叶顶间隙对旋转冲压压缩转子的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转冲压压缩转子作为一种新型压缩系统,集合了超声速进气道及传统轴流、离心压气机的设计方法,它具有以下优点:单级压比高、重量轻、体积小等。近几十年来,针对这一新型压缩系统国内外开展了很多相关研究。本文主要针对叶顶间隙对旋转冲压压缩转子的影响进行研究。
     本文工作主要分为三方面:第一部分首先利用CAD软件对具有间隙的旋转冲压压缩转子建模并进行网格无关性研究;第二部分主要在上述计算基础上对设计工况下间隙大小对旋转冲压压缩转子的影响进行研究;第三部分主要研究非设计工况下,转速和背压对具有间隙的旋转冲压压缩转子的影响。
     第一部分作为后续研究的基础,首先利用CAD软件对具有间隙的旋转冲压压缩转子进行建模,并且针对具有0.5%隔板高度间隙的旋转冲压压缩转子进行网格无关性研究。研究表明网格总数为45万的方案可以较好的对具有间隙的旋转冲压压缩转子进行数值模拟,并且可以较好地捕捉到间隙区域流场细节。
     第二部分主要在上述计算基础上对旋转压缩转子的六种间隙方案进行数值模拟研究。研究表明间隙大小对旋转冲压压缩转子的影响显著。随着间隙增大,旋转冲压压缩转子总体性能及流场均显著变化。综合考虑各间隙方案,具有0.5%隔板高度间隙的旋转冲压压缩转子综合性能较优。
     第三部分主要研究在非设计工况下,转速和背压的改变对具有间隙的旋转冲压压缩转子的影响,并获得其性能曲线。研究表明,对于固定几何结构的具有间隙的旋转冲压压缩转子,吸入的空气流量不仅受转速影响并且与背压有关系。
Ram-rotor is a new compression system, which uses the design of supersonic aircraft intake, the traditional axial compressor and the centrifugal—flow compressor. What is more, it has the advantages of the high ratio、light weight and the small volume. During the past years, focusing the new compression system, a lot of researches have been carried out. The influence of the tip clearance on the ram-rotor is carried out in this article.
     In order to achieve the above objectives, the research is carried out as follows:part one is the basis of the numerical research, it focuses on modeling the ram-rotor with different clearance and discussing the grid independence. Part two mainly concerns the influence of the tip clearance on the ram-rotor in the design condition. Part three concentrates on the influence of the tip clearance on the ram-rotor in the off design condition, especially the different speed and back pressure.
     Part one is the basis of the whole research; firstly the ram-rotor with the tip clearance is built with the CAD software. Besides the grid independence research on the ram-rotor with the tip clearance which is the 0.5% height of the strake is discussed. According to the research, the ram-rotor with the tip clearance can be analyzed in the case of the grid amount at 0.45 million, besides the details of the flow field can be captured distinctly.
     Part two mainly focuses on the numerical research on the ram-rotor with six kinds of tip clearance, which is on the basis of the part one. According to the research, the size of the tip clearance has significant influence on the ram-rotor. As the size of the tip clearance increase, the total performance and the flow field change very much.
     Part three concentrates on the influence of the tip clearance on the ram-rotor in the off design condition, especially under the different speed and back pressure. What is more, the characteristic curves is obtained. According to the above research, the speed and the back pressure can significantly change the total performance and the structure of the shock wave.
引文
[1]刘大响,程荣辉.世界航空动力技术的现状及发展动向[J].北京航空航天大学学报,2002(5):490-496.
    [2]王国庆.舰艇动力系统的特点与应用海洋之心[J].现代兵器,2010(5):37-43.
    [3]糜洪元.国内外燃气轮机发电技术的发展现况与展望[J].电力设备,2006(10):8-10.
    [4]吉桂明,李汇文.船舶燃气轮机技术和应用的展望[J].舰船科学技术,2000(5):36-40.
    [5]刘大易,张宏鹏.燃气轮机的发展前景及其发电技术[J].应用能源技术,2008(1):5-8.
    [6]林左鸣,战斗机发动机的研制现状和发展趋势[J].航空发动机,2006(1):1-8.
    [7]刘大响.加速发展我国航空发动机事业[J].燃气涡轮试验与研究,2000(3):14.
    [8]杨连海,沈邱农.大型燃气轮机的自主化制造[J].燃气轮机技术,2006(1):11-14.
    [9]高亹.我国电力工业的展望[J].东南大学学报(自然科学版),2005(1):159-164.
    [10]糜洪元,徐文军,吕水淼.国内外燃气轮机发电状况和21世纪展望[J].国际电力,2000(4):10-17.
    [11]杨凌.旋转冲压压缩转子结构与性能研究[D].大连海事大学,2011.
    [12]韩吉昂.旋转冲压压缩转子进气流道数值仿真及性能研究[D].哈尔滨工业大学,2009.
    [13]吴艳辉,张皓光,楚武利,等.双级跨音风扇轴向缝处理机匣结构优化的数值研究[J].西北工业大学学报,2010(2):67-70.
    [14]毛佳妮,曹紫胤.抑制叶顶间隙泄漏的叶轮机械叶片的流场模拟[J].热能动力工程,2009(2):154-157.
    [15]周杨,邹正平,刘火星,等.边界层吹吸气对高负荷扩压叶栅性能的影响[J].推进技术,2007(6):247-249.
    [16]王雷,刘波,项效镕,等.双级对转压气机叶型优化研究[J].机械科学与技术,2010(7):937-940.
    [17]陈云永,刘波,谢彦文.对转压气机特性影响因素分析研究[J].工程热物理学报,2010(7):1121-1126.
    [18]陈绍文,郭爽,陆华伟,等.超高负荷吸附式压气机叶栅气动性能分析[J].热能动力工程,2009(2):167-171.
    [19]兰发祥,黄国平.吸附式压气机平面叶栅数值模拟研究[J].燃气涡轮试验与研究,2009(4):1-8.
    [20]兰发祥,周拜豪,梁德旺,等.吸附式压气机叶型设计技术研究[J].航空动力学报,2008(12):2296-2301.
    [21]周正贵,王传宝.吸附式压气机叶栅气动性能计算模拟研究[J].航空动力学报,2007(12):2036-2042.
    [22]张永军,冯国泰,王会社.跨音速压气机中展弦比对弯掠叶片气动性能影响的分析[J].热能动力工程,2009(6):714-718.
    [23]宋彦萍,刘振德,赵桂杰,等.弯-掠叶片对压气机叶栅端壁流动的控制作用[J].推进技术,2004(4):338-342.
    [24]赵桂杰,陈浮,宋彦萍,等.弯掠叶片气动性能的实验研究(英文)[J].Chinese Journal of Aeronautics,2004(3):136-141.
    [25]刘建明,蒋向华,秦银雷,等.采用流固耦合的实体元空心叶片鸟撞数值模拟[J].航空动力学报,2010(10):2211-2216.
    [26]王飞,李飞,刘河洲,等.高温合金空心叶片用陶瓷型芯的研究进展[J].航空制造技术,2009(19):60-64.
    [27]刘建明,蒋向华,武卉,等.基于流固耦合的实体元空心叶片鸟撞数值模拟[J].航空发动机,2011(2):8-11.
    [28]Layne A W. Next-generation turbine systems[J].IEEE Power Engineering Review,2001, 21(4):18-23.
    [29]Xiao Xiang, Zhao Xiao Lu, Xu Jian Zhong. New kind of high performance shock-in impeller[J]. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics,2008,29(5):759-762.
    [30]Lawlor S P, Hinkey J B, Mackin S G, etal.Supersonic compression stage design test results: American Society of Mechanical Engineers, Process Industries Division, PID, Anaheim, CA, United states,2004[C].
    [31]韩兆林,王强.冲压发动机外压式二元进气道流场计算与分析[J].飞机设计,2005(2):11-14.
    [32]张靖煊,童志庭,聂超群.低速轴流压气机进口总压畸变与旋转失速关联的实验研究[J].航空动力学报,2007(5):16-18.
    [33]王毅,卢新根,赵胜丰,等.高负荷离心压气机扩压器叶片前缘结构分析[J].推进技术,2011(2):63-73.
    [34]Chenevert B C, Kendrick D W, Trueblood B, et al. The development of the ramgen engine combustion system:American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, Amsterdam, Netherlands,2002[C].
    [35]王祥锋,王松涛,韩万金.叶顶间隙变化对多级压气机性能影响的数值研究[J].科学技术与工程,2009(12):3483-3486.
    [36]Kendrick D W, Chenevert B C, Trueblood B, et al. Combustion system development for the ramgen engine[J]. Journal of Engineering for Gas Turbines and Power,2003,125(4):885-894.
    [37]钟兢军,韩吉昂,杨凌.旋转冲压压缩转子研究进展及发展前景[J].航空动力学报,2011(10):2293-2301.
    [38]Ishizuka T, Muto Y, Aritomi M. Design and test plan of the supercritical co2 compressor test loop:International Conference on Nuclear Engineering, Proceedings, ICONE, Orlando, FL, United states,2008[C].
    [39]韩吉昂,钟兢军,卜方.旋转冲压压气机压缩转子技术分析及展望[J].飞航导弹,2007(7):52-56.
    [40]王云,赵晓路,徐建中,等.新概念旋转冲压发动机的研究与分析[J].北京航空航天大学学报,2004(8):777-782.
    [41]Ram K, Faizal M, Ahmed M R, et al. Experimental studies on the flow characteristics in an oscillating water column device[J]. Journal of Mechanical Science and Technology.2010,24(10): 2043-2050.
    [42]刘火星,刘宝杰,陈懋章.国外新概念吸气式发动机的发展[J].航空制造技术,2005(3):32-38.
    [43]雷娜.旋转冲压发动机虚拟样机设计与研究[D].南昌航空大学,2008.
    [44]骆洪亮Laval喷管内激波/湍流边界层干扰的数值模拟[D].辽宁科技大学,2007.
    [45]王云,赵晓路,徐建中,等.旋转冲压发动机冲压转子盘腔冷态流场数值模拟[J].南京航空航天大学学报,2006(2):143-147.
    [46]王云.新概念旋转冲压发动机基础性探索研究[D].南京航空航天大学,2005.
    [47]肖翔,赵晓路,徐建中.高压比旋转冲乐叶轮研究[J].工程热物理学报,2008(5):759-762.
    [48]肖翔.对转冲压压气机冲压叶轮内部流动分析研究[D].中国科学院研究生院(工程热物理研究所),2008.
    [49]Collins K, Bain J, Rajmohan N, et al. Toward a high-fidelity helicopter rotor redesign framework[Z].Montreal, Canada:20081270-1290.
    [50]扈延林,孙小磊,唐菲,等.冲压转子流场和轮毂抽吸处理分析[J].工程热物理学报,2011(7):1111-1114.
    [51]于达仁,何保成,吕晓武,等.旋转冲压发动机进气道压比特性分析[J].推进技术,2008(3):329-333.
    [52]孙小磊,扈延林,杜建一等.来流气流角变化对冲压叶栅性能的影响[J].工程热物理学报.2010(9):1484-1487.
    [53]刘波,南向谊,陈云永.附面层抽吸对转子激波结构和分离流动的影响[J].航空学报.2008(2):315-320.
    [54]肖翔,刘锡阳,赵晓路等.对转冲压压气机冲压叶栅实验研究[J].工程热物理学报.2009(11):1837-1840.
    [55]孟香,王云,朱保利,等.旋转冲压发动机冲压转子的强度分析[J].科学学技术与工程.2007(19):48594864.
    [56]Chandler A L, Finkelstein A R. TURBINE BLADE TIP CLEARANCE MEASUREMENT UTLILIZING BORESCOPE PHOTOGRAPHY. [J]. American Society of Mechanical Engineers (Paper),1978(78-GT-164).
    [57]Laborde R, Chantrel P, Mory M. Tip clearance and tip vortex cavitation in an axial flow pump[J] Journal of Fluids Engineering, Transactions of the ASME,1997,119(3):680-685.
    [58]韩少冰,钟兢军,严红明.端壁相对运动对压气机叶栅间隙流场影响的数值模拟[J].动力工程学报,2011(4):257-262.
    [59]Ishida M, Ueki H, Senoo Y. EFFECT OF BLADE TIP CONFIGURATION ON TIP CLEARANCE LOSS OF A CENTRIFUGAL IMPELLER.[J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B,1987,53(491):2099-2103.
    [60]Inoue M, Kuroumaru M, Wakahara K, et al. STRUCTURE OF TIP CLEARANCE FLOW IN AXIAL ROTATING BLADES.[J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B,1988,54(498):435-441.
    [61]Yamamoto A. Endwall flow/loss mechanisms in a linear turbine cascade with blade tip clearance[J]. Journal of Turbomachinery,1989,111(3):264-275.
    [62]Jin T, Turunen Saaresti T, Reunanen A, et al. Numerical investigation of the effect of tip clearance to the performance of a small centrifugal compressor:Proceedings of the ASME Turbo Expo, Barcelona, Spain,2006[C].
    [63]Steiner A.Techniques for blade tip clearance measurements with capacitive probes[J]. Measurement Science and Technology,2000, 11(7):865-869.
    [64]Lee Y T, Hah C, Loellbach J. Numerical study of the tip clearance flow development in a propulsion pump stage:American Society of Mechanical Engineers (Paper), Jakarta, Indonesia, 1996[C].
    [65]Holmquist E B, Jalbert P L.Turbine blade tip clearance measurement instrumentation: Proceedings of the ASME Turbo Expo, Montreal, Que., Canada,2007[C].
    [66]Krishnababu S K, Newton P J, Dawes W N, et al. Aero-thermal investigations of tip leakage flow in axial flow turbines part Ⅰ-Effect of tip geometry and tip clearance gap:Proceedings of the ASME Turbo Expo, Montreal, Que., Canada,2007[C].
    [67]Tallman J, Lakshminarayana B. Numerical simulation of tip leakage flows in axial flow turbines, with emphasis on flow physics:Part Ⅰ-Effect of tip clearance height[J]. Journal of Turbomachinery,2001,123(2):314-323.
    [68]Tallman J, Lakshminarayana B. Numerical simulation of tip leakage flows in axial flow turbines, with emphasis on flow physics:Part Ⅱ-Effect of outer casing relative motion[J]. Journal of Turbomachinery,2001,123(2):324-333.
    [69]Xiao X, McCarter A A, Lakshminarayana B. Tip clearance effects in a turbine rotor:Part Ⅰ-Pressure field and loss[J]. Journal of Turbomachinery,2001,123(2):296-304.
    [70]Zierke W C, Farrell K J, Straka W A. Measurements of the tip clearance flow for a high Reynolds number axial-flow rotor:part 2-detailed flow measurements:American Society of Mechanical Engineers (Paper), Hague, Neth,1994[C].
    [71]Wehner M, Bolcs A Butikofer J. Experimental study of tip clearance effects under transonic flow conditions:American Society of Mechanical Engineers(Paper), Burmingham, UK,1996[C].
    [72]黄洪雁,韩万金,王仲奇,等.具有静止顶部间隙透平叶栅气动特性的实验研究[J].汽轮机技术,1997(04).
    [73]赖焕新,吴克启.轴流压气机转子内流数值模拟及叶顶间隙泄漏分析[J].工程热物理学学报,1998(05).
    [74]贾希诚,王正明叶叶顶间隙对环形叶栅三维粘性流场影响的数值分析[J].工程热物理学报,1999(06).
    [75]赖焕新,康顺,谭春青,等.有无叶顶间隙条件下斜流风机叶轮内部三维流动的数值研究[J].航空动力学报,2000(01).
    [76]刘立军,徐忠,张玮.叶顶间隙泄漏时离心压气机模型级内流动的数值模拟[J].西安交通大学学报,2001(9):908-913.
    [77]贾希诚,王正明,蔡睿贤.叶轮机械中叶顶间隙形态对气动性能影响的数值研究[J].工程热物理学报,2001(4):431-434.
    [78]刘长胜,刘瑞韬,秦国良,等.叶顶间隙对叶轮性能影响的数值分析[J].风机技术,2003(1):7-9.
    [79]袁巍,周盛,陆亚钧.压气机间隙流与处理机匣作用的三维数值分析[J].北京航空航天大学学报,2004(9):885-888.
    [80]马文生,顾春伟.叶顶间隙对压气机性能的影响[J].动力工程,2007(06).
    [81]刘长胜,刘瑞韬,秦国良,等.叶顶间隙对叶轮性能影响的数值分析[J].风机技术,2003(1):7-9.
    [82]袁巍,周盛,陆亚钧.压气机间隙流与处理机匣作用的三维数值分析[J].北京航空航天大学学报,2004(9):885-888.
    [83]施卫东,张华,陈斌,等.不同叶顶间隙下的轴流泵内部流场数值计算[J].排灌机械工程学报,2010(05).
    [84]邓向阳.压气机叶顶间隙流的数值模拟研究[D].中国科学院研究生院(工程热物理研究所),2006.
    [85]王军,姚瑞锋,刘静,等.低压轴流风机叶顶间隙对叶尖涡及外部性能的影响研究[J].流体机械,2011(9):26-29.
    [86]郭强,竺晓程,胡丹梅,等.采用PIV研究轴流风机叶顶泄漏流动[J].流体力学实验与测量,2004(1):33-37.
    [87]黄欢明.轴流泵内流场的数值模拟与PIV实验研究[D].上海交通大学2008.
    [88]马昌友,刘波,王掩刚.小型轴流通风机转子叶顶间隙流场烟雾显示研究[J].风机技术,2007(2):14.17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700