陕西省商南县—山阳县下寒武统黑色岩系中钒矿田地质构造特征及成因探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南秦岭早寒武世广泛发育富含有机质的黑色岩系,按空间分布可分为南北两个带:北带位于山阳—商南—郧西一带,以产出中—大型的钒、金矿床为特点;南带位于安康—紫阳—平利—镇坪一带,以产出大型毒重石—重晶石矿床及石煤为特征。本文选择北带下寒武统水沟口组黑色岩系中的钒矿田为研究对象,运用构造地质学、矿床学、岩石学及地球化学等方法,系统研究了钒矿田的地质构造特征、钒的赋存状态,并对钒矿床的成因进行了探讨,重建了研究区的构造演化过程,建立了南秦岭黑色岩系型钒矿床的成因模式,取得主要成果和认识可以概括为以下几点:
     (1)研究区位于南秦岭加里东—印支褶皱带中段武当地块的北缘,东部与陡岭地块毗邻。钒矿床产于研究区中部水草坪—白浪倒转复式向斜的两翼,赋矿地层为下寒武统水沟口组。水沟口组分为两个岩性段:下岩段岩性主要为硅质岩、炭质泥岩,并夹有磷结核、重晶石岩,而且下岩段岩性从下往上具有明显的规律性,即下部以硅质岩为主,向上泥岩逐渐增多,硅质岩逐渐减少;上岩段岩性主要为灰岩,夹少量泥岩。
     (2)对研究区内典型的钒矿床进行了研究,总结出黑色岩系中钒的成矿特征。钒矿体严格受层位控制,赋存于下寒武统水沟口组下岩段,含矿岩石主要为硅质岩夹炭质泥岩。矿体呈层状、似层状产出,沿走向、倾向上延伸均较稳定。钒主要分布于炭质泥岩中,但产出有钒矿体的岩性组合中必夹有硅质岩。钒在地层中富集具有明显的规律性,从下往上硅质岩夹炭质泥岩—富磷结核过渡层—炭质泥岩—碳酸盐岩,在磷结核过渡结核层V_2O_5含量最高。
     (3)通过物相分析、X-射线衍射测试及电子探针分析,钒的赋存状态有三种:存在于钒云母中、以胶体状态存在的V-Fe、以V-Ti氧化物集合体的形式存在。钒云母呈片状、条带状产出,宽度一般在10μm±,长一般大于100μm,长轴方向与层理或纹层理方向一致,其中含钒最高可达到22.68%。钒云母有两种标型:一种标型为2M1型,化学式为K(Al,V)_2(Si,Al)_4O_(10)(OH)_2或(K,Ba,Na)_(0.75)(Al,Mg,Cr,V)_2(Si,Al,V)_4O_(10)(OH,O)_2,钒不仅取代了位于六次配位的八面体层中的铝,还取代了位于Si-O四面体层中的铝,形成了2M1型钒云母;另一种标型为1M型,其化学式为KV_2(Si_3Al)O_(10)(OH)_2,钒位于云母结构层之间。胶体状态存在的V、Fe,呈草莓状、圆球状、星点状、环状产出,颗粒直径小于10μm,多在3~5μm,其排列方向大致与层理或方向一致,表明其为同沉积期生成的矿物,周围多为云母、粘土矿物及石英,化学组成主要为V、Fe、O,不含或仅含痕量的Ti、Mg,其中含钒最高可达到10.09%,不含水,为胶体老化后形成的非晶质体,炭硅质岩夹炭质泥岩型钒矿石中钒以该赋存状态为主。V-Ti氧化物集合体主要产出于炭质泥岩型钒矿石中,呈浸染状、星散状分布于岩石基质中,其长轴方向与层理或纹层理方向一致,为同沉积期生成的矿物;结合衍射分析结果,笔者认为该混合物为细粒的钒、钛氧化物的集合体,它最初是以胶体形式沉积,后期钛的氧化物结晶形成锐钛矿、板钛矿等。
     目前,研究区内黑色岩系型钒矿石选矿回收率低、选矿成本高且污染大,通过本文对下寒武统黑色岩系中钒赋存状态及分布形式的研究,有助于选矿工艺的改进,对矿山节约成本、提高选矿回收率、降低环境污染等方面有一定的实际意义。
     (4)研究区位于南秦岭构造带,总体由四条近东西向北倾的逆冲断裂划分为四个次一级的构造单位。北部由三个由北向南的逆冲推覆构造带组成,即太子坪岩片推覆构造带、耀岭河逆冲推覆构造带、湘河构造混杂岩带;南部为由武当山隆起而形成的武当山地块北缘滑脱构造带。各构造带均经历了多期变形。通过对各构造单元构造特征的研究,结合秦岭造山带的构造演化,研究区大致经历了五个构造演化阶段:中元古代扬子地块北缘裂陷喷发;早晋宁运动武当山岩群褶皱;晚元古代早期至早古生代,扬子地块北缘被动大陆边缘再次裂陷,竹林关—青山断裂带(F1)、偏头山—豆腐尖断裂带(F2)、楼房沟—耀岭河断裂带(F3)、湘河—月亮湾断裂带(F4)四条断裂带在该阶段均表现为正断层性质,且切割深度大,携带成矿元素的热水及火山活动沿这些断裂带运移至海底沉积形成了下寒武统水沟口组黑色岩系型钒矿床;晚海西—印支期,由于北侧商丹带的强烈碰撞作用使F1~F4四条断裂带转变为逆断层,形成一系列的逆冲推覆构造及伸展滑脱构造体系;燕山期及喜山期伸展、抬升及断陷活动,位于水草坪—白浪倒转向斜两翼水沟口组中的钒矿床由于风化剥蚀作用出露于地表。
     (5)通过地层、岩性、岩相古地理、古构造、钒的富集规律及地球化学特征等方面研究,表明该区早寒武世黑色岩系中的钒来源于海底热水、火山活动,钒矿体在原生沉积时形成,其成因既与区域地质构造背景、海底热水及火山活动、生物活动及有机质降解有关,又与海平面升降有关。
     早寒武世,研究区位于扬子地块北缘的被动大陆边缘,处于板块构造的扩张期,裂陷发育,沿断裂活动的热液及火山活动将硅质、重晶石及钒、金等金属元素带入海底。该时期广泛的海侵作用使区内海水加深,活跃的上升洋流携带洋底的磷、营养物质等进入陆棚区,使藻类浮游生物大量繁殖,生物活动本身可以富集海水中的钒,生物死亡后遗体下沉至海底的过程中,有机质腐烂分解消耗了水体下部的氧,使底层水变成缺氧状态,有利于富含钒的有机质在海底保存。同时由于生物活动改变了水体的化学环境,导致海水中吸附钒的泥质、硅质、火山灰等沉积于底部缺氧层中,与有机质一同保存下来,形成黑色岩系型钒矿床。因此,笔者认为研究区内钒矿床属于生物—热水沉积成因类型。
     (6)综合已有的成因证据,结合当时的岩相古地理环境,笔者首次按早寒武世早、中、晚期三个阶段还原了水沟口组含矿黑色岩系的形成过程,即南秦岭黑色岩系型钒矿床的成因模式。这对南秦岭乃至国内外黑色岩系中钒矿床成因研究具有一定的参考意义。
     (7)笔者对南秦岭早寒武世的地层进行了对比,结合本文对黑色岩系型钒矿床成因的研究,预测南秦岭造山带南部的三个地层分区(郧西—均县分区、安康—平利分区、高滩—兵房街分区)是寻找黑色岩系型钒矿床的有利靶区。
     本文创新点有如下两点:
     ①新发现了钒的两种赋存状态:以胶体状态存在的V-Fe,以氧化物集合体的形式存在的V-Ti;且以前者为主。该发现为钒以胶体形式搬运沉积提供了直接证据,并为钒矿山选矿试验的改进提供了重要的研究资料。
     ②笔者较全面地研究了钒矿床的矿体特征、区域构造背景、岩性、岩相古地理、沉积环境、物质来源、钒的富集规律、生物活动证据以及地球化学特征,提出研究区内钒矿床属于生物—热水沉积成因类型,并据此建立了黑色岩系型钒矿床的成因模式。该模式合理地还原了钒矿床的形成过程。
The early Cambrian is marked by the occurrence of anomalously organic-carbon-richblack rock series in large parts of the Southern Qinling. These sediments can be divided intothe northern and southern zones based on their spatial distribution. The northern zone islocated in Shanyang-Shangnan-Yunxi, occurring the large vanadium, gold deposits. Thesouthern zone is located in Ankang-Ziyang-Pingli-Zhenping, occurring the largewitherite-barite deposits and stone coal. Using structural geology, mineral deposit geology,petrology and geochemistry methods, this paper chose the vanadium deposits in the blackrock series of Shuigoukou Formation in the northern zone as the research object,systematically studied structural characteristics, occurrence of vanadium, vanadium depositgenesis, and reconstruct the tectonic evolution processes of research area, constructedmetallogenic model. The new advances and cognitions are proposed as follows.
     (1) The research area is located in the northern margin of the Wudang massif in themiddle part of the Southern Qinling Caledonian-Indochina fold belt, and the eastern part isclose to the Douling massif. Vanadium deposits are located in the two wings of theShuicaoping-Bailang reversed multiple syncline, in the middle of the research area. Theore-host strata is the Lower Cambrian Shuigoukou Formation. Shuigoukou Formation can bedivided into two lithologic members. The lithologic characters of the first lithologic memberare silicalite, carbargillite, intercalated with phosphatic nodule, baritic rock, and they haveobvious regularity from the bottom up, which are, the lower is dominated by silicalite, upwardcarbargillite gradually increased, silicalite gradually reduced. The lithologic characters of thesecond lithologic member are dominated by limestone, intercalated with little mudstone.
     (2) Vanadium ore bodies are controlled by the strata of black rock series, occurs in thefirst member of the Lower Cambrian Shuigoukou Formation. The ore-hosted rocks aresilicalite intercalated with carbargillite. The ore bodies are stratified and stratiform-like, arestable along the strike and dip. Vanadium mainly distributed in the carbargillite, but thelithologic association which occurs vanadium ore body, always intercalate with silicalite. Thevanadium enrichment in stratigraphic column has obvious regularity. From bottom up, silicalite intercalated with carbargillite–phosphatic-nodule-rich transition layer-carbargillite–carbonate rock, content of V_2O_5in the transition layer reached the highest.
     (3) The phase analysis show that vanadium mainly occurs in mica type mineral. ByX-ray diffraction and electron microprobe analysis, we found three vanadium-containingminerals, roscoelite, V-Fe oxide, V-Ti oxide.①Roscoelite which contains vanadium to amaximum of22.68%, is flake, ribbon, and its width is generally10μm, its length is generallygreater than100μm. Roscoelite has two typomorphic mineral. One is2M1, its chemicalformula is K(Al,V)_2(Si,Al)_4O_(10)(OH)_2or (K,Ba,Na)_(0.75)(Al,Mg,Cr,V)_2(Si,Al,V)_4O_(10)(OH,O)_2,vanadium has not only replaced aluminum of the six coordinate octahedral layer, but alsoreplaced aluminum of Si-O tetrahedral layer. Another is1M, its chemical formula isKV_2(Si_3Al)O_(10)(OH)_2, vanadium is located between the structure layer of roscoelite.②V-Feoxide showed strawberry-shaped, round-shaped, star-shaped, ring, its particle diameter is lessthan10μm, mainly in3~5μm, its orientation is roughly consistent with the direction of thebedding, which show that it is synchronous deposit mineral. The chemical compositionmainly conclude V, Fe, O, and a little of Ti, Mg. It contains vanadium to a maximum of10.09%, no water, is the colloid of FeO-V2O3.③V-Ti oxide disseminated in the matrix ofrock by dissemination and scattered specks. Its long axis direction is consistent with thebedding, which show that it is synchronous deposit mineral.
     At present, the dressing recovery of black rock series type vanadium ore is low, and thedressing cost is high, and dressing pollution is severe. This article on lower Cambrian blackrock series in the study of the occurrence and distribution of vanadium, contribute to theimprovement of mineral dressing technology, which have important practical significance forreducing the mine cost, improving dressing recovery and reducing the pollution.
     (4) The research area is located in the southern Qinling tectonic zone, is partitioned intofour subtectonic units by four nearly east-west north-dipping thrusts. The north is made up ofthree from north to south thrusting tectonic belts, which are Taiziping, Yaolinghe, Xianghe.The south is decollement structure zone in the north of Wudang massif, which is causing byWudang mount uplifting. Each tectonic zone has experienced multiple deformations. Studyingthe structure characteristics of each tectonic units, combining the characteristics of structuralevolution of Qinling orogenic zone, the research area has experienced five tectono-evolutionary stages. In Mesoproterozoic, the northern margin of Yangtze block riftedand erupted. In the early Jinning movement, Wudangshan Group folded. From early lateProterozoic era to early Paleozoic, passive continental margin in northern Yangtze block riftedagain. From late Hersynian to Indosinian, thrust nappe structure and extensional detachmentstructure are formed. In Yanshan period and Himalayan period, the research area extended,uplifted, fault depressed.
     (5) According to the research of stratigraphy, lithology, lithofacies and paleogeography,paleotectonic conditions, vanadium enrichment regularity and geochemical characteristics, weconclude that vanadium in the lower Cambrian black rock series of research area is derivedfrom submarine hydrothermal spring and volcanic activities, vanadium deposit belong toprimary sedimentary style, the genesis of vanadium deposit not only related to the backgroundof regional geological structure, submarine hydrothermal spring, volcanic activities,biological activity and organic degradation, but also related to sea-level fluctuation.
     In early Cambrian, which is expanding period of plate tectonics, research area waslocated in the passive continental margin of northern Yangtze block, developed rift. Thesubmarine hydrothermal spring and volcanic activities carried silicon, barite, vanadium goldand other metals to the seafloor. Extensive transgression made sea deepen in this period.Developed upwelling ocean current carried phosphorus, nutrients, etc into shelf area. Algaeand other plankton bloomed. Biological activity can enrich vanadium in seawater. Afterbiology died, during its body sinked, decomposition of organic matter consumed oxygen atthe bottom of water, so that the water at the bottom became anoxic state, which helped thevanadium-rich organic matter to store in the seabed. At the same time, because the biologicalactivity changed the water chemical environments, with the result that mud, silicon andvolcanic ash deposited in anoxic layers at the bottom, peserved with the organic matter, andformed vanadium deposit of black rock series type. It is concluded that the vanadium depositshould be of biological and hydrothermal sedimentary origin.
     (6) Integrating existing genetic evidence, combined with the lithofacies andpalaeogeography environment, this paper restores the formation of ore-bearing black rockseries of Shuigoukou Formation in three phases, namely, genetic model of vanadium depositsof black rock series in Southern Qinling. It has important reference significance for the study on genesis of vanadium deposit in Southern Qinling and even home and abroad.
     (7) Through the research on the genesis of black rock series type vanadium deposit, theauthor predicts that three stratigraphic divisions in the south of the Southern Qinling (theYunxi-Junxian, the Ankang-Pingli, the Gaotan-Bingfangjie) and the northern continentalmargin of Yangtze block to the south of Bashan arc fracture are the favorable target area toseeking black rock series type vanadium deposit.
     What is new?
     Firstly, the author new discoves two occurrence of vanadium: colloid of V-Fe, aggregatesof V-Ti oxide, and the former is the main. This provides direct evidence for vanadiumtransport and deposition, provides an important research data for the improvements forvanadium mineral dressing technology.
     Secondly, the author studies the orebody characteristics, regional tectonic background,lithology, lithofacies palaeogeographic, sedimentary environment, material sources, theenrichment regularity of vanadium, biological activity evidence and the geochemicalcharacteristics, puts forward that the vanadium deposit in the research area belongs tobiological-hydrothermal sedimentary origin, and sets up the genetic model of black rocksecies type vanadium deposit, which is reasonable to restore the formation of vanadiumdeposits.
引文
[1]范德廉,张焘,叶杰,等.中国的黑色岩系及其有关矿床[M].北京:科学出版社,2004:1-48
    [2]Горбачёв О В, Созинов Н А. Геохимическая Типизация Углероистъх Формции[M]. в:Литология,Геохимия иУсловия Формирования Углеродистых Отложений,1981:5-10
    [3]Созинов Н А, Горбачёв О В. Углеродистые Формации и их Эволюция в Истории Земли. В:Зволюция Осадочного Рудообраозовании в Истории Земли,1984:214-224
    [4]唐红松,徐文杰,谢世业,等.我国下寒武统黑色岩系的矿产类型[J].矿产与地质,2005,19(4):341-344
    [5]涂怀奎.陕西汉中地区早寒武世磷铀矿成矿特征与伴生元素的研究[J].化工矿产地质,2000,22(1):31-37
    [6]Vine J D, Tourtelot E B. Geochemical investigation of some black shales and associated rocks[J]. U. S.Geol. Surv. Bull.,1969,59:751-766
    [7]Vine J D, Tourtelot E B. Geochemistry of black shale deposits-A summary report [J]. Economic Geology,1970,65:253-272
    [8]张爱云,郭丽娜.中国南方早古生代黑色页岩建造地球化学特征与成矿意义[M].北京:地质出版社,1987:1-80
    [9]张爱云,伍大茂,郭丽娜,等.海相黑色页岩建造地球化学与成矿意义[M].北京:科学出版社,1987:1-240
    [10]Stribony B, Urban H. Classification of sedimentary rocks in black shale series based on their normativemineral Composition[J].28th IGC Abstracts,3:190-191
    [11]范德廉,叶杰,杨瑞英,等.扬子地台前寒武—寒武纪界线附近的地质事件与成矿作用[J].沉积学报,1987,5(3):81-96
    [12]叶杰,范德廉.黑色岩系型矿床的形成作用及其在我国的产出特征[J].矿物岩石地球化学通报,2000,19(2):95-102
    [13]刘金钟,范德廉.桂西北金牙矿床的物质来源探讨[J].矿床地质,1992,11(3):230-241
    [14]于炳松,裘愉卓,李娟.扬子地块西南部晚元古代一三叠纪沉积地球化学演化[J].沉积学报,1997,15(4):127-133
    [15]于炳松,乐昌硕.沉积岩物质成分所蕴含的地球深部信息[J].地学前缘,1998,5(3):105-112
    [16]于炳松,裘愉卓.扬子地块西南部新元代一三叠纪稀土元素地球化学与地壳演化[J].现代地质,1998,12(2):173-179
    [17]毛景文.与黑色页岩系有关的矿床研究的动向[J].矿床地质,2001,20(4):402-403
    [18]Blundell D J, Alderton D H M, Karnkowski P H, et al. A new genetic model for the coppermineralization of the Polish Kupfersiefer[A]. Piestrzynski A, et al. Mineral deposits at the beginningof the21th century[C]. Lisse/Abingdon/Exton/Tokyo: A. A. Balkema Publishers,2001:215-218
    [19]Michalik M, Sawlowicz Z. Multi-stage and long term origin of the Kupferschirfer copper deposits inPoland[A]. Piestrzynski A, et al. Mineral deposits at the beginning of the21th century[C]. Lisse/Abingdon/Exton/Tokyo: A. A. Balkema Publishers,2001:235-238
    [20]李胜荣,高振敏.华南下寒武统黑色岩系中的热水成因硅质岩[J].矿物学报,1996,16(4):416-422
    [21]李胜荣,高振敏.黔湘寒武系底部黑色页岩系贵金属元素来源示踪[J].中国科学(D辑),2000,30:169-174
    [22]Coveney R M Jr, Chen N S. Ni-Mo-PGE-Au-rich ores in Chinese black shales and speculations onpossible analogues in the United States[J]. Mineralium Deposita,1991,26:83-88
    [23]Horan M F, Morgan J W, Grauch R I, et al. Rhenium and osmium isotopes in black shales andNi-Mo-PGE-rich sulphide layers, Yukon Territory, Canada, and Hunan and Guizhou Provinces,China[J]. Geochimica Cosmochimica Acta,1994,58:257-265
    [24]Lott D A, Coveney R M Jr, Murowchich J B, et al. Sedimentary exhalative nichel-molybdenum ores inSouth China[J]. Econ. Geol.,1999,94:1051-1066
    [25]陈南生,杨秀珍.层控钼矿床地球化学[A].涂光炽,等.中国层控矿床地球化学[C].北京:科学出版社,1987,(2):42-70
    [26]陈先沛,高计元.层控重晶石矿床地球化学[A].涂光炽,等.中国层控矿床地球化学[C].北京:科学出版社,1987a,(2):157-196
    [27]陈先沛,高计元.广西中部泥盆系的多金属一重晶石矿床和热水沉积作用[J].沉积学报,1987b,(3):149-158
    [28]曾明果.黔东早寒武世重晶石矿床特征一沉积地球化学和成矿环境研究[J].岩相古地理通讯,1987,(2):44-47
    [29]韩发,哈钦森.大厂锡多金属矿床热液喷气沉积的证据一矿床地质、地球化学特征[J].矿床地质,1990,(4):309-322
    [30]龙洪波,龙家灿,钟永容,等.樟村一郑坊黑色岩系钒矿床中钡冰长石岩的发现:热水沉积成因的证据[J].科学通报,1994,(7):636-638
    [31]杨瑞东,朱立军,高慧,等.贵州遵义松林寒武系底部热液喷口及与喷口相关生物群特征[J].地质论评,2005,5l(5):481-493
    [32]杨兴莲,赵元龙.贵州遵义下寒武统牛踢塘组生物群中的海绵化石[J].贵州工业大学学报,2000,29(6):30-36
    [33]尹崇玉,高林志,邢裕盛.贵州瓮安陡山沱期矿化生物群的研究进展和意义[J].地球学报,2002,23(1):7-54
    [34]张应文,杭家华.贵州沉积型镍钼钒矿成矿地质特征及找矿方向[J].矿产与地质,2008,22(2):116-120
    [35]杨宗文.黔东“黑层”钒矿基本特征及成因初探——以贵州镇远县江古钒矿为例[J].贵州地质.2008,25(1):31-34
    [36]张乾,董振生,战新志.鄂西白果园黑色页岩型银钒矿床地球化学特征[J].矿物学报,1995,15(2):185-191
    [37]庄汉平,卢家烂,傅家谟,等.白果园黑色岩系型银(钒)矿床沉积古环境与银(钒)初始富集[J].地质论评,1997,43(4):373-380
    [38]杨振强,陈开旭,金光富,等.湖北兴山发现晚元古代灾变事件的证据一微球粒和碳同位素负异常[J].中国区域地质,1996,(1):83-87
    [39]叶少贞,孔凡兵.修武地区黑色岩系型钒矿地质特征及成因浅析[J].资源环境与工程,2006,20(5):501-504
    [40]杨家骐,余素玉,刘桂涛,等.东秦岭-大巴山寒武纪地层、岩相古地理及三叶虫动物群[M].武汉:中国地质大学出版社,1991:1-192
    [41]朱红周,侯俊富,王淑利.南秦岭千家坪钒矿床地质地球化学特征与钒的富集规律[J].中国地质,2010,37(5):1490-1500
    [42]朱红周,郑厚义,马云程.陕西省商南县千家坪钒矿普查地质报告[R].西安:西北有色地质勘查局地质勘察院研究分院,2001
    [43]张卫敏,胡近平.陕西山阳中村钒矿地质特征及富集规律[J].西北地质,2007,40(2):95-102朱红周,侯俊福,原连肖,等.南秦岭千家坪钒矿床钒赋存状态研究[J].地质与勘探,2010,46(4):643-648
    [44]侯俊富.南秦岭下寒武统黑色岩系中金一钒成矿特征及成矿规律[D].西安:西北大学,2008
    [45]张复新,王立社,侯俊富.秦岭造山带黑色岩系容矿的金属矿床类型与成矿系列[J].中国地质,2009,36(3):695-705
    [46]王立社,张复新,侯俊福,等.秦岭山阳水沟口组黑色岩系微量元素地球化学及其沉积成矿背景的指示意义[J].中国地质,2012,39(2):311-325
    [47]李赛赛.陕西省商南县湘河地区钒矿控矿地质条件研究[D].西安:长安大学,2008
    [48]李春昱,刘仰文,朱宝清等.秦岭及祁连的构造发展史[A].国际交流地质学学术论文集(一)[C].北京:地质出版社,1978:174-185
    [49]王鸿祯,徐成彦,周正国.东秦岭古海域两侧大陆边缘区的构造发展[J].地质学报,1982,56(3):270-279
    [50] Mattauer M., Mattr Ph., Malavieille J. et al. Tectonics of Qinling Belt: Build-up and evolution ofEastern Asia[J]. Nature,1985,317:496-500
    [51]许志琴,卢一伦,汤耀庆,等.东秦岭造山带的变形特征及构造演化[J].地质学报,1986,3:237-247
    [52]Hsu K J., Wang Q., Li J., et al. Tectonic of Qinling mountains, China[J]. Eclogae Geol. Helv.,1987,80:735-752
    [53] Zhang G W., Yu Z. P., Sun Y. et al. The major suture zone of the Qinling orogenic belt[J]. Journal ofSoutheast Asian Earth Science.1989,3(1-4):63-74
    [54]任纪舜,张正坤,牛宝贵,等.论秦岭造山带—中朝与扬子陆块的拼合过程[A].秦岭造山带学术讨论会论文选集[C].西安:西北大学出版社,1991:99-110
    [55]张国伟.秦岭造山带基本构造的再认识,亚洲的增生[M].北京:地震出版社,1993:95-99
    [56]张国伟,张宗清,董云鹏.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J].岩石学报,1995,11(2):101-114
    [57]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学技术出版社,2001: l-855
    [58]刘育燕,杨巍然,森永速男,等.华北、秦岭及扬子陆壳的若干古地磁研究结果[J].地球科学,1993,18(5):628-642
    [59]陕西省地质矿产勘查开发局第十三地质大队.1:10万商洛地区地质矿产图[R].西安:地矿部陕西地质矿产勘查开发局,1996
    [60]《中国地质图集》编委会.中国地质图集[M].北京:地质出版社,2002:1-348
    [61]陕西省地质矿产勘查开发局第十三地质队.1:50000区域地质调查报告(西照川幅)[R].西安:地矿部陕西地质矿产勘查开发局,1996
    [62]蔡学林,石绍清,吴德超,等.武当山推覆构造的形成与演化[M].成都:成都科技大学出版社,1995,1-220
    [63]西安地质学院区域地质调查队.1:50000区域地质调查报告(徐家店幅、白浪幅、南化塘幅、赵川幅、梁家湾幅)[R].西安:地矿部陕西地质矿产勘查开发局,1996
    [64]胡健民,郭力宇,宋子新,等.扬子地块北缘武当山岩群与耀岭河岩群不整合接触关系的地质意义[J].西安地质学院学报,1995,17(1):22-27
    [65]胡健民,马国良,高殿松,等.武当地块主要地质事件的年代学讨论与研究[J].中国区域地质,2000(3):318-324
    [66]胡健民,孟庆任,白武明,等.南秦岭构造带中—晚古生代伸展构造作用[J].地质通报,2002,21(8-9):471-477
    [67]胡健民,孟庆任,马国良,等.武当地块基性岩席群及其地质意义[J].地质论评,2002,48(4):353-360
    [68]胡健民,宋子新,郭力宇,等.湖北武当地块北缘伸展滑脱构造特征[J].中国区域地质,1999,18(1):39-45
    [69]胡健民,赵国春,马国良,等.秦岭造山带武当地区古生代伸展构造[J].地质科学,2004,39(3):305-319
    [70]胡健民,赵国春,孟庆任,等.武当地块基性侵入岩群的地质特征与构造意义[J].岩石学报,2003,19(4):601-611
    [71]陕西地质工程总公司.陕西省商南县烟城沟钒矿东段详查地质报告[R].西安:陕西地质矿产勘查开发局,2006
    [72]陕西天矿业有限公司.陕西省商南县穆家河钒矿详查地质报告[R].西安:陕西省国土资源厅,2010
    [73]Hekinian R, Hoffert M, Larque P, et al. Hydrothermal Fe and Si oxyhydroxide deposits from southpacific intraplate volcanoes and East Pacific Rise axial and off-axial regions[J]. Economic Geology,1993,88(08):2099-2121
    [74]Jewell P W. Paleoredox conditions and the origin of bedded barites along the late Devonian northAmerican Continental Margin[J]. The Journal of Geology,1994,102(2):151-164
    [75]Jewell P W, Stallard R F. Geochemistry and paleoceanographic setting of central Nevada beddedbarites[J]. The Journal of Geology,1991,99(2):151-170
    [76]Rona P A, Scott S D. A special issue on sea-floor hydrothermal mineralization: New perspectives,Preface[J]. Economic Geology,1993,88(08):1935-1976
    [77]Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[M]. Oxford:BlackwellScientific Publications,1985:1-312
    [78]王立社.陕西秦岭黑色岩系及其典型矿床地质地球化学与成矿规律研究[D].西安:西北大学,2009
    [79]Aitchison J C and Flood P G. Geochemical constraints on the depositional setting of Palaeozoic chertsfrom the New England orogen, NSW, eastern Australia[J]. Marine Geology,1990,94:79-95
    [80]Rangin C, Steinberg M, Bonnot-Courtois C. Geochemistry of the Mesozoic bedded cherts of CentralBaja California (Vizcaino-Cedros-San Benito): Implications for paleogeographic reconstruction of anold oceanic basin[J]. Earth and Planetary Science Letters,1981,54:313-322
    [81]Murray R W, Buchholtz T, Jones D L, et al. Rare earth elements as indicators of different marinedepositional environments in chert and shale[J]. Geology,1990,18:268-271
    [82]Murray R W. Chemical criteria to identify the depositional environment of chert: General principlesand applications[J]. Sedimentary Geology,1994,90(3/4):213-232
    [83]Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from thenorthern Pacific:Their geological significance as indication of activity[J]. Sedimentary Geology,1986,47(1/2):125-148
    [84]Dill H. Metallogenesis of early Palaeozoic graptolite shales from the Graefenthal Horst (northernBavaria-Federal Republic of Germany)[J]. Economic Geo1ogy,1986,81(4):889-903
    [85]Krejci-Graf K. Geochemical diagnosis of facies[J]. Proceedings of the Yorkshire Geo1ogical Society,1964,34:469-521
    [86]Lewan M D, Maynard J B. Factors controlling enrichment of vanadium and nickel in the bitumen oforganic sedimentary rocks[J]. Geochimica et Cosmochimica Acta,1982,46(12):2547-2560
    [87]Wignall P B. Black Shales[M]. Oxford: Clarendon Press,1994:1-46
    [88]Bostrom K. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits[A].Rona P A, Bostrom K, Laubier L. et al. Hydrothermal processes at seafloor spreading centers[C]. NewYork: Plenum Press,1983:473-483
    [89]Choi J.h., Hariya Y., Geochemistry and depositinal environment of Mn oxide deposits in the TokoroBelt, Northeastern Hokkaido, Japan[J]. Economic Geology,1992,87:1265-1274
    [90]王中刚,于学元,赵振华,等,稀土元素地球化学[M].科学出版社,1989:90-93
    [91]Klinkhammer G, Elderfield H, Hudson A. Rare earth elements in seawater near hydrothermal vents[J].Nature,1983,305:185-188
    [92]丁振举,刘丛强,姚书振,等.海底热液系统高温流体的稀土元素组成及其控制因素[J].地球科学进展,2000,15(3):307-312
    [93]高怀忠.关于热水沉积物稀土配分模式的讨论[J].地质科技情报,1999,18(3):40-42
    [94]Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-AtlanticRidge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio ofProterozoic seawater[J]. Chemical Geology,1999,155(1/2):77-90
    [95]Bau M, M ller P, Dulski P. Yttrium and lanthanides in eastern Mediterranean seawater and theirfractionation during redox-cycling[J]. Marine Chemistry,1997,56(1/2):123-131
    [96]Allegre C J, Minster J F. Quantitative models of trace elements behavior in magmatic processes[J].Earth and Planetary Science Letters,1978,38(1):1-25
    [97]李有禹.湖南大庸慈利一带下寒武统黑色页岩中海底喷流沉积硅岩的地质特征[J].岩石学报,1997,13(1):121-126
    [98]刘岫峰.沉积岩实验室研究方法[M].北京:地质出版社,1991:1-299
    [99]吴惠玲,魏昶,樊刚,等.高碳石煤中钒的赋存状态与优先选煤[J].昆明理工大学学报(理工版),2008,33(6):17-21
    [100]林海玲,范必威,庾化龙,等.石煤中影响钒转浸率的主要因素研究[J].成都理工学院学报,1999,26(3):317-320
    [101]刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984:1-548
    [102]孙智永.浙江石煤钒赋存状态研究[J].矿物岩石地球化学通报,1997,16(增刊):99-100
    [103]吕惠进,王建.浙西寒武系底部黑色岩系含矿性和有用组分的赋存状态[J].矿床地质,2005,24(5):567-574
    [104]卢家烂,庄汉平,傅家谟,等.湖北兴山白果园黑色页岩型银钒矿床中银钒赋存状态研究[J].地球化学,1999,28(3):222-230
    [105]王璞,潘兆橹,翁玲宝,等.系统矿物学(上册)[M].北京:地质出版社,1982:588-589
    [106]龙洪波.樟村-郑坊黑色岩系钒矿床地质地球化学研究[D].贵阳:中国科学院地球化学研究所,2000
    [107]邵世才,汪东波.古生—中生代秦岭造山带发展演化与金属成矿作用[J].有色金属矿产与勘查,1999,8(5):257-263
    [108]姚书振,丁振举,周宗桂,等.秦岭造山带金属成矿系统[J].地球科学-中国地质大学学报,2002,27(5):599-604
    [109]叶连俊,陈其英,赵东旭,等.中国磷块岩[M].北京:科学出版社,1989:1-339
    [110]张本仁,陈德兴.陕西柞水—山阳成矿带区域地球化学[M].武汉:中国地质大学出版社,1989:1-221
    [111]张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造[J].中国科学(B辑),1995,25(9):994-1003
    [112]张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征[J].中国科学(D),1996,26(3):193-200
    [113]任涛.陕西山阳夏家店金(钒)矿床地质特征及找矿前景分析[J].西北金属矿产地质,2001,(26-27):82-85
    [114]张国伟,董云鹏,姚安平.造山带与造山作用及其研究的新起点[J].西北地质,2001,34(1):1-9
    [115]周鼎武,张成立,韩松,等.东秦岭早古生代两条不同构造—岩浆杂岩带的形成构造环境[J].岩石学报,1995,11(2):115-126
    [116]徐强,翟刚毅,杨志华,楼雄英.东秦岭南带沉积盆地性质和演化[J].矿物岩石,2001,21(3):27-33
    [117]姚书振,周宗桂,吕新彪,等.秦岭成矿特征和找矿方向[J].西北地质,2006,39(2):156-178
    [118]于在平,崔海蜂.造山运动与秦岭造山[J].西北大学学报:自然科学版,2003,33(1):65-69
    [119]翟裕生.论成矿系统[J].地学前缘,1996,6(1):13-27
    [120]朱华平,叶磊,甘宝新,等.山柞镇旬地区盆地体制与金属成矿关系[J].西北地质,2003,36(1):52-58
    [121]胡健民,郭力宇,宋子新,等.扬子地块北缘滑脱系统结构单位的组成与特征[J].西安地质学院学报,1993,15(S1):61-66
    [122]胡健民.南秦岭构造带武当地块构造演化[D].北京:中国地质大学,1998
    [123]崔智林,梅志超,孟庆仁,等.南秦岭寒武—奥陶纪碳酸岩台地演化[J].沉积学报,1997,15(1):161-167
    [124]张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化[J].陕西地质,1997,15(2):1-14
    [125]张国伟,梅志超,李桃红.秦岭造山带的南部古被动过大陆边缘[A].张国伟.秦岭造山带的形成及其演化[C].西安:西北大学出版社,1987:86-98
    [126]贾振远,杨家骠,李志明,等.中国古大陆及其边缘早古生代层序地层及海平面变化的基本特征[J].地球科学,1997,22(5):544-55l
    [127]蒲心纯,周浩达,王熙林,等.中国寒武纪岩相古地理与成矿作用[M].北京:地质出版社,1993:2-21
    [128]陈志明,陈其英.扬子地台早寒武世梅树村早期的古地理及其磷块岩展布特征[J].地质科学,1987,22(3):246-257
    [129]冯增昭,彭勇民,金振奎,等.中国早寒武世岩相古地理[J].古地理学报,2002,4(1):1-14
    [130]田望学,潘龙克,江林生.早寒武世早期“鄂中古岛”异议[J].湖北地矿,2001,15(4):7-11
    [131]张位华,姜立君,高慧,等.贵州寒武系底部黑色硅质岩成因及沉积环境探讨[J].矿物岩石地球化学通报,2003,22(2):174-178
    [132]朱笑青,王中刚.冲绳海槽热水区沉积物的地球化学特征[A].中国科学院地球化学研究所矿床地球化学开放研究实验室编.矿床地球化学研究[M].北京:地震出版社,1994:108-112
    [133]Lijima A, Hein J R, Siever R, et al. Developments in sedimentology,36: Siliceous deposits in thePacific Region[M]. Amsterdam: Elsevier Science Publishers,1983:193-210
    [134]倪世凯,杨德丽,杨振强,等.东秦岭东段南带古生代地层及沉积相[M].武汉:中国地质大学出版社,1994:21-69
    [135]冯彩霞,刘家军.硅质岩的研究现状及其成矿意义[J].世界地质,2001,20(2):119-123
    [136]江永宏,李胜荣.湘、黔地区前寒武一寒武纪过渡时期硅质岩生成环境研究[J].地学前缘,2005,12(4):622-629
    [137]吴朝东,储著银.黑色页岩微量元素形态分析及地质意义[J].矿物岩石地球化学通报,2001,20(1):14-20
    [138]李晋僧,曹宣铎,杨家禄,等.秦岭显生宙古海盆沉积和演化史[M].北京:地质出版社,1994:166-199
    [139]杨家骐.寒武纪[A].殷鸿福.中国古生物地理学[C].武汉:中国地质大学出版社,1988:65-89
    [140]刘志礼,朱浩然.蓝藻的起源及其意义[J].生物学通报,1982,02:34-35
    [141]Thunell, R.C., Williams, D.F., Belyea, P.R.. Anoxic events in the Mediterranean Sea in relation to theevolution of late Neogene climates[J]. Marine Geology,1984,59(1-4):105-134
    [142]李光辉,黄永卫,吴润堂,等.鸡西柳毛石墨矿碳质来源及铀、钒的富集机制[J].世界地质,2008,27(1):19-22
    [143]雷加锦,李任伟,曹杰.上扬子区早寒武世黑色页岩磷结核特征及生化沉淀机制[J].地质科学,2000,35(3):277-287
    [144]Hallam A.沉积相解释与地层记录[M].张志娴,沈德麒译.北京:地质出版社,1991:83-110
    [145]王敏,孙晓明,马名扬.黔西新华大型磷矿磷块岩稀土元素地球化学及其成因意义[J].矿床地质,2004,24(3):484-493
    [146]巴图林,东野长峥译.海底磷块岩[M].北京:地质出版社,1985:142-147
    [147]陈其英.磷块岩形成过程中的生物作用[J].地质科学,1995,30(1):153-157
    [148]吴胜华,刘家军,张鼐,柳振江.南秦岭钡成矿带重晶石与毒重石成矿特征[J].现代地质,2010,24(2):237-244
    [149]胡永嘉.华南震旦、寒武系海相沉积成因重晶石的硫同位素组成及其在地质学上的意义[J].湖南地质,1986,5(1):51-56
    [150]王忠诚,储雪蕾.早寒武世重晶石与毒重石的锶同位素比值[J].科学通报,1993,38(16):1491-1492
    [151]宣之强.我国重晶石矿床成因及成矿远景综述[J].化工矿产地质,1999,21(1):25-30
    [152]Marchev P, Downes H, Thirlwall M F, et a1.Small-scale variations of87Sr/86Sr isotopecomposition of barite in the Madjarovo low-sulphidation epithermal system, SE Bulgaria:implicationsfor sources of Sr,fluid fluxes and pathways of the ore-forming fluids[J]. Mincralium Deposita,2002,37(6/7):669—677
    [153]Whitford D J, Korsch M J, Solomon M. Strontium isotope studies of barites: implications for theorigin of base metal mineralization in Tasmania[J]. Economic Geology,1992,87(3):953-959
    [154]林长谦,刘兴义,何洪涛,温礼琴,宁红辉.湖北武当地区上震旦~下寒武统黑色岩系含矿性分析[J].资源环境与工程.2006,20(1):1-5
    [155]涂怀奎.陕、甘、川邻区不同类型重晶石成矿条件与成因机理的讨论[J].化工矿产地质,1998,20(4):295-300
    [156]李任伟,卢家烂,张淑坤,等.震旦纪和早寒武世黑色页岩有机碳同位素组成[J].中国地质科学(D辑),1999,29(4):351-357
    [157]万晓樵,刘文灿,李国彪,李艳.白垩纪黑色页岩与海水含氧量变化—以西藏南部为例[J].中国地质,2003,30(1):36-47
    [158]李朝阳,季宏兵.陆相热水沉积矿床的特征[A].中国科学院地球化学研究所矿床地球化学开放研究实验室编.矿床地球化学研究[C].北京:地震出版社,1994:102-104
    [159]温汉捷,裘愉卓,姚林波,等.中国若干下寒武统高硒地层的有机地球化学特征及生物标志物研究[J].地球化学,2000,9(1):28-35
    [160]刘家军,柳振江,杨艳,等.南秦岭大型钡成矿带有机地球化学特征与生物标示物研究[J].矿物岩石,2007,27(3):39-48
    [161]刘家军,杨丹,柳振江,等.南秦岭大型钡成矿带中硫钒铜矿的特征及成因意义[J].矿物岩石,2008,28(6):44-50
    [162]赵鑫,李国祥.陕西镇巴早寒武世海绵骨针化石[J].微体古生物学报.2006,23(3):281-290
    [163]Bowen H J M. Trace elements in biochemistry[M]. New York: Academic Press,1966:1-241
    [164]范德廉,刘铁兵,叶杰.黑色岩系成矿过程中的生物地球化学作用[J].岩石学报,1991,(2):65-72
    [165]高振敏,罗泰义,李胜荣.黑色岩系中贵金属富集层的成因:来自固定铵的佐证[J].地质地球化学,1997, l:18-23
    [166]刘英俊,曹励明,王鹤年,等.元素地球化学导论[M].北京:地质出版社,1985:1-281

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700