旋转冲压转子气流激振力作用下的动力学响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前燃气轮机技术水平的高低已经成为一个国家科技水平、军事实力以及国家综合国力的重要标志之一,其技术的水平直接影响着一个国家的能源、国防、安全和工业竞争能力。燃气轮机之所以得到如此迅速的发展和相当的重视,由于其具有热效率高、污染少等优点,而这些优点及热力性能好坏与燃气轮机中压缩机能否在加热燃烧前对气体进行有效的压缩有着至关重要的影响。在理论和实际研究中,压气机的压比越大、效率越高,对燃气轮机的最终热力性能越有利。因此,为了提高燃气轮机的性能,就要研究更高单级压比和更高效率的压缩系统,从而就诞生了一种新概念、新技术、新型压缩系统的旋转冲压发动机。
     旋转冲压发动机的冲压转子是采用一种基于激波压缩技术的新型压缩系统,其旋转冲压进气道的激波压缩气流增压方式,具有压比高和压缩效率高等优点。由于这种新型压缩系统具有的上述优点,使其在船舶动力、车辆工程、燃气轮机和分布式微小型燃气轮机等装置中有着很大的发展和应用前景。因此,开展全面、深入旋转冲压发动机转子及转子旋转冲压进气道的研究有着非常重要的理论意义和实用价值。
     本文主要根据国内外对旋转冲压发动机的研究基础上,设计并建立旋转冲压发动机冲压压缩转子以及其核心部件—冲压进气道。通过对旋转冲压压缩转子冲压进气道流场的数值仿真,计算了旋转冲压转子在设计工作转速下、不同出口背压条件的进气道流场的分布,分析了背压和不同进气道结构等对进气道流场分布的影响。在此基础上进一步将旋转冲压进气道流场的分析研究扩展到三维模型中,同样研究了不同出口背压条件下三维进气道的流场分布及其对流场分布的影响,最终确定了三维进气道的正常工作背压。
     在工作背压下,进行基于三维冲压进气道的旋转冲压发动机转子的受力分析研究,得到气流对转子的作用力和气流激振力的数学模型。在此基础上建立旋转冲压发动机转子的有限元模型,最后分析该气流力作用下旋转冲压发动机的动力学特性,得到了不同支承下的转子各阶临界转速及其对应的各阶振型,以及在气流激振力作用下和气流激振力及不平衡力耦合作用下的转子动力学响应。
Currently gas turbine technology level has become one of the important signs of the level of a national science and technology, military strength as well as country's comprehensive power, this technical level directly affects a country's energy, national defense, and industrial competition ability. Gas turbine has got such rapid development and much attention, because it has high thermal efficiency, less contamination and so on. These advantages and thermal performance have a critical impact on gas effective compression in gas turbine compressor before heating combustion. In theory and practical study, when compressor pressure ratio is bigger and efficiency is higher, the ultimate thermal performance of gas turbine is better. Therefore, we should study the higher pressure ratio and efficiency of a single stage in gas turbine in order to improve the performance of gas turbines, thus rotating ramjet was born with new concept, new technology and new compression system.
     The rotating ramjet rotor is a new type of compression system based on shock wave compression technology. The air pressurization way of shock wave compression in ramjet flow-path has high compression ratio, higher efficiency and so on. Because this new type of compression system has above advantages, in the Marine power, vehicle engineering, gas turbine, distribution micro gas turbine and other devices it has great development and application prospect. Therefore, it has the important theoretical significance and practical value to conduct a comprehensive and thorough research on rotating ramjet rotor and ramjet flow-path.
     According to the research status for rotating ramjet at home and abroad, this paper mainly designed and established the rotating ramjet compression rotor as well as its core component-ramjet flow-path. Through ramjet flow-path field simulation of the rotating ramjet compression rotor, calculates flow-path field distribution of rotating ramjet compression rotor in design rotating speed and different export back pressure conditions, and analyzes the influence of ramjet flow-path field distribution in different back pressure and different flow-path structure. On this basis, ramjet flow-path field is expanded to 3D model research, and study similarly 3D flow-path field distribution of ramjet and the influence of field distribution under the condition of different export back pressure, finally we can determine normal back pressure of 3D flow-path.
     In the normal back pressure condition, this paper study the force analysis of rotating ramjet based on 3D ramjet flow-path, and get the air force and the mathematical model of air force. On this basis, establish the finite element model of rotating ramjet rotor. Finally the paper researches and analyzes the rotor dynamic performance of rotating ramjet under this force, get various order critical rotating speed and its corresponding each order vibration mode under different support conditions, as well as rotor dynamic response only in air exciting-vibration force and under the coupled action of air exciting-vibration force and unbalance force.
引文
[1]张恩和.对我国军用航空发动机发展的思考[J].航空发动机,2001,(3):1-3.
    [2]于达仁,刘金福,徐基豫.面向21世纪的燃气轮机技术的发展[J].燃气轮机技术,2001,14(1):14-21;53.
    [3]林汝谋.工业燃气轮机发展的关键技术[J].热力发电,1999,(1):26-28.
    [4]刘大响,程荣辉.世界航空动力技术的现状及发展动向[J].北京航空航天大学学报,2002,28(5):490-496.
    [5]王云,赵晓路,徐建中,等.新概念旋转冲压发动机的研究与分析[J].北京航空航天大学学报,2004,30(18):777-782.
    [6] Lawlor S P, Hinkey J B, Mackin S G, et al. Supersonic Compressor Stage Design & Test Results[R]. IMECE2004-59914, 2004.
    [7]韩吉昂,钟兢军,卜方.旋转冲压压气机压缩转子技术分析及展望[J].飞航导弹,2007,(7):52-56.
    [8]十合晋一.气体轴承设计、制作与应用[M].韩焕臣,译.北京:宇航出版社,1988.
    [9]党根茂.气体润滑技术[M].南京:东南大学出版社,1990.
    [10]周恒,刘延柱.气体动压轴承的原理及计算[M].北京:国防工业出版社,1981.
    [11]王云飞.气体润滑理论与气体轴承设计[M].北京:机械工业出版社,1999.
    [12]于达仁,何保成,吕晓武,等.旋转冲压发动机进气道压比特性分析[J].推进技术. 2008,6.
    [13] Robert Steele, PeterBaldwin, James Kesseli. Insertion of shock wave comp ression technology into microturbines for increased efficiency and reduced costs[R]. ASM E 20052GT268203.
    [14] Steele R, Baldwin P, Kesseli J. Insertion of Shock Wave Compression Technology into Micro Turbine for Increased Efficiency and Reduced Costs[R]. ASME Paper GT2005-68203, 2005.
    [15] Lawlor S P, Baldwin P. Conceptual Design of a Supersonic CO2 Compressor[R]. ASME Paper GT2005-68349, 2005.
    [16] Ramgen Power Systems. Gas Turbine Engine: Shock Wave Based Ramgen Engine [EB/OL]. http://www.ramgen.com/apps_ASCE_breakthrough.html.
    [17] Chenevert, Blake C. Kendrick, Donald W, et al. The development of the ramgen engine combustion system, American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, 2002, 1: 491-500.
    [18] Allan D. Grosvenor, Paul M. Brown, Shawn P. Lawlor. Design methodology and predicted performance for a supersonic compressor stage. Proceedings of GT2006 ASME Turbo Expo 2006: Power for Land, Sea and Air May 8-11, 2006, Barcelona, Spain.
    [19] RobertStee, lPeterBaldwin, JamesKessel. Insertion of shockwave compression technology intomicro turbines for increased efficiency and reduced costs. Proceedings of the ASME Turbo Expo[C]. New York: American Society of MechanicalEngineers, 2005: 857-862.
    [20] Shawn P. Lawlor, Peter Baldwin. Conceptual design of a supersonic CO2 Compressor. In: ASME International Gas Turbine Institute. Proceedings of the ASME Turbo Expo. New York: American Society of Mechanical Engineers. 2005: 309-316.
    [21] Miklos Sajben, Thomas J. Bogar, Joseph C. Kroutil. Experimental Study of Flows in a Two-Dimensional Inlet Model[J]. Journal of Propulsion and Power, 1985, 1(2):109-117.
    [22] Grosvenor A D, Taylor D A, Bucher J R, et al. Measured and Predicted Performance of a High Pressure Ratio Supersonic Compressor Rotor[R]. ASME Paper GT2008-50150, 2008.
    [23] Seddon J, Goldsmith, E. L. Intake Aerodynamics– Second Edition, American Institute of Aeronautics and Astronautics, Virginia, 1999.
    [24] Mahoney, J. J. Inlets for Supersonic Missiles, American Institute of Aeronautics and Astronautics, Washington, DC, 1990.
    [25] Billig, F., Van Wie, D., 1987,―Efficiency parameters for inlets operating at hypersonic speeds‖, Eighth International Symposium on Air-Breathing Engines: p. 118-130.
    [26]刘大响,金捷. 21世纪世界航空动力技术发展趋势与展望[J].中国工程科学. 2004,6(9).
    [27]邓洋波,钟兢军.旋转冲压发动机驻涡燃烧技术研究现状分析[J].燃气涡轮试验与研究,2006,19(3):58-62.
    [28]王云,杜建一,赵晓路,等.旋转冲压发动机冲压压缩分析[J].工程热物理学报,2006,27(6):933-936.
    [29]王云,赵晓路,徐建中,等.旋转冲压发动机冲压转子盘腔冷态流场数值模拟[J].南京航空航天大学学报,2006,38(2):143-147.
    [30]鲍文,常军涛,郭新刚,等.超燃冲压发动机进气道不起动仿真研究[J].航空动力学报,2005,20(5):731-735.
    [31]袁化成,梁德旺.高超声速侧压式模型进气道不起动特性分析[J].南京航空航天大学学报, 2004, 36 (6) : 683-687.
    [32] YU Daren, CHANG Juntao, BAO Wen, et al. Op timal classifications criterions of hypersonic inlet start/unstart [J]. Journal of Propulsion and Power, 2007, 23 (2).
    [33]蒋庄德,王久洪,卢德江.微型旋转冲压发动机设计与分析[J].机械工程学报,2008,44(11).
    [34]孟香,王云,朱保利,等.旋转冲压发动机冲压转子的强度分析[J].科学技术与工程,2007,7(19).
    [35]王云,雷娜.旋转冲压发动机冲压转子振动模态分析[J].理论研究,2008,22(2).
    [36]邓洋波,钟兢军.旋转冲压发动机关键技术与研究进展.中国科技论文在线.http://www.paper.edu.cn.
    [37]肖翔,赵晓路,徐建中.高压比旋转冲压叶轮研究[J].工程热物理学报,2008,29(5).
    [38]韩吉昂,严红明,钟兢军,孙鹏,于洋.旋转冲压压缩转子二维进气流道数值研究[J].航空动力学报.2008,23(6).
    [39]钟兢军,严红明,韩吉昂.基于超燃冲压发动机进气道压缩技术的压缩转子研究[EB/OL].中国科技论文在线. http://www.paper.edu.cn.
    [40]钟兢军,韩吉昂.旋转冲压压缩转子的研究进展及发展前景[J].中国航空学会2010年第七届动力学年会论文.
    [41]田新,刘占生.旋转冲压发动机进气道流场及气流对转子的作用力研究[J].振动与冲击,2008,27(5).
    [42]张广辉,刘占生.旋转冲压发动机高速动静混合气体轴承性能分析[J].推进技术,2009,30(5).
    [43] Draper R, Steele R. Design of Diffuser for High Mach and High Swirl Applications[EB/OL].[2003].http://www.clemson.edu/scies/UTSRPeerReview/Proceeding20content/Poster20session/Poster-Draper.pdf.
    [44] Ramgen Power Systems Inc. Ramgen engine technology overview briefing [EB/OL].http://www.netl.doe.gov/publications/proceedings/02/turbines/steele.pdf, 2002-03.
    [45] Bruckner A P. Operational characteristics of the thermally choked ram accelerator [J]. Journal of Propulsion, 1991, 7(5): 828-839.
    [46] Bogdanoff D. Ram accelerator direct space launch system; new concepts [J]. Journal of Propulsion and Power, 1992, 8(2): 481-490
    [47]洪杰,朱彬.旋转冲压发动机冲压转子的结构特点[J].国际航空杂志. 2006,7.
    [48]赵肃铭,冯国泰,韩万金.工程液体和气体动力学[M].哈尔滨:哈尔滨工业大学出版社,1992,12(1)
    [49] William H. Heiser Hypersonic Airbreathing Propulsion. Published by American Institute of Aeronautics and Astronautics, Inc., 370 L’Enfant Promenade, SW, Washington, DC. 2002, 4-2518.
    [50]田新.旋转冲压发动机转子动力学特性研究[D].哈尔滨:哈尔滨工业大学硕士学位毕业论文,2008:19-23.
    [51]刘兴洲.飞航导弹动力装置(上)[M].北京:中国宇航出版社,1992.
    [52] Tan J, Chen X, Yang T, et al. Performance Research on Solid Fuel Ramjet. AIAA 2001-3607.
    [53]张云峰.高速气流作用下的冲压发动机进气道壁板结构振动特性研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:2-5.
    [54]韩吉昂.旋转冲压压缩转子进气流道数值仿真及性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:12-18.
    [55]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:63-85.
    [56]王瑞金. Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [57]景思睿,张鸣远.流体力学[M].西安:西安交通大学出版社,2001.
    [58]张庆,孟光.涡轮叶片冷却数值模拟进展[J].燃气轮机技术,2004(04).
    [59]于勇. FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008.
    [60]赵玉新. Fluent中文全教程. http://wenku.baidu.com/view.
    [61] D.Hanselman,B.Littlefield,张航,黄攀(译).精通MATLAB6[M].北京:清华大学出版社,2002:232-240.
    [62]张志涌.精通Matlab 6.5版[M].北京:北京航空航天大学出版社,2003:145-173.
    [63]王勖成.有限单元法[M].北京:清华大学出版社,2003:1-2.
    [64]钟一谔,何衍宗,王正,等.转子动力学[M].北京:清华大学出版社,1984:176-177.
    [65]谢官模.振动力学[M].北京:国防工业出版社,2007,3.
    [66]邹经湘等.结构动力学[M].哈尔滨:哈尔滨工业大学出版社,1996,3.
    [67]刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,1998.
    [68]张相庭,王志培,黄本才.结构振动力学[M].上海:同济大学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700