旋转冲压压缩转子进气流道数值仿真及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代航空发动机和燃气轮机向高推重比和高功率重量比方向发展,压气机除了要具有优异的气动性能之外,还需要具有良好的结构方案。新颖和好的结构方案不仅能够为压气机气动性能的改进和提高提供有力的支持,还可以使压气机的零部件数量适当减少、结构简单、轴向及外廓尺寸小和重量轻,而具有这样结构优点的压气机能够显著减轻航空发动机和燃气轮机的整体重量,从而有效提高现代航空发动机和燃气轮机的推重比和功率重量比。
     基于激波压缩技术的旋转冲压压缩转子这种具有新颖结构的压缩系统在设计过程中融合了超声速进气道中所用的激波压缩技术与传统轴流式和离心式压气机的设计技术,与常规压气机相比,具有单级压比高、压缩效率高、产生损失的气动面积小、结构简单、轴向长度短和重量轻的优点。这种新型压缩系统本身所固有的优点使对于飞行状态比较固定且对发动机流量要求不大的航空飞行器和船舶、车载及工业燃气轮机来说有着令人期待的应用前景。因此,对其开展全面、深入的研究就具有重要的理论意义和实用价值。
     本文首先对旋转冲压压缩转子的总体方案进行了研究,提出了三种轮盘结构形式的中空轴旋转冲压压缩转子结构方案,给出了旋转冲压压缩转子总体结构参数,探讨了旋转冲压压缩转子可能采用的泄漏密封措施和转子支撑结构。根据所确定的旋转冲压压缩转子总体结构参数,特别是旋转冲压压缩转子轮缘进气流道的总体结构参数,设计并数值研究了二元超声速内压式进气道的流场及性能,在研究中重点考虑了喉部与进口高度比、扩压角、背压和来流马赫数对二元超声速内压式进气道的影响情况。随着喉部与进口高度比的增加,进气道的总压恢复系数有先增大后减小的趋势,适当的扩压角有利于进气道总压恢复系数的提高,背压对进气道的性能和出口气流参数分布的均匀性影响较大;来流马赫数的增加会造成进气道总压恢复系数的降低。
     在二维超声速内压式进气流道设计及数值研究的基础上,借鉴二维超声速进气道设计方法,设计了旋转冲压压缩转子二维进气流道,并重点研究了压缩面形状、喉部长高比、转速和背压对二维进气流道中波系结构、内部流动特点和性能的影响。在本文的研究条件下,凸曲线压缩面二维进气流道综合性能最好,直线压缩面二维进气流道综合性能次之,抛物线压缩面旋二维进气流道综合性能最差。
     选择综合性能相对较好的凸曲线压缩面二维进气流道设计方案作为蓝本,通过参数化柱面螺线方程和CAD软件设计旋转冲压压缩转子三维进气流几何模型,并采用全三维数值模拟方法对其设计及非设计工况下的流场和性能进行了数值仿真。随着转速的增加,旋转冲压压缩转子三维进气流道的增压比不断提高,而其绝热效率却不断降低;背压增加时旋转冲压压缩转子三维进气流道的增压比逐渐提高,其绝热效率总体上却有先增大后减小的趋势;与常规轴流压气机不同,旋转冲压压缩转子的特性曲线垂直于流量坐标轴;为了提高旋转冲压压缩转子的总体性能,除了需要在增压比和绝热效率之间进行合理的折衷选择外,还要对三维进气流道进行结构优化设计和波系优化配置,这也有利于降低进气流道出口的绝对速度。
     论文的最后对旋转冲压压缩转子的起动问题和发展前景进行了讨论。
With the development of the modern aircraft engines and gas turbine, high thrust-weight ratio and high power-to-weight ratio are the main directions of the research. For compressor, it needs to have good structure, in addition to excellent aerodynamic performance. As new and well designed structure could not only improve and enhance the aerodynamic performance of the compressor, it will also benefit the compressor with appropriately reducing the number of components, simplifying structure, and diminishing the axial and outside profile size, lightening weight. With all of the structure advantages, the compressor could significantly reduce the total weight of aircraft engine and gas turbine, and thus can effectively improve the thrust-weight ratio and power-to-weight ratio of modern aircraft engines and gas turbines.
     Ram-rotor based on shock compression technology is a new type of compression system with novel structure. Integrating the shock compression technology used in supersonic intake with the traditional axial and centrifugal compressor design technology, this new system has many advantages, such as high pressure ratio in a single-stage, high compression efficiency, small aerodynamic loss surface, simple structure, short axial length and light weight compared with the conventional compressor. With inherent advantages, the new compression system has wide application prospect in aircraft with steady flying conditions and low mass flow rate required in engines, ship power, vehicle engines and industrial gas turbines. So, there is theoretical significance and application value for us to carry out comprehensive and thorough research on the new compression system.
     The overall design program of the ram-rotor is investigated firstly in this dissertation. Three kinds of hollow shaft ram-rotor with different disk structure are presented and the overall structure parameters are given out. Then the possible seal leakage and support problems are discussed. According to the given overall structure parameters of the ram-rotor, especially the parameters of the flow-path, a 2D internal-compression supersonic intake is designed, and its flow field and performance are investigated numerically. The height ratio of throat and inlet, the divergent angle of the diffuser, back pressure and Mach number of the incoming flow are considered seriously. As the height ratio of throat and inlet increases, the total pressure recovery coefficient increases firstly and then decreases. Appropriate divergent angle can improve the total pressure recovery coefficient. Back pressure has a significant influence on the performance and aerodynamic parameters distribution at outlet. The increasing of the incoming flow Mach number will decrease the total pressure recovery coefficient.
     On the basis of the design and numerical research on the 2D internal- compression supersonic intake, 2D flow-paths of the ram-rotor are designed according to the design method of the supersonic intake. The influences of compression ramp shape, length-height-ratio of the throat, rotational speed and back pressure on shock structure, flow characteristics and performance are well studied. On the conditions appointed in this dissertation, the flow-path with convex curve compression ramp has the best overall performance, and the performance of the flow-paths with linear compression ramp and parabola compression ramp are secondary and worst respectively.
     Referring to the 2D flow-path with convex curve compression ramp, a 3D flow-path of the ram-rotor is designed using parametric cylindrical spiral equation and CAD software. Then 3D numerical simulation is adopted to study the flow field and performance of the ram-rotor at design point and off-design points. With the rotational speed increasing, the total pressure ratio of the ram-rotor rises, but the adiabatic efficiency decreases. When back pressure increases, the total pressure ratio rises, the adiabatic efficiency increases firstly, then decreases. Compared with the conventional axial compressor, the performance curves of the ram-rotor are vertical to the axis of mass flow rate. In order to improve the total performance, it needs not only make a compromise between the total pressure ratio and the adiabatic efficiency appropriately, but also optimize the shock structure and the 3D structure of the flow-path, and these will also give benefit to reducing the absolute speed at outlet.
     At the end of this dissertation, the starting problem and prospect of the ram-rotor are discussed.
引文
1蔡宁生,刘红,崔荣繁等. 863燃气轮机专项进展.中国科技产业. 2006,(2): 96~99
    2张恩和.对我国军用航空发动机发展的思考.航空发动机. 2001, (3): 1~3
    3于达仁,刘金福,徐基豫.面向21世纪的燃气轮机技术的发展.燃气轮机技术. 2001, 14(1): 14~21; 53
    4李春曦,叶学民.燃气轮机工业的发展前景.锅炉制造. 2002, (4): 40~43; 47
    5林汝谋.工业燃气轮机发展的关键技术.热力发电. 1999, (1): 26~28
    6蒋洪德.美国高性能涡轮发动机技术(HPTET)计划介绍.压气机文集,第一分册.航空航天工业部航空科技情报研究所.1989: 252~260
    7方昌德.航空发动机的发展前景.航空发动机. 2004, 30 (1): 1~5
    8郭琦. IHPTET计划的后续计划VAATE正在展开.燃气涡轮试验与研究. 2002, 15(2): 40
    9吴大观.关于新版综合高性能涡轮发动机技术计划.航空发动机. 2003, 29(2): 1~4
    10糜洪元.国内外燃气轮机发电技术的发展现况与展望.电力设备. 2006, 7(10): 8~10
    11焦树建.探讨21世纪上半叶我国燃气轮机发展的途径.燃气轮机技术. 2001, 14(1): 10~13; 42
    12彭友梅.大力发展燃气轮机.燃气涡轮试验与研究. 2001, 14(4): 57~60
    13沈迪刚.国外燃气轮机发展途径及方向.航空发动机. 2000, (1): 43~48
    14江身浩.国外发电用燃气轮机发展动态.燃气轮机技术.1995, 8(1): 9~15; 18
    15薛福培.我国工业燃气轮机的现状与前景. http://www.ntet.cn/html/Upload-File/2005620164910134.doc, 2002
    16唐豪杰,孙鑫强.发电燃气轮机效率分析及提高措施.燃气轮机技术. 2007, 20(4): 19~24
    17傅国轩.格尔木燃气电站DCS系统的设计与应用.西安理工大学工程硕士学位论文, 2007
    18刘大响.对加快发展我国航空动力的思考.航空动力学报. 2001, 16(1): 1~7
    19陈矛章.风扇/压气机技术发展和对今后工作的建议.航空动力学报. 2002, 17(1): 1~15
    20 E. Benini, A. Toffolo. Development of High-Performance Airfoil for Axial Flow Compressors Using Evolutinary Computation. Journal of Propulsion and Power. 2002, 18(3):544-554
    21 L. C. Ji, J. Chen. Review and Understanding on Sweep in Axial Compressor Design. ASME Paper GT2005-68473, 2005
    22 H. P. Li, H. X. Liu, Z. P. Zou. Analysis of Flow Mechanism in 2-D Compressor Cascade with Splitter. ASME Paper GT2005-68207, 2005
    23程荣辉.轴流压气机设计技术的发展.燃气涡轮试验与研究. 2004, 17(2): 1~8
    24梁春华.高性能航空发动机先进风扇和压气机叶片综述.航空发动机. 2006, 32(3): 48~52
    25 K. P. Mohammed, D. Prithviraj. Investigation on Axial Flow Fan Impeller with Forward-Swept Blades. ASME Paper No. 77-FE-1, 1977
    26季路成,陈江,林峰.轴流压气机设计中“掠”的另类认识.工程热物理学报. 2005, 26(4): 567~571
    27梁春华.提高压气机压比的一项新技术-轴流压气机分流小叶片.国际航空. 2004, (10): 53~55
    28 T. Sasaki, F.A.E. Breugelmans. Comparison of Sweep and Dihedral Effects on Compressor Cascade Performance. Journal of Turbomachinery, 1998,120(2): 454-464
    29 A. Fischer, W. Riess, J. R. Seume. Performance of Strongly Bowed Stators in a Four-Stage High-Speed Compressor. Journal of Turbomachinery. 2004,126(3): 333-338
    30 G.. A. Fillipov, Z. Q .Wang. The Effect of Flow Twisting on the Characteristics of Guide Rows. Teploenergetika. 1964, 5: 24~28
    31 Z. Q .Wang, S. K. Lai, W. Y. Xu. Aerodynamics Calculation of Turbine Stator Cascades with Curvilinear Leaned Blades and Some Experimental Results. Symposium Paper of 5-th ISABE, India, 1981
    32江义军.推重比12~15发动机技术途径分析.航空动力学报. 2001, 16(2): 103~107
    33姜旭峰,彭著良,费逸伟.航空发动机减重技术研究.航空维修与工程.2005, (1): 54~56
    34王春利.航空航天推进系统.北京理工大学出版社, 2004
    35 H. Krain. Review of Centrifugal Compressor’s Application and Development. ASME Paper GT2003-38971, 2003
    36 C. Rodgers. Flow Ranges of 8.0:1 Pressure Ratio Centrifugal Compressor for Aviation Applications. ASME Paper GT2005-68041, 2005
    37 H. Krain, B. Hoffmann, K.-H. Rohne, etal. Improve High Pressure Ratio Centrifugal Compressor. ASME Paper GT2007-27100, 2007
    38 C. Xu, R. S. Amano. The Development of Centrifugal Compressor Impeller. ASME Paper GT2008-50200, 2008.
    39 C. Xu, R. S. Amano. Development of a Low Flow Coefficient Single Stage Centrifugal Compressor. ASME Paper GT2005-68006, 2005
    40杨策,马朝臣,王航等.离心压气机叶轮设计方法研究进展.内燃机工程. 2002, 23(2): 57~62
    41 Ramgen Power Systems. Shock Compression-What is it?. http://www.ramge-n.com/tech_shock_whatisit.html, 2005
    42 Ramgen Power Systems. Shock Compression-Flight Applications of Shock Compression. http://www.ramgen.com/tech_shock_flightapps.html, 2005
    43 M. Valorani, F. Nasuti, M. Onofri, etal. Optimal Supersonic Intake Design for Air Collection Engines(ACE). Acta Astronautica, 1999, 45(12):729~745
    44 U. Ahsun, A. Merchant, J. D. Paduano, etal. Design of a Near-isentropic Supersonic Inlet Using Active Control. Journal of Propulsion and Power.2005, 21(2): 292~299
    45 Ramgen Power Systems. Rampressor Shock Compression Technology. http://www.ramgen.com/tech_development progress.html, 2006
    46 J. R. Colville, M. J. Lewis. An Aerodynamic Redesign of the SR-71 Inlet with Applications to Turbine Based Combined Cycle Engines. AIAA Paper 2004-3481, 2004
    47 J. J. Mahoney. Inlets for Supersonic Missiles. AIAA Education Series, 1991
    48 A. J. Matthews, T. V. Jones. Design and test of a low-darg hypersonic intake. AIAA Paper 2003-7045, 2003
    49 Fernandez, Rene, NASA, et al. Design issues for Tubine-based and Rocket-based Combined Cycle Propulsion System Inlets. AIAA Paper 1998-3774, 1998
    50姜正行.飞机内流空气动力学.航空工业出版社, 1989
    51 M. Blaize, D. Knight, K. Rasheed. Automated Optimal Design of Two-dimensional Supersonic Missile Inlets. Journal of Propulsion and Power. 1998, 14(6): 890~898
    52鲍福廷,黄熙君,张振鹏等.固体火箭冲压组合发动机.中国宇航出版社, 2006
    53 K. Oswatitsch. Pressure Recovery for Missiles with Reaction Propulsion at High Supersonic Speeds(the Efficiency of shock diffusers). NACA TM1140, 1947
    54 J. D. Anderson. Modern Compressible Flow. New York: McGraw-Hill Book Company,1982
    55王新月.气体动力学基础.西安:西北工业大学出版社, 2006
    56 J. seddon, E. L. Goldsimith. Intake Aerodynamics. Blackwell Science Ltd,1985
    57刘兴洲.飞航导弹动力装置(上).中国宇航出版社, 1992
    58潘锦珊.气体动力学基础.西北工业大学出版社, 1995
    59廉筱纯,吴虎.航空发动机原理.西北工业大学出版社,2005
    60 M.Valorani, et al. Optimal Supersonic Intake Design for Air Collection Engines (ACE). Acta Astronautics. 1999, 45(12): 729~5745,
    61 F. Creta, M. Valorani. Optimal Shape Design of Supersonic, Mixed-compression, Fixed-Geometry Air Intakes for SSTO Mission Profiles. AIAA Paper 2002-4133, 2002
    62 P. Safarik, A. Polak. Optimal Shock Wave Parameters for Supersonic Inlet. Journal of Propulsion and Power. 1996, 12(1): 202~205,
    63 D. A. Ault, D. M. Van Wie. Experimental and Computational Results for the External Flow Field of a Scramjet Inlet. Journal of Propulsion and Power. 1994, 10(2): 533~539,
    64 V. Shukla, A. Gelsey, M. Schwabacher, et al. Automated Design Optimization for the P2 and P8Hypersonic Inlets. Journal of Aircraft. 1997, 34(2): 228~235,
    65 I. Auneau. Design and Optimazation Methods for Scramjet Inlets. AIAA Paper 95-6017, 1995
    66 M. K. Smart. Optimization of two-dimensional Scramjet Inlets. Journal of Aircraft. 1999, 36(2): 430~433
    67 A. J. Matthews, T. V. Jones. Design and Test of a Low-drag Hypersonic intake. AIAA Paper 2003-7045, 2003
    68游进,刘冰,夏智勋等.某弹用二元混压式超音速进气道型面优化设计.中国宇航学会2005年固体火箭推进第22届年会论文集(发动机). 2005, 315~319
    69张堃元, G.. E. A. Meier.二维非均匀超音来流下最有利压缩面型面的随机选取法数值研究.推进技术. 1994, (5): 9~15
    70张堃元,萧旭东,徐辉.非均匀超声速二维进气道绕流研究.空气动力学学报. 2000, 18(1): 92~97
    71施磊,董金钟.二维高超声进气道设计优化.航空发动机. 2004, 30(4): 18~21
    72黎明,宋文艳,贺伟.高超声速二维混压式前体/进气道设计方法研究.航空动力学报. 2004, 19(4): 459~465
    73张晓嘉,梁德旺.内压缩通道几何参数对高超声速进气道性能的影响.南京航空航天大学学报. 2005, 37(6): 685~689
    74韩兆林,王强.冲压发动机外压式二元进气道流场计算与分析.飞机设计. 2005, (2): 11~14
    75李进贤,王国辉,高超辉等.二元混压超音速进气道湍流流场数值研究.固体火箭技术. 2000, 23(2): 16~20
    76鲍福廷,李进贤,赵飞.固冲发动机双下侧二元进气道设计研究.西北工业大学学报. 2002, 20(4): 590~593
    77卢燕,樊思齐,马会民.超声速进气道数学模型研究.推进技术. 2002, 23(6): 468~471
    78时瑞军,卢贤锋,樊思齐.超音速进气道建模方法研究.航空动力学报. 2004, 19(4): 466~471
    79 S. S. Gokhale, V. R.Kumar. Numerical Computations of Supersonic Inlet Flow. International Journal for Numerical Methods in Fluids. 2001, 36(5):596~617
    80 H. J. Ran, D. Mavris. Preliminary Design of a 2D Supersonic Inlet to Maximize Total Pressure Recovery. AIAA Paper 2005-7357, 2005
    81 M. Martin, G.. Douglas. Dynamics and control of shock motion in a near-isentropic inlet. Journal of Aircraft. 2004, 41(4): 846~853
    82 A. A. DuPont. Further Studies of Optimized Inlet for Hypersonic Turbine Engines. ISABE Paper 99-34040, 1999
    83 R. G. Haws, J. S. Noall, R. L. Daines. Computational Investigation of a Methodto Compress Air Fluidically in Supersonic Inlets. Journal of Spacecraft and Rockets. 2001, 38(1): 51~59
    84 T. R. Conners, D. C. Howe. Supersonic Inlet Shaping for Dramatic Reductions in Drag and Sonic Boom Strength. AIAA Paper 2006-0030, 2006
    85 U. Ahsun, A. Merchant, J. D. Paduano, etal. Design of an Actively Stabilized Near-Isentropic Supersonic Inlet. AIAA Paper 2003-4096, 2003
    86 G. Carrier, D. Knight, K. Rasheed, etal. Multi-criteria Design Optimization of Two-dimensional Supersonic Inlet. AIAA Paper 2001-1064, 2001
    87 R. Draper, R. Steele. Design of Diffuser for High Mach and High Swirl Applications. http:// www.clemson.edu/scies/UTSRPeerReview/Proceeding 20content/Poster 20session/Poster-Draper. pdf, 2003
    88 Ramgen Power Systems. The Rampressor-Ramgen’s Compression Technology. http:// www.ramgen.com/tech_shock_Rampressor.html, 2005
    89 Ramgen Power Systems. Technology Overview. http://www.ramgen.com/tech_ overiview.html, 2006
    90 K. D. Broichhausen, K. U. Ziegler. Supersonic and Transonic Compressores: Past, Status and Technology Trends. ASME Paper GT2005-69067, 2005
    91 Ramgen Power Systems. Development and Testing of a Pre-Prototype Mach 2 Ramgen Engine Final Report. http:// www.osti.gov/bridge/servlets/purl/799768-X4kgLQ/native/799768.pdf, 2001
    92 Ramgen Power Systems. Ramgen technologies. http:// www.faculty.washington. Edu/malte/seminar/SP04/UW4-28-04.pdf, 2004
    93 D. B. Victor. 485-kW Turbine Rated 35% Simple CyCle at 1700F Firing Temperature. Gas Turbine World. 2002, 32(5):13~16
    94 Ramgen Power Systems. The Rampressor Competitive Advantages. http:// www.ramgen.com/tech_shock_rampressoradv.html, 2005
    95 Ramgen Power systems. Industrial Air Compressor Market. http:// www.ramgen.com/compressor_industrial_air.htm, 2005
    96 Ramgen Power Systems. Compressor Products. http:// www.ramgen.com/comp-ressor_Products.htm, 2005
    97 Ramgen Power Systems. Rampressor Air Compressor Product Positioning. http://www.ramgen.com/compressor_productpositioning.htm, 2005
    98 Ramgen Power Systems. Process Gas Compressors. http://www.ramgen.com/c-ompressor_processgas.htm, 2005
    99 Ramgen Power Systems. Refrigeration Compressors. http://www.ramgen.com/ compressor_refrigeration.htm, 2005
    100 The National Energy Technology Laboratory. Distributed Generation. http://fossil.energy.gov/programs/powersystems/fuelcells/for_fe_web_Dist_Gen_brochure_final_1.pdf, 2006
    101 Ramgen Power Systems. Mechanical Vapor Recompression. http:// www.ramg-en.com/compressor_mechanicalvapor.htm, 2005
    102 Ramgen Power Systems. Ramgen Company History. http:// www.ramgen.com/a bout_history.html, 2005
    103 The National Energy Technology Laboratory. Distributed Generation-Ramgen Novel Generation. http://www.netl.doe.gov/technologies/coalpower/fuelcells/r-amgen.html, 2006
    104 Ramgen Power Systems. Ramgen Engine Technology Overview Briefing. http://www.netl.doe.gov/publications/proceedings/02/turbines/steele.pdf, 2002
    105 Ramgen Power Systems. Ramgen Rotor Cartridge for the Pre-Prototype Ramgen Engine Topical Report. http://www.osti.gov/bridge/servlets/purl/8332-14-qKGRUi/native/833214.pdf, 2003
    106 Ramgen Power Systems. Development and Testing of a Pre-Prototype Ramgen Engine Budget Period 3 Final Report.http://www.osti.gov/bridge/servlets/purl/8 26018-gPaNhl/native/826018.pdf, 2003
    107 B. C. Chenevert, D. W. Kendrick, B. Trueblood, et al. The Development of the Ramgen Engine Combustion System. ASME Paper GT2002-30084, 2002
    108 D. W. Kendrick, B. C. Chenevert, B. Trueblood, et al. Combustion System Development for the Ramgen Engine. Journal of Engineering flor Gas Turbine and Power. 2003, 125(4): 885~894
    109 D. B. Victor. Adapting Ramjet Technology to 3-to-9-MW Ram Genset Design. Gas Turbine World. 2002, 32(3): 16~19
    110 J. Bucher, R. G.. Edmonds, R. C. Steele. The Development of a Lean-Premixed Trapped Vortex Combustor. ASME Paper GT2003-38236, 2003
    111 Ramgen Power Systems. Ramgen’s Technology Development Fous. http://www.ramgen.com/tec_shock_focus.html, 2005
    112 S. P. Lawlor, J. B. Hinkey, S. G.. Mackin, et al. Supersonic Compressor Stage Design & Test Results. IMECE2004-59914, 2004
    113 S. P. Lawlor, P. Baldwin. Conceptual Design of a Supersonic CO2 Compressor.ASME Paper GT2005-68349, 2005
    114 R. Steele, P. Baldwin, J. Kesseli. Insertion of Shock Wave Compression Technology into Micro Turbine for Increased Efficiency and Reduced Costs. ASME Paper GT2005-68203, 2005
    115 A. D. Grosvenor, P. M. Brown, S. P. Lawlor. Design Methodology and Predicted Performance for a Supersonic Compressor Stage. ASME Paper GT2006-90409, 2006
    116 A. D. Grosvenor, D. A. Taylor, J. R. Bucher, et al. Measured and Predicted Performance of a High Pressure Ratio Supersonic Compressor Rotor. ASME Paper GT2008-50150, 2008
    117 S. P. Lawlor, R. C. Steele, P. Baldwin. Advanced Supersonic Component Engine for Military Applications. ASME Paper GT2007-27336, 2007
    118王云,赵晓路,徐建中等.基于冲压压缩技术的新型燃气轮机.中国工程热物理学会热机气动热力学学术会议论文集. 2003,论文编号: 032073
    119吉桂明.冲压式燃气轮发电机组.热能动力工程. 2004,
    120王云,赵晓路,徐建中等.新概念旋转冲压发动机的研究与分析.北京航空航天大学学报. 2004, 30(8): 777~782
    121王云,杜建一,赵晓路等.旋转冲压发动机冲压压缩分析.工程热物理学报. 2006, 27(6): 933~936
    122王云,赵晓路,徐建中等.旋转冲压发动机冲压转子盘腔冷态流场数值模拟.南京航空航天大学学报. 2006, 38(2): 143~147
    123王云,孟香.旋转冲压发动机冲压转子动应力分析.南昌航空工业学院学报(自然科学版). 2006, 20(4): 13~16; 37
    124刘火星,刘宝杰,陈懋章.国外新概念吸气式发动机的发展.航空制造技术. 2005, (3):32~38
    125邓洋波,钟兢军.旋转冲压发动机驻涡燃烧技术研究现状分析.燃气涡轮试验与研究. 2006, 19(3):58~62
    126邓洋波,钟兢军.旋转冲压发动机关键技术与研究进展.中国航空学会第十四届燃烧与传热传质专业学术讨论会论文集, 2006,论文编号: CSAA06-P-025
    127洪杰,朱彬.旋转冲压发动机冲压转子的结构特点.国际航空杂志. 2006, (7): 80~82
    128肖翔,赵晓路,徐建中.高压比旋转冲压叶轮研究.工程热物理学报. 2008, 29(5): 759~762
    129张弛,张荣伟,林宇震等.冲压转子发动机切向驻涡燃烧方式.中国航空学会第十三届燃烧与传热传质专业学术讨论会论文集, 2005,论文编号: CSAA2005-PC-020
    130 C. H. Wu. A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed-Flow Types. ASME Paper 50-A-79, 1950
    131 S. J. Gallimore. Viscous Throughflow Modeling of Axial Compressor Blade Rows Using a Tangential Blade Force Hypothesis. ASME Paper 97-GT-415, 1997
    132 C. Hirsch, J. D. Denton.Throughflow Calculations in Axial Turbomachines. AGARD AR 175, 1981
    133 V. J. Neumann, R. D. Richtmyer. A Method for the Numerical Calculation of Hydrodynamic shocks. Journal of Applied Physics. 1950, 21: 232~257
    134 J. D. Denton. A Time Matching Method for Two- and Three-Dimensional Blade to Blade Row. ARCR&M 3775, 1974
    135李勇,刘志友,安亦然.介绍计算流体力学通用软件-Fluent.水动力学研究与进展. 2001, 16(2): 254~258
    136姚征,陈康民. CFD通用软件综述.上海理工大学学报. 2002, 24(2): 137~144
    137 T. J. Bath. Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes. AIAA Paper 91-0721, 1991
    138 P. Spalart, S. Allmaras.A One-equation Turbulence Model for Aerodynamic Flows. AIAA Paper 92-0439, 1992
    139 A. Schneider, W. W. Koschel. Detailed Analysis of a Mixed Compression Hypersonic Intake. ISABE Paper 99-7036, 1999
    140 J. D. Denton. Lessons from Rotor 37. Journal of Thermal Science. 1997, 6(1): 1~13
    141 L.Reid, R.D.Moore. Design and Overall Performance of Four Highly Loaded, High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor. NASA-TP-1337, 1978
    142 K. L. Suder, M. L. Celestina. Experimental and Computational Investigation ofthe Tip Clearance Flow in a Transonic Axial Compressor Rotor. ASME Paper 94-GT-365, 1994
    143 R. V. Chima. Calculation of Tip Clearance Effects in a Transonic Compressor Rotor. ASME Paper 96-GT-114, 1996
    144 C. Hah, J. Loellbach. Development of Hub Corner Stall and Its Influence on the Performance of Axial Compressor Blade Rows. ASME Paper 97-GT-42, 1997
    145朱宇,李天,椿萱. CFD在超声速进气道设计上的应用状况.飞机设计. 2002, (4):11~18
    146雷雨冰,梁德旺,黄国平.超声速流中激波/湍流附面层干扰数值模拟.南京航空航天大学学报. 2004, 36 (1):1~5
    147李高春,袁书生.混压式超音速进气道流场数值模拟.航空算技术. 2002, 32(4):16~19
    148王国辉,李进贤,蔡体敏.空-空导弹用二元混压超音速进气道数值研究.推进技术. 2000, 21(4): 36~39
    149李高春,袁书生,王玉峰.前弹身-进气道流场一体化数值模拟技术的发展和展望.海军航空工程学院学报. 2002, 17(6): 622~644
    150朱宗举.刷式密封的设计与应用.燃气轮机技术. 2005, 18(3): 71~75
    151田波,寇磊,娄马宝.性能卓越的刷握式密封.燃气轮机技术. 2003, 16(1): 21~24
    152何立明.飞机推进系统原理.国防工业出版社, 2006
    153廉小纯,吴虎.航空燃气轮机原理.国防工业出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700