旋转冲压压缩转子结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转冲压压缩转子为一种基于激波压缩技术的新型压缩系统,融超声速进气道及传统轴流、离心压气机设计方法于一体,具有单级压比高、体积小、重量轻等优点。近十几年来,该压缩系统受到国内外能源、电力、动力、交通部门及研究者们的高度关注。特别是当今的电力工业正在向依靠大型发电和小型分布式发电广泛相结合的“分散式电力系统”转变,而分布式发电的技术核心是分布式电源,在众多分布式电源装置中,低污染小型燃气轮机是目前最具有商业竞争力的分布式发电设备,对作为低污染小型燃气轮机中新型高效压缩系统——基于激波压缩技术的旋转冲压压缩转子的研究是其重点之。对这种新型高效的压缩系统开展深入的研究具有重要的理论意义和实际应用价值。近几年,.国内已有一些科研院所开展了相关研究,但仍有许多工作需要深入开展。
     本文首先通过理论分析来找寻影响旋转冲压压缩转子性能的主要因素,然后考虑各种影响因素,借助CAD软件和FLUENT商用软件对两种结构的旋转冲压压缩转子(Ram-rotor压缩转子和Scrampressor压缩转子)进行三维设计、数值模拟及分析,最后对综合性能较好的方案进行性能仿真。通过课题研究,获得较为全面系统的旋转冲压压缩转子的研究数据,为旋转冲压压缩转子下一步开展试验研究和迈向实际应用奠定坚实基础。
     对于Ram-rotor压缩转子,隔板截面形状为“正梯形”的Ram-rotor压缩转子综合性能要好于“倒梯形”;喉部长高比过大或过小均会导致等熵绝热效率及总压比的下降;压缩角及扩压角的变化对压缩转子性能影响不明显;大隔板安装角可以使转子出口平均气流角减小,但是会降低总压恢复系数和总压比,过大或过小的隔板安装角都会降低等熵绝热效率;小喉部收缩比可显著提高等熵绝热效率、总压恢复系数以及总压比,但出口平均气流角也较大;随出/进口面积比降低,出口平均气流角、总压比及静压降低,等熵绝热效率及总压恢复系数升高;随来流相对马赫数增加,出口平均绝对马赫数、总压比及静压比均增加.,但等熵绝热效率总体上呈逐渐降低趋势。进气流道内气流的三维效应强烈,波阻损失及激波与附面层相互干扰导致附面层增厚、分离是导致流动损失增加的主要原因。各性能参数不会随进气流道几何参数的变化呈单调变化,所以必须对等熵绝热效率、总压比、静压比、总压恢复系数、出口平均气流角等性能参数进行折中选择,同时要结合压缩转子流量、压缩转子厚度等自身特点来确定综合性能较优的压缩转子。对于具有亚声速扩压段的Ram-rotor压缩转子,方案F1具有最高的总压比(12.2),方案F1-2的综合性能占优。
     对于Scrampressor压缩转子,随喉部收缩比的减小,总压比、静压比、等熵绝热效率及总压恢复系数均呈增加趋势;随隔板安装角的增加,等熵绝热效率及总压恢复系数增加,出口平均气流角减小,总压比及静压比呈缓慢下降趋势。附面层内低能流体的动能损失及多道激波损失是Scrampressor压缩转子喉部出口之前熵增的主要原因;结尾的曲线激波、附面层内的低能流体与主流掺混及附面层内低能流体横向迁移是Scrampressor压缩转子喉部出口之后熵增的主要原因。对于不具有亚声速扩压段的Scrampressor压缩转子,方案N3具有最高的等熵绝热效率(85.18%)及总压恢复系数(87.81%),而方案N1的综合性能占优。
     两种旋转冲压压缩转子的主要区别是Scrampressor压缩转子不具有扩压段,导致喉部之后的气流分离区的形成及出口气流参数不同。相同喉部收缩比或隔板安装角条件下,Scrampressor压缩转子具有较高的等熵绝热效率及较低的压缩能力,所以当压比增加满足要求并对等熵绝热效率需求较高的情况下,可以选择具有小喉部收缩比或大隔板安装的Scrampressor压缩转子。
     背压对两种结构的压缩转子的喉部稳定段之前的流场不造成影响。随着背压的增加,喉部出口后的气流分离区及激波串的位置前移,总压比均呈上升趋势,出口平均气流角均缓慢增加,Ram-rotor压缩转子的等熵绝热效率呈现先下降后升高的趋势,而Scrampressor压缩转子则表现为先增加再下降。相同背压条件下,Ram-rotor压缩转子的总压比和出口平均气流角较高,而Scrampressor压缩转子的等熵绝热效率较高。
     转速改变可显著影响压缩转子进气流道内的激波系结构,随转速增加,各道激波明显沿流向向后推移。从等熵绝热效率及总压恢复系数方面来看,Scrampressor压缩转子比Ram-rotor压缩转子更加优越。Ram-rotor压缩转子的出口绝对马赫数均为超声速,出口平均气流角较大;而Scrampressor压缩转子出口绝对马赫数均为亚声速,出口平均气流角较小。
     压缩转子的特性曲线均垂直于横坐标轴(质量流量),对于固定几何结构的压缩转子,其吸入的空气流量仅受转速影响;压缩转子的最高总压比均随转速的增加而增加,Scrampressor压缩转子压缩能力要弱于Ram-rotor压缩转子;总体上随转速的增加,压缩转子的等熵绝热效率呈下降趋势。在低转速时,Ram-rotor压缩转子容易进入不稳定工况;Scrampressor压缩转子的稳定裕度变化平缓,工况较稳定。
Based on shock wave compression technology, the ram-rotor is a new compression system which uses the design of supersonic aircraft intake, the conventional axial-and centrifugal-flow compressor for reference. This kind of shock wave compression system has high pressure ratio, potential high efficiency, simple structure, light weight and less rotating parts. Over the past decade, it has much commercioganic to energy, power, transportation departments and researchers. Among numerous devices of distribution energy system which the core technology is the distribution electrical sources, the small gas turbines with low emission have the most commercial competitiveness, especially for the electrical industries which are changing towards the combination of large-scale power plant and mini type distribution power generation. The ram-rotor based on shock wave compression technology is one of research emphases of low emission small gas turbine. Research on this new efficient compression system has the important theoretical significance and practical application value. Some domestic scientific research institutions have developed relative study on ram-rotor, however, there still have a lot of works should be deeply developed.
     Firstly, the main factors affecting the ram-rotor performance are analyzed by theoretical methods in this paper. Secondly, basing on the theoretical analysis, many kinds of geometrical parameters are considered; CAD and FLUENT software are adopted to design the three-dimentional flow-path and simulate numerically the flow field of the ram-rotor and the Scrampressor; and the cases with best integrated performance are obtained. Furthermore, three-dimentional numerical simulation is adopted to study the flow field and the performance of two best cases at design point and off-design points. Systematic and comprehensive research data on the ram-rotor and the scrampressor are obtained which would establish a firm foundation for the further experimental study and practical application.
     For ram-rotor, the strake wall section with the positive trapezoid shape is better than that with the reversed trapezoid shape. Large or small throat length-height ratio can lead the adiabatic efficiency and the total pressure ratio decrease. The compression ramp angle and the subsonic divergent angle have no significant effect on the performance of the ram-rotor. Large strake straggle angle decreases the average flow angle at exit, the total pressure recovery coefficient and the total pressure ratio. The adiabatic efficiency is lower with larger or smaller strake straggle angle. Lower throat contract ratio can remarkably improve the adiabatic efficiency, the total pressure recovery coefficient, the total pressure ratio and the average flow angle at exit. With the decreasing of the exit-inlet area ratio, the average flow angle at exit, the total pressure ratio and the static pressure ratio decrease; but the adiabatic efficiency and the total pressure recovery coefficient increase. With the increasing of the relative Mach number, the average Mach number, the total pressure ratio and the static pressure ratio have an enhancive trend, and the adiabatic efficiency is the contrary. The three-dimensional effect is strong on the flow field and the main reasons of flow loss are caused by the shock wave loss, the interaction between the shock wave and boundary layer, and the boundary layer separation loss. All performance parameters do not change monotonously, so the reasonable compromises should be made among the adiabatic efficiency, the total pressure ratio, the static pressure ratio, the total pressure recovery coefficient, the average flow angle at exit, the width of the ram-rotor, the flow mass, and so on. For the ram-rotor with the diffuser, the case F1 has the highest total pressure ratio (12.2) and the case F1-2 has the best integrated performance.
     For the Scrampressor, the total pressure ratio, the static pressure ratio, the adiabatic efficiency and the total pressure recovery coefficient have the ascending trend with the decreasing of the throat contract ratio. The larger strake straggle angle increases the adiabatic efficiency and the total pressure recovery coefficient, decreases the average flow angle at exit, the total pressure ratio and the static pressure ratio. Shock wave loss and kinetic energy loss caused by the lower energy flow in the boundary layer are the main reasons of the entropy increasing before the throat exit. The final curve shock wave loss, the mixing loss between the low energy flow in the boundary larye and the main flow, the lateral migration of the low energy flow are the main reasons of the entropy increasing after the throat exit. For the scrampressor without the diffuser, the case N3 has the highest adiabatic efficiency (85.18%) and total pressure recovery coefficient (87.81%), and the case has the best integrated performance.
     The major difference between the ram-rotor and the scrampressor is the latter without the diffuser which causes the seperatioanal zone and the distinctness of performance at exit. Under the same throat contract ratio or strake straggle angle, the scrampressor has the higher adiabatic efficiency and the lower total pressure ratio than the ram-rotor. Therefore, scrampressor would be a good choice with smaller throat contract ratio and somewhat larger strake straggle angle when high adiabatic efficiency is needed.
     The back pressure almost does not affect the flow field before the throat exit. With the increasing of the back pressure, the position of flow separation zone moves towards the inlet; the total pressure ratio and the average flow angle at exit increase; the adiabatic efficiency of the ram-rotor decreases firstly and then increases, and that of the scrampressor increases firstly and then decreases. Under the same back pressure, the ram-rotor has the higher total pressure ratio and the average flow angle, but the scrampressor has the higher adiabatic efficiency.
     The rotational speed can significantly change the shock wave structure. With the increasing of the rotational speed, the shock wave will move towards the exit. Under the same rotational speed, the scrampressor is superior to the ram-rotor at a certain extent, such as the adiabatic efficiency, the total pressure recovery coefficient.
     The characteristic curves of the ram-rotor and the scrampressor are perpendicular to the abscissa axis, namely, the flow mass can be affected only by the rotational speed. The highest total pressure ratio increases with the increasing of the rotational speed. The compression ability of the scrampressor is weaker than the ram-rotor, and the total trend of the adiabatic efficiency is degressive. At the lower rotational speed, the ram-rotor could enter into the unsteady state easily, but the stability margin of the scrampressor changes mildly and keeps a good working status.
引文
[1]刘大响,陈光等.航空发动机——飞机的心脏.北京:航空工业出版社,2003.
    [2]蔡宁生,刘红.崔荣繁等.863燃气轮机专项进展.中国科技产业,2006,2:96-99.
    [3]侯戈.四海一心美国LM2500舰用燃气轮机技术解析.现代兵器,2009,1:96-99.
    [4]张恩和.对我国军用航空发动机发展的思考.航空发动机,2001,(3):1-3.
    [5]周支柱.大功率发电用燃气轮机的发展概况.发电设备,2010,(1):6-11.
    [6]于达仁,刘金福,徐基豫.面向21世纪的燃气轮机技术的发展.燃气轮机技术,2001,14(1):14-21.53.
    [7]陈懋章.风扇/压气机技术发展和对今后工作的建议.航空动力学报,2002,17(1):1-15.
    [8]施磊,李孝堂.中国航改燃气轮机的现状及发展.航空发动机,2004,30(2):54-58.
    [9]曹惠芬,刘贵浙.世界船舶动力系统的发展趋势与竞争格局.船舶物资与市场,2010,6:3-6.
    [10]杨连海,沈邱农.大型燃气轮机的自主化制造.燃气轮机技术,2006,19(1):11-14,20.
    [11]吴穷,王建丰,王冲等.LNG运输船的主动力装置.热能动力工程,2009,24(1):7-12.
    [12]周小谦,王振铭.合理利用天然气发电及发展热电联产.热电技术,2005,(3):1-7.
    [13]李永兵,岳建华,沈炳耘.冷热电分布式供能系统的应用和发展.燃气轮机技术,2008,21(3):4-7.
    [14]张洪伟,高岳峰,李海兵.分布式能源冷热电三联供系统的应用.燃气轮机技术,2005,18(3):26-30.
    [15]朱丹书,蒋文静.小型燃气轮机的发展前景.上海汽轮机,2000,(4):51-56.
    [16]刘波,杨艳,王掩刚等.设计压比和转速变化对对转压气机性能的影响研究.西北工业大学学报,2007,25(4):576-580.
    [17]Robert D. Knapke, Tim Beach, Ali A. Merchant. Time accurate simulations of a counter-rotating aspirated compressor. ASME paper GT2008-50877. Berlin, Germany, June 9-13, 2008.
    [18]Schuler B J, Kerrebrock J L, Merchant A. Experimental Investigation of an Aspirated
    Fan Stage.ASME paper GT2002-30370. Amsterdam, the Netherlands, June 3-6,2002.
    [19]Dang T Q, Van Rooi j M P C, Larosiliere L M. Design of aspirated compressor blades using three-dimen-sional inverse method. ASME paper GT2003-38492. Atlanta, Georgia, USA. June 16-19,2003.
    [20]兰发祥,周拜豪,梁德旺等.吸附式压气机叶型设计技术研究.航空动力学报,2008,23(12): 2296-2301.
    [21]陈光.整体叶盘在国外航空发动机中的应用.航空发动机,1999,(1):1-6,44.
    [22]梁春华.高性能航空发动机先进风扇和压气机叶片综述.航空发动机,2006,32(3):48-52.
    [23]黄春峰.现代航空发动机整体叶盘及其制造技术.航空制造技术,2006,(4):94-100.
    [24]杨剑秋,王延荣.基于正交试验设计的空心叶片结构优化设计.航空动力学报,2011,26(2):376-384.
    [25]唐豪杰,孙鑫强.发电燃气轮机效率分析及提高措施.燃气轮机技术,2007,20(4):19-24.
    [26]方昌德.航空发动机的发展前景.航空发动机,2004,30(1):1-5.
    [27]糜洪元.国内外燃气轮机发电技术的发展现况与展望.电力设备,2006,7(10):8-10.
    [28]焦树建.探讨21世纪上半叶我国燃气轮机发展的途径.燃气轮机技术,2001,14(1):10-13,42.
    [29]郭琦.IHPTET计划的后续计划VAATE正在展开.燃气涡轮试验与研究,2002,15(2):40.
    [30]吴大观.关于新版综合高性能涡轮发动机技术计划.航空发动机,2003,29(2):1-4.
    [31]彭友梅.大力发展燃气轮机.燃气涡轮试验与研究,2001,14(4):57-60.
    [32]沈迪刚.国外燃气轮机发展途径及方向.航空发动机,2000,(1):43-48.
    [33]江身浩.国外发电用燃气轮机发展动态.燃气轮机技术,1995,8(1):9-15,18.
    [34]刘大响.对加快发展我国航空动力的思考.航空动力学报,2001,16(1):1-7.
    [35]Ramgen Power Systems. Ramgen technologies. http://www.faculty.washington.Edu/malte /seminar/SP04/UW4-28-04. pdf,2004
    [36]Ramgen Power Systems. Rampressor Shock Compression Technology. http://www.ramgen.com/ tech_development progress.html,2006
    [37]Victor de Biasi.485-kW turbine rated 35% simple cycle at 1700F firing temperature. Gas Turbine World,2002,32 (5):13-16.
    [38]Draper R, Steele R. Design of Diffuser for High Mach and High Swirl Applications. http://www. clemson. edu/scies/UTSRPeerReview/Proceeding20content/Poster20session/Poster-Draper. Pdf,2003.
    [39]陈金富,卢炎生.分布式电源技术在我国的应用探讨.水电能源科学,2005,23(2):61-64.
    [40]彭泽琰,刘刚.航空燃气轮机原理(上册).北京:国防工业出版社,2000.
    [41]Woollatt G, Lippett D, Ivey P C, et al. The design, development and evaluation of 3D aerofoils forhigh speed axial compressors. Part 2:Simulation and comparison with experiment. ASME paper GT2005-68793. Reno-Tahoe, Nevada, USA, June 6-9,2005.
    [42]钟兢军.弯曲叶片控制扩压叶栅二次流动的实验研究(博士学位论文).哈尔滨:哈尔滨工业大学,1996.
    [43]Ji L C, Chen J. Review and Understanding on Sweep in Axial Compressor Design. ASME paper GT2005-68473, Reno-Tahoe, Nevada, USA, June 6-9,2005.
    [44]严明,陈懋章.大小叶片轴流压气机转子流动特性分析.推进技术,2002,23(4):280-282.
    [45]张士杰,袁新,叶大均.低展弦比跨音速轴流风扇转子流场三维数值模拟.工热物理学报,2001,22(5):566-568.
    [46]程荣辉.轴流压气机设计技术的发展.燃气涡轮试验与研究,2004,17(2):1-8.
    [47]梁春华.高性能航空发动机先进风扇和压气机叶片综述.航空发动机,2006,32(3):48-52.
    [48]江义军.推重比12-15发动机技术途径分析.航空动力学报,2001,16(2):103-107.
    [49]姜旭峰,彭著良,费逸伟.航空发动机减重技术研究.航空维修与工程,2005,(1):54-56.
    [50]Krain H. Review of Centrifugal Compressor's Application and Development. ASME paper GT2003-38971. Atlanta, Georgia, USA, June 16-19,2003.
    [51]Rodgers C. Flow Ranges of 8.0:1 Pressure Ratio Centrifugal Compressor for Aviation Applications. ASME paper GT2005-68041. Reno-Tahoe, Nevada, USA, June 6-9,2005.
    [52]Krain H, Hoffmann B, Rohne K. H., et al. Improve High Pressure Ratio Centrifugal Compressor. ASME paper GT2007-27100. Reno-Tahoe, Nevada, USA, June 6-9,2005.
    [53]Xu C, Amano R S. The Development of Centrifugal Compressor Impeller. ASME paper GT2008-50200. Berlin, Germany, June 9-13,2008.
    [54]彭泽琰,刘刚,桂幸民等.航空燃气轮机原理.北京:国防工业出版社,2008.9.
    [55]韩吉昂.旋转冲压压缩转子进气流道数值仿真及性能研究(博士学位论文).哈尔滨:哈尔滨工业大学,2009.
    [56]Ramgen Power Systems. Shock Compression-What is it? http://www.ramgen.com /tech_shock_what is it.html,2005.
    [57]Ramgen Power Systems. Shock Compression-Flight Applications of Shock Compression. http://www. ramgen. com/tech_shock_flightapps. html,2005.
    [58]鲍福廷,黄熙君,张振鹏.固体火箭冲压组合发动机.北京:中国宇航出版社,2006.10.
    [59]Ramgen Power Systems. The Rampressor-Ramgen's Compression Technology. http:// www. ramgen. com/tech_shock_Rampressor. html,2005.
    [60]Ramgen Power Systems. Development and Testing of a Pre-Prototype Mach 2 Ramgen Engine Final Report. http://www. osti. gov/bridge/servlets/purl/799768-X4kgLQ/native/799768. pdf, 2001.
    [61]Klaus D. Broichhausen, Kai U. Ziegler. Supersonic and Transonic Compressors Past, Status and Technology Trends. ASME paper GT2005-69067. Reno-Tahoe, Nevada, USA, June 6-9, 2005.
    [62]Steele R, Baldwin P, Kesseli J. Insertion of Shock Wave Compression Technology into Micro Turbine for Increased Efficiency and Reduced Costs. ASME paper GT2005-68203. Reno-Tahoe, Nevada, USA, June 6-9,2005.
    [63]Ramgen Power Systems. The Rampressor Competitive Advantages. http://www.ramgen.com /tech_shock_rampressoradv. html,2005.
    [64]Ramgen Power Systems. Ramgen's Technology Development Fous. http://www.ramgen.com /tec_shock_focus. html,2005.
    [65]Ramgen Power Systems. Ramgen Company History. http://www. ramgen. com/about_history. html,2005.
    [66]The National Energy Technology Laboratory. Distributed Generation-Ramgen Novel Generation. http://www. netl. doe. gov/technologies/coalpower/fuelcells/r-amgen. html, 2006.
    [67]S. P. Lawlor, P. Baldwin. Conceptual Design of a Supersonic C02 Compressor. ASME paper GT2005-68349,2005.
    [68]Chenevert B C, Kendrick D W, Trueblood B, et al. The Development of the Ramgen Engine Combustion System. ASME paper GT2002-30084, Amsterdam, The Netherlands, June 3-6,2002.
    [69]Ramgen Power Systems. Ramgen Engine Technology Overview Briefing. http://www. netl. doe. gov/publications/proceedings/02/turbines/steele. pdf,2002.
    [70]Kendrick D W, Chenevert B C, Trueblood B, et al. Combustion System Development for the Ramgen Engine. Journal of Engineering flor Gas Turbine and Power,2003,125(4):885-894.
    [71]Allan D. Grosvenor, David A. Taylor, Jonathan R. Bucher, et al. Measured and predictied performance of a high pressure ratio supersonic compressor rotor. ASME paper GT2008-50150, Berlin, Germany, June 9-13,2008.
    [72]Grosvenor A D, Brown P M, Lawlor S P. Design Methodology and Predicted Performance for a Supersonic Compressor Stage. ASME paper GT2006-90409. Barcelona, Spain, May 8-11, 2006.
    [73]Lawlor S P, Steele R C, Baldwin P. Advanced Supersonic Component Engine for Military Applications. ASME paper GT2007-27336, Montreal, Canada, May 14-17,2007.
    [74]王云,赵晓路,徐建中等.基于冲压压缩技术的新型燃气轮机.中国工程热物理学会热机气动热力学学术会议,论文编号:032073.2003.
    [75]吉桂明.冲压式燃气轮发电机组.热能动力工程,2004.
    [76]王云,赵晓路,徐建中等.新概念旋转冲压发动机的研究与分析.北京航空航天大学学报,2004,30(8):777-782.
    [77]王云,赵晓路,徐建中等.旋转冲压发动机冲压转子盘腔冷态流场数值模拟.南京航空航天大学学报,2006,38(2):143-147.
    [78]王云,杜建一,赵晓路等.旋转冲压发动机冲压压缩分析.工程热物理学报,2006,27(6):933-936.
    [79]王云,孟香.旋转冲压发动机冲压转子动应力分析.南昌航空工业学院学报(自然科学版),2006,20(4):13-16,37.
    [80]孟香,王云,朱保利等.旋转冲压发动机冲压转子的强度分析.科学技术与工程,2007,7(19):4859-4864.
    [81]刘火星,刘宝杰,陈懋章.国外新概念吸气式发动机的发展.航空制造技术,2005,(3):32-38.
    [82]洪杰,朱彬.旋转冲压发动机冲压转子的结构特点.国际航空杂志,2006,(7):80-82.
    [83]蒋庄德,王久洪,卢德江.微型旋转冲压发动机设计与分析.机械工程学报,2008,44(11):20-25.
    [84]肖翔.对转冲压压气机冲压叶轮内部流动分析研究(博士学位论文).、北京:中国科学院工程热物理研究所,2007.
    [85]肖翔,赵晓路,徐建中.高压比旋转冲压叶轮研究.工程热物理学报,2008,29(5):759-762.
    [86]扈延林,孙小磊,赵庆军等.冲压叶轮及抽吸处理分析.中国工程热物理学会热机气动热力学与流体机械学术会议.2010,论文编号:102013.
    [87]扈延林,孙小磊,赵庆军等.旋转冲压叶轮流场及端壁抽吸处理分析.中国工程热物理学会热机气动热力学与流体机械学术会议.2010,论文编号:102014.
    [88]扈延林,孙小磊,肖翔等.旋转冲压叶轮边界层抽吸作用分析.中国工程热物理学会热机气动热力学与流体机械学术会议.2009,论文编号:092018.
    [89]孙小磊,扈延林,肖翔等.来流气流角变化对冲压叶栅性能的影响.中国工程热物理学会热机气动热力学与流体机械学术会议.2009,论文编号:092017.
    [90]田新,刘占生.旋转冲压发动机进气道流场及气流对转子的作用力研究.振动与冲击,2008,27(S):32-35.
    [91]张广辉,刘占生,田新.旋转冲压转子一动静混合气体轴承系统振动特性仿真研究.振动与冲击,2009,29(9):155-161.
    [92]张广辉,刘占生.旋转冲压发动机高速动静混合气体轴承性能分析.振动与冲击,2009,30(5):610-617.
    [93]张广辉,刘占生,章正传.旋转冲压发动机高速动静压混合气体轴承转子动力学特性试验研究.振动与冲击,2009,28(9):74-78.
    [94]邓洋波,钟兢军.旋转冲压发动机关键技术与研究进展.中国航空学会,2006年.编号:CSAA06-P025.
    [95]韩吉昂,钟兢军,卜方.旋转冲压压气机压缩转子技术分析及展望.飞航导弹,2007,(7):52-56.
    [96]邓洋波,刘世青,钟兢军.先进旋涡燃烧室流动与燃烧特性分析.航空动力学报,2009,24(3):488-493.
    [97]刘世青,钟兢军.驻涡燃烧室最佳中心驻体宽度选择的数值研究.航空动力学报,2010,25(5):1005-1009.
    [98]刘世青,钟兢军.驻涡燃烧室后驻体喷射角度影响冷态数值研究.哈尔滨工程大学学报,2010,31(8):1065-1072.
    [99]刘世青,钟兢军.驻涡燃烧室后驻体形状选择冷态数值研究.工程热物理学报.2010,31(9):1480-1483.
    [100]韩吉昂,严红明,钟兢军等.旋转冲压压缩转子二维进气流道数值研究.航空动力学报,2008,23(6):1054-1060.
    [101]韩吉昂,孙鹏,钟兢军等.旋转冲压压缩转子中压缩面的数值研究.工程热物理学报,2010,31(2):227-230.
    [102]韩吉昂,钟兢军,严红明等.旋转冲压压缩转子三维进气流道数值研究.航空动力学报,2009,24(5):1079-1088.
    [103]孙鹏,韩吉昂,钟兢军.旋转冲压压缩转子性能的数值研究.中国航空学会动力专业分会第十五届叶轮机专业委员会学术会议,305-311.2009年10月,张家界.
    [104]严红明,钟兢军,韩吉昂.基于超燃冲压进气道压缩技术的压缩转子研究.中国航空学会动力专业分会第十五届叶轮机专业委员会学术会议,281-287.2009年10月,张家界.
    [105]HAN Ji-ang, ZHONG Jing-jun, YAN Hong-ming. Numerical Simulation of The Three Dimensional Flow-Paths in a Ram-rotor. The 2nd International Symposium on Jet Propulsion and Power Engineering.2008-ISJPPE-4023. Guilin, 期间 China, September 22-26,2008.
    [106]Spalart P, Allmaras S. A One-equation Turbulence Model for Aerodynamic Flows. AIAA paper 92-0439,1992.
    [107]Schneider A, Koschel W W. Detailed Analysis of a Mixed Compression Hypersonic Intake. ISABE paper 99-7036,1999.
    [108]Denton J D. Lessons from Rotor 37. Journal of Thermal Science,1997,6(1):1-13.
    [109]Suder K L, Celestina M L. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor. ASME paper GT94-365,1994.
    [110]Chima R V. Calculation of Tip Clearance Effects in a Transonic Compressor Rotor. ASME paper GT96-114,1996.
    [111]Hah C, Loellbach J. Development of Hub Corner Stall and Its Influence on the Performance of Axial Compressor Blade Rows. ASME paper GT97-42,1997.
    [112]Jingjun Zhong, Ji-ang Han, Yanming Liu, et al. Numerical Simulation of Endwall Fence on the Secondary Flow in Compressor Cascade. ASME GT2008-50888, Berlin, June 6-9,2008.
    [113]刘艳明,钟兢军,李海滨等.不同长度端壁翼刀对压气机叶栅二次流影响的数值研究.航空动力学报,2004,19(5):666-670.
    [114]田夫,朱东保,钟兢军.不同参数端壁翼刀控制二次流机理的实验研究.节能技术,2005,23(4):302-305.
    [115]刘艳明,钟兢军,黄洪雁等.不同高度端壁翼刀对压气机叶栅二次流影响的数值模拟.航空动力学报,2004,19(6):828-833.
    [116]李根深,陈乃兴,强国芳编著.船用燃气轮机轴流式叶轮机械气动热力学(原理、设计与试验研究)上册.北京:国防工业出版社,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700