tzeng. Rotamers of m-fluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy[J]. J. Mol. Spectrosc.,2012 (274):43-47.
    [139]N. I. Giricheva, G. V. Girichev, J. S. Levina, H. Oberhammer. Molecular structures and conformations of 4-fluoranisole and 3,4-difluoranisole:Gas electron diffraction and quantum chemical calculations[J]. J. Mol. Struct.,2004 (703):55-62.
    [140]R. Cervellati, D. G. Lister, D. Christen, V. Hoffmann. The microwave spectrum and methoxy torsional frequency of theanti rotamer of m-fluoroanisole[J]. J. Mol. Struct.,1982 (82):307-309.
    [141]O. V. Dorofeeva, Y. V. Vishnevskiy, A. N. Rykov, N. M. Karasev, N. F. Moiseeva, L. V. Vilkov, H. Oberhammer, Molecular structure, conformation, potential to internal rotation, and ideal gas thermodynamic properties of 3-fluoroanisole and 3,5-difluoroanisole as studied by gas-phase electron diffraction and quantum chemical calculations^. J. Mol. Struct.,2006 (789):100-111.
    [142]A. Oikawa, H. Abe, N. Mikami, M. Ito. Electronic spectra and ionization potentials of rotational isomers of several disubstituted benzenes[J]. Chem. Phys. Lett.,1985 (116):50-54.
    [143]C. Mukarakate, A. M. Scheer, D. J. Robichaud, M. W. Jarvis, D. E. David, B. Ellison, M. R. Nimlos, M. F. Davis. Laser ablation with resonance-enhanced multiphoton ionization time-of-flight mass spectrometry for determining aromatic lignin volatilization products from biomass[J]. Rev. Sci. Instrum.,2011 (82):033104 (1-10).
    [144]C. Schon, W. Roth, I. Fischer, J. Pfister, R.F. Fink, B. Engels. Paracyclophanes as model compounds for strongly interacting n-systems. Part 2:mono-hydroxy[2.2] paracyclophane[J]. Phys. Chem. Chem. Phys.,2011 (13):11076-11082.
    [145]K. Miiller-Dethlefs, O. Dopfer, T. G Wright. ZEKE spectroscopy of complexes and clusters[S]. Chem. Rev.,1994 (94):1845-1871.
    [146]S. A. Krasnokutski, J. S. Lee, D. S. Yang. High-resolution electron spectroscopy and structures of lithium-nucleobase (adenine, uracil, and thymine) complexes[J], J. Chem. Phys.,2010 (132):044304 (1-8).
    [147]S. Georgiev, R. Karaminkov, S. Chervenkov, V. Delchev, H.J. Neusser. Mass-analyzed threshold ionization spectroscopy of 2-phenylethanol:probing of conformational changes caused by ionization[J]. J. Phys. Chem. A.,2009 (113): 12328-12336.
    [148]O. Kostko, S. K. Kim, S. R. Leone, M. Ahmed. Mass-analyzed threshold ionization (MATT) spectroscopy of atoms and molecules using VUV synchrotron radiation[J]. J. Phys. Chem. A.,2009 (113):14206-14211.
    [149]P. J. Breen, E. R. Bernstein, H. V. Secor, J. I. Seeman. Spectroscopic observation and geometry assignment of the minimum energy conformations of methoxy-substituted benzenes[J]. J. Am. Chem. Soc.,1989 (111):1958-1968.
    [150]C. G Eisenhardt, A. S. Gemechu, H. Baumgartel, R. Chelli, G Cardini, S. Califano. Excited state photoelectron spectroscopy of anisole[J]. Phys. Chem. Chem. Phys.,2001 (3):5358-5368.
    [151]C. G Eisenhardt, G Pietraperzia, M. Becucci. The high resolution spectrum of the S1←S0 transition of anisole[J]. Phys. Chem. Chem. Phys.,2001 (3):1407-1410.
    [152]M. Pradhan, C. Li, J. L. Lin, W. B. Tzeng. Mass analyzed threshold ionization spectroscopy ofanisole cation and the OCH3 substitution effect[J]. Chem. Phys. Lett., 2005 (407):100-104.
    [153]M. E. Casida, C. Jamorski, K. C. Casida, D. R. J. Salahub. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:Characterization and correction of the time-dependent local density approximation ionization threshold[J]. J. Chem. Phys.,1998 (108):4439-4449.
    [154]J. L. Lin, C. J. Huang, C. H. Lin, W. B. Tzeng. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline[J]. J. Mol. Spectrosc.,2007 (244):1-8.
    [155]K. Yosida, K. Suzuki, S. Ishiuchi, M. Sakai, M. Fujii, C.E.H. Dessent, K. Muller-Dethlefs. The PFI-ZEKE photoelectron spectrum of m-fluorophenol and its aqueous complexes:Comparing intermolecular vibrations in rotational isomers[J]. Phys. Chem. Chem. Phys.,2002 (4):2534-2538.
    [156]E. Fujimaki, A. Fujii, T. Ebata, N. Mikami. Autoionization-detected infrared spectroscopy of intramolecular hydrogen bonds in aromatic cations. I. Principle and application to fluorophenol and methoxyphenol[J]. J. Chem. Phys.,1999 (110): 4238-4247.
    [157]J. L. Lombardi. Exposure-dependent surface recombination efficiencies of atomic oxygen[J]. J. Chem. Phys.,1969 (50):1228-1230.
    [158]K. T. Huang, J. L. Lombardi. Dipole moments of the lowest singlet π*← states in p-fluorophenol and p-fluoroaniline[J]. J. Chem. Phys.,1969 (51):1228-1230.
    [159]L. W. Yuan, C. Li, W. B. Tzeng. Site-specific H/D exchange of p-methoxyphenol studied by resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy[J]. J. Phys. Chem. A.,2005 (109):9481-9487.
    [160]M. Takahashi, H. Ozeki, K. Kimura. Vibrational spectra of aniline-Arn van der Waals cations (n=1 and 2) observed by two-color "threshold photoelectron" [zero kinetic energy (ZEKE)-photoelectron] spectroscopy[J]. J. Chem. Phys.,1992 (96): 6399-6406.
    [161]J. L. Lin, W. B. Tzeng. Mass analyzed threshold ionization of deuterium substituted isotopomers of aniline and p-fluoroaniline:Isotope effect and site-specific electronic transition[J]. J. Chem. Phys.,2001 (115):743-751.
    [162]C. Li, H. Su, W. B. Tzeng. Rotamers of p-methoxyphenol cation studied by mass analyzed threshold ionization spectroscopy[J]. Chem. Phys. Lett.,2005 (410): 99-103.
    [163]Y. Nosenko, R. P. Thummel, A. Mordzinski. Vibrationally resolved electronic spectroscopy and theoretical studies of deuterated 2-(2'-pyridyl) indole[J], Phys. Chem. Chem. Phys.,2004 (6):363-367.
    [164]K. Miiller-Dethlefs, O. Dopfer, T. G. Wright. ZEKE spectroscopy of complexes and clusters[J]. Chem. Rev.,1994 (94):1845-1871.
    [165]P. W. Forysinski, P. Zielke, D. Luckhaus, R. Signorell. PFI-ZEKE photoelectron spectrum of CH2F2, ionisation potential and ionic fragmentation appearance potentials[J]. Phys. Chem. Chem. Phys.,2010 (12):3121-3130.
    [166]J. L. Lin, W. B. Tzeng. Identification of impurities in phenylacetylene by species-selected mass-analyzed threshold ionization spectroscopy[J]. Appl. Spectrosc., 2003 (57):1178-1182.
    [167]G. Lembach, B. Brutschy. Mass analyzed threshold ionization of chlorobenzene and chlorobenzene·Ar1[J]. Chem. Phys. Lett.,1997 (273):421-428.
    [168]X. Zhang, J. D. Pitts, R. Nadarajah, J. L. Knee. Neutral and cation spectroscopy offluorene-Arn clusters[J]. J. Chem. Phys.,1997 (107):8239-8251.
    [169]J. H. Huang, K. L. Huang, S. Q. Liu, Q. Luo, W. B. Tzeng. Molecular structures and vibrations of cis and trans m-cresol in the electronically excited S1 and cationic Do states[J]. J. Photochemistry and Photobiology A.,2007 (188):252-259.
    [170]C. C. Qin, S. Y. Tzeng, B. Zhang, W. B. Tzeng. Selected cis-and trans-p-methoxystyrene rotamers studied by mass-analyzed threshold ionization spectroscopy[J]. Chem. Phys. Lett.,2011 (503):25-28.
    [171]R. G. Neuhauser, K. Siglow, H. J. Neusser. High n Rydberg spectroscopy of benzene:Dynamics, ionization energy and rotational constants of the cation[J]. J. Chem. Phys.,1997 (106):896-907.
    [172]M. Pradhan, C. Y. Li, J. L. Lin, W. B. Tzeng. Mass analyzed threshold ionization spectroscopy of anisole cation and the OCH3 substitution effect[J]. Chem. Phys. Lett.,2005 (407):100-104.
    [173]S. C. Yang, S. W. Huang, W. B. Tzeng. Rotamers of o- and m-dimethoxybenzenes studied by mass-analyzed threshold ionization spectroscopy and theoretical calculations[J]. J. Phys. Chem. A.,2010 (114):11144-11152.
    [174]J. L. Lin, W. B. Tzeng. Two-color resonant two-photon mass analyzed threshold ionization spectroscopy of aromatic molecules[J]. Trends in Appl. Spectrosc.,2004 (5): 71-82.
    [175]J. L. Lin, J. L. Lin, W. B. Tzeng. Mass analyzed threshold ionization spectroscopy ofp-methoxyaniline cation and influence of the OCH3 substituent[J]. Chem. Phys. Lett.,2003 (370):44-51.
    [176]S. C. Yang, S. W. Huang, W. B. Tzeng. Rotamers of o- and m-dimethoxybenzenes studied by mass-analyzed threshold ionization spectroscopy and theoretical calculations[J]. J. Phys. Chem. A.,2010 (114):11144-11152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700