旋转冲压压缩转子激波系配置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转冲压压缩转子是一种借助激波对气体进行压缩新型压缩系统,它集合了超声速进气道及离心压气机的设计方法,通过高速旋转创造相对超声速来流的条件,进而通过激波对气体进行压缩,它具有单级压比高、重量轻、体积小等有点。激波系是旋转冲压压缩转子进行压缩的根本,压缩面结构是转子激波系结构的决定因素,因此压缩面设计是转子设计中至关重要的环节之一。
     文章正文主要分成三个部分:
     第一部分介绍了所采用仿真软件Fluent的特点和优势以及软件模块组成和功能意义。并对所采用的控制方程、差分格式、湍流模型、边界条件相关公式进了行介绍。
     第二部分对旋转冲压压缩转子的结构和原理进行了分析,对衡量转子性能的指标及其意义进行了说明。在此基础上,对能对转子激波系结构有重要影响作用的转子压缩面进行了改型设计,以凸曲线压缩面为参考,设计了三种能够产生多条激波的压缩面。
     第三部分首先对采用凸曲线压缩面的旋转冲压压缩转子的流场和性能进行了三维全面解析;然后考察了旋转冲压压缩转子重要的边界条件背压变化对转子性能的影响;最后对采用不同形式压缩面的旋转冲压压缩转子的仿真结果进行详细对比分析,获得了压缩面形式影响旋转冲压压缩转子性能的一般规律。
Ram-rotor is a new compression system which combines with the design of supersonic aircraft intake and the traditional centrifugal-flow compressor. CoMPared with the traditional axial compressor, it has the advantages of the high pressure ratio、light weight and the small volume. The shockwaves system, which is determined by the structure of ram-rotor, especially its compression surface, is the core element of the performance of ram-rotor.
     This article has three main parts as follows:
     In the first part, Fluent is compared with other CFD software, and its advantages are shown; then the component of Fluent and their function are introduced; at last, the governing equations, turbulence model, difference scheme and boundary conditions are explained.
     In the second part, the structure of Ram-rotor is shown, and the function of the components are explained; then the performance indexes are analyzed. As the compression surface plays the key role on the shock wave system, the structure of the compression surface is optimized, and three different kinds of compression surfaces are designed.
     In the last part, the completely Three-dimensional Analysis is given to the ram-rotor with the formal compression surface is give; then this article analysis how back pressure affect the flow field of ram-rotor; at last, the simulation results of ram-rotor with different compression ramps are coMPared with each other, and the rule that how compression ramp affects the performance of ram-rotor is shown.
引文
[1]蔡宁生,刘红,崔荣繁等.863燃气轮机专项进展.中国科技产业.2006,(2):96-99
    [2]于达仁,刘金福,徐基豫.面向21世纪的燃气轮机技术的发展.燃气轮机技术.2001,14(1):14-21:53
    [3]李春曦,叶学民.燃气轮机工业的发展前景.锅炉制造.2002,(4):40-43;47
    [4]张恩和.对我国军用航空发动机发展的思考.航空发动机.2001,(3):1-3
    [5]林汝谋.工业燃气轮机发展的关键技术.热力发电.1999,(1):26-28
    [6]韩吉昂,钟兢军,卜方.旋转冲压压气机压缩转子技术分析及展望.推进技术.2007,(7):52-56.
    [7]R. Draper, R. Steele. Design of Diffuser for High Mach and HighSwirl Applications. http://www. clemson. edu/scies/UTSRPeerReview/Proceeding 20content/Poster 20session/Poster-Draper. pdf,2003
    [8]Kendrick D W, Chenevert B C, Trueblood B, et al. Combustion System Development for the Ramgen Engine. Journal of Engineering flor Gas Turbine and Power, 2003,125(4):885-894.
    [9]韩吉昂.旋转冲压压缩转子进气流道数值仿真及性能研究(博士学位论文).哈尔滨:哈尔滨工业大学,2009.
    [10]杨凌.旋转冲压压缩转子结构与性能研究(博士学位论文).大连:大连海事大学.2011.
    [11]张广辉,刘占生,田新.旋转冲压转子-动静混合气体轴承系统振动特性仿真研究.震动与冲击,2010,29(9):155-160.
    [12]于达仁,何保成,吕晓武,常军涛.旋转冲压发动机进气道压比特性分析.推进技术,2008,29(3):329-333.
    [13]刘巍,李理,杨涛.旋转冲压增程弹进气道内流场旋流数计算.推进技术,2009,30(2):149-153.
    [14]Grosvenor A D, Brown P M, Lawlor S P. Design Methodology and Predicted Performance for a Supersonic Compressor Stage. ASME paper GT2006-90409. Barcelona, Spain, May 8-11,2006.
    [15]居燕.弯曲激波压缩面设计及试验研究(硕士学位论文).南京:南京航空航天大学.2005.
    [16]潘瑾,张堃元,金志光.弯曲激波压缩型面的设计及数值分析.推进技术,2008, 29(4):438-412.
    [17]王云,赵晓路,徐建中,等.新概念旋转冲压发动机的研究与分析[J].北京航空航天大学学报.2004(8):777-782.
    [18]牛茂升.涡轮间隙流动主动控制的试验研究及数值模拟[D].上海交通大学,2010.
    [19]韩兆林,王强.冲压发动机外压式二元进气道流场计算与分析[J].飞机设计.2005(2):11-14.
    [20]Borovikov A D, Duganov V V, Zakharov N N. Profiling methods and calculated-experimental investigations of a supersonic spatial air-intake[J]. Izvestiya Vysshikh Uchebnykh Zavedenij. Aviatsionnaya Tekhnika.1992(3):37-40.
    [21]扈延林,孙小磊,唐菲,等.冲压转子流场和轮毂抽吸处理分析[J].工程热物理学报.2011(7):1111-1114.
    [22]郑日恒.法国冲压发动机研究进展[J].航天制造技术.2006(2):6-10.
    [23]强国芳.舰船燃气动力的新技术[J].舰船科学技术.1994(5):31-35.
    [24]Han Ji Ang, Zhong Jing Jun, Yan Hong Ming. Numerical research of two-dimensional supersonic internal-compression intake flowfield[J]. Dongbei Daxue Xuebao/Journal of Northeastern University.2008,29(SUPPL.):217-221.
    [25]蒋庄德,王久洪,卢德江.微型旋转冲压发动机设计与分析[J].机械工程学报.2008(11):20-25.
    [26]王云.新概念旋转冲压发动机基础性探索研究[D].南京航空航天大学,2005.
    [27]王云,杜建,赵晓路,等.旋转冲压发动机冲压压缩分析[J].工程热物理学报.2006(6):933-936.
    [28]Nishizawa U, Kameda M, Watanabe Y. Computational simulation of shock oscillation around a supersonic air-intake[Z]. San Francisco, CA, United states: 2006406-415.
    [29]Kurth G, Bauer C. Air intake development for supersonic missiles[Z]. Hartford, CT, United states:2008.
    [30]王云,雷娜.旋转冲压发动机冲压转子振动模态分析[J].南昌航空大学学报(自然科学版).2008(2):22-25.
    [31]于达仁,何保成,吕晓武,等.旋转冲压发动机进气道压比特性分析[J].推进技术.2008(3):329-333.
    [32]扈延林,孙小磊,唐菲,等.冲压转子流场和轮毂抽吸处理分析[J].工程热物理学 报.2011(7):1111-1114.
    [33]Povinelli L A, Towne C E. VISCOUS ANALYSES FOR FLOW THROUGH SUBSONIC AND SUPERSONIC INTAKES. [Z]. Munich, W Ger:19871-5.
    [34]ESTIMATION OF SOUND PRESSURE LEVELS DUE TO BUZZ-SAW NOISE WITHIN THE INTAKE DUCT OF A SUPERSONIC FAN OR COMPRESSOR. [J]. Engineering Sciences Data Unit, Data Items.1974(74033).
    [35]Das S, Prasad J K. Cowl deflection angle in a supersonic air intake [J]. Defence Science Journal.2009,59(2):99-105.
    [36]Fisher S A. THREE-DIMENSIONAL FLOW EFFECTS IN A TWO-DIMENSIONAL SUPERSONIC AIR INTAKE.[J]. Journal of Propulsion and Power.1986,2(6):546-551.
    [37]Nagashima T, Obokata T, Asanuma T. EXPERIMENT OF SUPERSONIC AIR INTAKE BUZZ. [J]. 1972.
    [38]沈煜欣.微型燃气轮机的气动设计方法与内部流动研究[D].中国科学院研究生院(工程热物理研究所),2009.
    [39田新,刘占生.旋转冲压发动机进气道流场及气流对转子的作用力研究[Z].中国湖南湘潭:200832-35.
    [40]邓向阳.压气机叶顶间隙流的数值模拟研究[D].中国科学院研究生院(工程热物理研究所),2006.
    [41]Das S, Prasad J K. Unstart suppression and performance analysis of supersonic air-intake adopting bleed and cowl bending[J]. Journal of the Institution of Engineers (India):Aerospace Engineering Journal.2010,91 (MAY):27-35. [11-20]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700