海底天然气水合物资源勘探流程和评价方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物是一种富含甲烷气体的类冰状非常规潜在的清洁能源。1体积的天然气水合物可以释放出164体积的甲烷气体,它广泛分布于大陆、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架、海洋和一些内陆湖的深水环境以及永久冻土层中。正由于天然气水合物的储藏量之大,分布之广,燃烧释放的热量之高,而且在完全燃烧后形成水和二氧化碳,没有较大的环境污染,而受到了各国科学家和政府的重视。天然气水合物已被誉为21世纪煤、石油天然气的替代能源。因而对天然气水合物的勘探开发和资源评价已经成为当今地质科学领域中的一个热门话题之一。
     对海底天然气水合物资源的勘探可以追溯到20世纪70年代末,DSDP第66和67航次在墨西哥湾实施深海钻探,从海底获得91.24米的天然气水合物岩芯,首次验证了海底天然气水合物矿藏的存在。到目前为止,世界上已有超过220处海域直接或间接发现了天然气水合物的存在。但是对海底天然气水合物资源的勘探和资源评价方法仍不完善,也缺乏系统性。
     虽然国外在海底天然气水合物矿床勘探方面要比中国早,且研究更加深入,但是海底天然气水合物资源的勘查流程在国外尚未有系统的阐述,在国内也没有成文的标准。为了解决在海底天然气水合物勘查方面缺乏有体系的勘查规范做指导,本文通过总结固体矿产资源、煤、油气资源、海底多金属结核以及铀矿勘查经验,寻找它们与海底天然气水合物资源勘探的相似之处,同时借鉴国外在海底天然气水合物矿床勘探方面的实例,提出海底天然气水合物资源勘探阶段划分和资源评价方法。论文的完成对我国的海底天然气水合物的勘查具有积极的指导意义,同时也将为我国在海底天然气水合物的勘查和资源评价的行业标准的建立提供依据和参考。
     通过系统研究,本文将海底天然气水合物资源勘探流程划分为四个相互独立又相互衔接的阶段:远景调查阶段、普查阶段、详查阶段和勘探阶段。
     远景调查阶段:是天然气水合物勘探的初级阶段,以前期初略的大范围的温压调查和资料收集为主,其主要任务是初步确定调查区天然气水合物的稳定带分布和气源岩条件,并为普查阶段圈定远景区块。该阶段评价工作的主要内容是对天然气的赋存状态、水合物的赋存参数和远景区的评价,其主要目的是要了解该海域天然气水合物形成的可能性有多大;
     普查阶段:以布置海上地震为主,其主要任务是研究水合物矿体的几何形态、预测和分析侧向连续性及隔层的分布等。该阶段评价工作的主要内容是以天然气水合物的成因、天然气水合物的勘查技术方法及天然气水合物形成的有利区带的评价,其主要目的是了解该地区天然气水合物的成因以及发现天然气水合物存在的证据;
     详查阶段:要求应用高分辨率的三维地震、海底钻探和保压取芯等研究,为天然气水合物的勘探阶段确定成矿的有利层位,其主要任务是确定水合物富矿体的产出状态、厚度变化、形态及规模大小以及矿体与围岩的关系,以及有利区带中主要富集层段和次要含矿地段。该阶段资源评价的主要内容是物化探资料和天然气水合物矿区的评价,其主要目的是在正确合理的提取物化探资料的前提下了解该海域天然气水合物的成矿规律,并提供一个置信度较高的资源量数据;
     勘探阶段:是海底天然气水合物勘探的最高阶段,要求通过井震结合做矿体范围内的精细研究,其主要任务是确定水合物矿体的产出状态、有效厚度、形态及规模大小,为以后的生产开发提供依据。该阶段的评价工作的主要内容是对开采技术条件和水合物矿体的评价,其主要目的是掌握海底天然气水合物空间分布,并提交水合物的探明储量和控制储量,同时为今后的生产开发提供相应的资料和信息。
     水合物的资源量计算方法主要有体积法和蒙特卡洛概率统计法。蒙特卡洛概率统计法主要适用于天然气水合物勘探早期阶段。本文在讨论海底天然气水合物资源量计算的过程中,基本沿用了体积法的思想,重点是讨论在不同勘探阶段,天然气水合物面积、有效厚度、沉积物的孔隙度和水合物饱和度等参数的确定。随勘探程度的增加,获取参数的精度也随之提高,计算后的结果可信度也不断增加。由最初的推测法到间接法再到最后的直接法。推测法主要是通过类比的手段来获取水合物资源量计算的参数,最终的计算结果可以提供一个水合物的推测资源量或潜在资源量;间接法主要是通过地球物理和地球化学的方法来获取天然气水合物存在的信息,并从这些信息中提取相关的有用信息反演含水合物沉积层的厚度、面积、孔隙度和饱和度参数,计算的结果能够提供一个预测的储量;直接法是指通过钻探取样(保压取芯)和原位测量,客观的反应了天然气水合物在海底的分布状态,计算后可以得到一个控制储量或者探明储量。
     但是对海底天然气水合物资源勘探阶段划分和资源评价仍然存在很多问题,比如工程布置、工程间距及密度等,而且在资源评价方面也不够完善。这些问题都需要在今后的生产实践中验证,才能不断的完善。
Natural gas-hydrate is an unconventional ice-like potential clean energy, rich in methane. One unit volume of natural gas hydrate can produce 164 units volume of methane gas. Natural gas hydrates are widely distributed in the slope area of the main land and islands, the active and passive uplifted area of continental margin, polar continental shelf, oceans, as well as deepwater in inland lakes and permafrost. Gas hydrates have gradually been attached importance to by scientists and governments all over the world, for its giant reserves, wide distribution, high energy density, and non-pollution properties. Gas hydrates were considered to be the alternative energy for petroleum and coal. So the exploration and resource evaluation for gas hydrate have become one of the hottest topics in geosciences.
     The exploration of submarine gas hydrate can be traced back to the late 1970's. Drilling was carried out on Gulf of Mexico by DSDP leg 66 and leg 67, and received gas hydrate core 91.24 m from seafloor, which approved the existence of submarine gas hydrate deposit for the first time. So far, more than 220 sea areas in the world have found the existence of gas hydrate directly or indirectly. But exploration and resource evaluation for submarine gas hydrate are still imperfect and nonsystematic.
     Although the explorations in foreign countries on submarine gas are much earlier than those in China, and their researches are much further, there is still no systemic report about the exploration process in those countries, nor formal criterion in China. In order to afford a systematic exploration criterion during submarine gas hydrate exploration, this paper puts forward the "Phasing method" and resource evaluation methods through summarizing the exploration experiences of conventional mineral resources, which include solid mineral resource, coal, petroleum, seabed nodules and uranium ore, and through integrating the submarine gas hydrate deposits exploration in foreign countries. So this paper will have a positive significance in submarine gas hydrate survey, and will provide some foundation and reference for the government to set up a standard in this field.
     Through systemic research, this paper divides gas hydrate exploration into four stages, which are respectively independent but also relevant: prospective survey stage, reconnaissance stage, comprehensive survey stage and exploration stage.
     Prospective survey stage is a primary stage which focuses on previous large-scale survey of temperature and pressure condition, as well as documents collecting of this region. The main target is to determine the distribution of gas hydrate and gas source rocks condition preliminarily, and to delineate the prospective areas for reconnaissance stage. The main objects of evaluation in this stage include natural gas existing status, gas hydrate existing parameters and prospective areas. The main purpose of this stage is to understand the present probability of gas hydrate in this area.
     Reconnaissance stage is the 2nd stage. In this stage, offshore seism is the most important project, and the main purpose of which is researching the geometric shape and spatial variation about gas hydrate deposit. The main evaluation contents in this stage include the genesis of gas hydrate, the method of exploring technology of hydrate and the favorable areas of hydrate. The main purpose of this stage is to understand the genesis of gas hydrate and to find the evidence which can indicate the presence of hydrate.
     Comprehensive survey stage is the extensive period of Reconnaissance stage. By using high resolution 3-d seismic, deep sea drilling, PCS and so on, we can find out the favorable horizons for the exploration stage. In this period the major targets are to confirm the occurrence of bonanza, change of thickness, shape, size and the relationship between hydrate and surrounding rock, and to classify the favorable horizons. The main objects of evaluation in this stage include geophysical and geochemical data as well as gas hydrate district. The main purpose of this stage is to understand the accumulation regularity on the basis of obtaining information from geophysical and geochemical data reasonably, and to figure out a much more credible reserve data.
     Exploration stage is the highest stage which researches the hydrate body elaborately by integrating information from well and seism. The main target in the stage is to define the occurrence, effective thickness, the shapes and scale of the hydrate body and the results can serve for the following development periods. The main objects of evaluation in this stage include the mining technical conditions and hydrate body, with the purpose of mastering the spatial distribution beneath seabed. Proven reserves and controlled reserves should be counted out, and related date and information are provided for the following development periods.
     The main methods of hydrate resource calculation include volume method and Monte-carol probability statistical method. Monte-carol probability statistical method is suitable for early stage of gas hydrate survey. In this paper we follow volume method basically. The emphasis is to confirm the parameters in different survey stages, such as area, effective thickness, porosity of sediment, saturation of hydrate and so on. As the exploration degree increases, the parameters of gas hydrate occurrence become much more accurate, and the results are much more creditable. In the beginning we use conjecture method, then go to indirect method and direct method at last. In conjecture method, the parameters are got from analog, and the results can provide an inferred reserve or potential reserve. In indirect method the information which was extracted from geophysical and geochemical data inversed the necessary parameters like area, thickness, porosity and saturation, and the results can provide a divinable reserve. In direct method the occurrence of gas hydrate beneath seafloor is presented objectively by deep water drilling (PCS) and measure in suit, and the results can provide a controlled reserve or proved reserve.
     There are still many problems in exploration stage division and resource evaluation, such as projects arrangement, projects density and so on, what's more, resource evaluation for submarine gas hydrate is still imperfect. All these problems will be improved in the following practical works.
引文
[1]Muller H R,Stackelberg M V.Zur struktur der gashydrate.Naturwiss,1952,39:20-21;
    [2]Stackelberg M V,Muller H R.Zur struktur der gashydrate.Naturwiss,1951,38:456;
    [3]Ripmeester J A,Tse J S,Ratcliffe C I,et al.A new clathrate hydrate structure.Nature,1987,325:135-136;
    [4]Bob A H,Harry H R.Gas hydrate in the Gulf of Mexico:What and where is the seismic target?The Leading Edge.2006:566-571;
    [5]曾繁彩,吴琳,何拥军.国外天然气水合物调查研究综述.海洋地质动态,2003,19(11):19-23;
    [6]Makogon Y F,Holditch S A,Makogon T Y.Natural gas-hydrates-A potential energy source for the 21~st Century.Journal of Petroleum Science and Engineering,2007,56(1-3):14-31;
    [7]蒋国盛,王达,汤凤林等.天然气水合物的勘探与开发.第一版.武汉:中国地质大学出版社,2002;
    [8]Dillon W P,Coleman D F,Booth J S,et al.Influence of gas hydrates on the sedimentary structures of the Atlantic continental margin.Geological Society of America,1993,25(6):180-181;
    [9]Kraemer L M,Owen R M,Dickens G R.Lithology of the upper gas hydrate zone,blake outer ridge,a link between diatoms,porosity,and gas hydrate.In:Paull C K,Matsumoto R,Wallace P J,et al.Proc ODP Init Repts 164[C].College Station TX:Ocean Drilling Program,2000:229-236.
    [10]Lee J H,Back Y S,Ryu B J,et al.A seismic survey to detect natural gas hydrate in the Easl Sea of Korea.Marine Geophysical Researches.2005,26:51-59;
    [11]陆敬安,闫桂京.天然气水合物测井与评价技术进展.海洋地质动态.2007,23(6):31-36;
    [12]Dobrynin V M,Korotajev Y P,Plyuschev D V.Gas hydrates-a possible energy resource.In:R F Meyer,J C Olson,et al.Long-Term Energy Resources.Pitman,Boston,1981:727-729;
    [13]Sloan E D.Clathrate Hydrate of Natural Gases[M].New York:Marcell Deckker,Inc,1990:641;
    [14]Kvenvolden K A.Potential effects of gas hydrate on human welfare.Proc.Natl.Acad.Sci.,USA96,1999:3420-3426;
    [15]Soloviev V A.Global estimation of gas content in submarine gas hydrate accumulations.ⅥInternational Conference on Gas in Marine Sediments.St.Petersburg,Russia,2000:123-125;
    [16]Gornitz Ⅴ,Fung Ⅰ.Potential distibution of methane hydrates in the world's oceans.Biogeochemical Cycles,1994,8(3):335-347;
    [17]Wood W T,Stoffa P L,Shipley T H.Quantitative detection of methane hydrate through high-resolution seismic velocity analysis[J].Journal of Geophysical Research,1994,99:9681-9695;
    [18]Miles P R.Potential distribution of methane hydrate beneath the European continental margines[J].Geography Research Letter,1995,22(23):3179-3182;
    [19]Edwards R N.On the resource evaluation of marine gas hydrate deposits using seafloor compliance methods[J].Journal of Geophysical Research,1997,131:751-766;
    [20]Rao Y H.C-program for the calculation of gas hydrate stability zone thickness[J].Computers & Geosciences,1999,25(6):705-707;
    [21]赵鹏人,池顺都,李志德等.矿产勘查理论与方法.第一版.武汉:中国地质大学出版社,2001;
    [22]中华人民共和国地质矿产行业标准,煤、泥炭地质勘查规范(DZ/T 0215-2002),中华人名共和国国土资源部,2002年12月17日发布,2003年03月01日实施:
    [23]庞雄奇.油气勘探.第一版.北京:石油工业出版社,2006年;
    [24]张伯普,朱克超,葛同明.多金属结核资源勘查阶段划分及相应勘探方法.第一版.北京:地质出版社,1998年:
    [25]国家技术监督局.海洋调查规范海洋地质地球物理调查.见:中华人民共和国国家标准,1992,GB/T 13909-92:
    [26]吕万军,[大然气水合物形成条件与成藏过程-理论、实验与模拟].中国科学院广州地球化学研究所博土后出站报告,2004;
    [27]Matsumoto R,Uchida T,Waseda A,et al.Occurrence,structure,and composition of natural gas hydrate recovered from the Blake Ridge,Northwest Atlantic.In:Paull C K,Matsumoto R,Wallace P J,et al.Proceedings of the Ocean Drilling Program,Scientific Results,Vol.164,2000:13-28;
    [28]Satoh M.Estimation of amount of methane and resources of natural gas hydrates in the world and around Japan[J].Jour.Geol.Soc.Japan,1996,102(11):959-971;
    [29]Trofimuk A A,Cherskiy N V,Tsarev V P.The role of continental.glaciation and hydrate formation on petroleum occurrences[A].In:Meyer R F et al.Future Supply of Nature-made Petroleum and Gas[C].Pergamon,New York,1977:919-926;
    [30]梁金强,吴能友,杨木壮,等.天然气水合物资源量估算方法及应用.地质通报.2006,25(6):1205-1210
    [31]Collett T S.Natural gas hydrate as a potential energy resource[A].In:Max M D et al.Natural Gas Hydrate in Ocean and Permafrost Environments.Dordrecht:Kluwer Acad.,2000,123-136;
    [32]Milkov A V,Dichens G R,Claypool G E,et al.Co-existence of gas hydrate,free gas,and brine within the regional gas hydrate stability zone at Hydrate Ridge(Oregon margin):evidence from prolonged degassing of a pressurized core.Earth and Planetary Science Letters,2004,222:829-843;
    [33]Majorowicz J A,Osadetz K.Basic geological and geophysical controls bearing on gas hydrate distribution and volume in Canada[J].American Association of Petroleum Geologists Bulletin,2001,85:1211-1230;
    [34]Spence G D,Minshull T A,Fink C.Seismic studies of methane gas hydrate,offshore Vancouver Island.In:Proceedings of the Ocean Drilling Program,Scientific Results,volume 146, Part 1,1995: 163-174;
    
    [35]Expedition 311 Scientists. Integrated Ocean Drilling Program Expedition 311 Preliminary Report, Cascadia Margin Gas Hydrates
    
    [36]Holbrook W S. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling[J]. Science, 1996,273: 1840-1842;
    
    [37]Dickers G R. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir[J]. Nature, 1997,385: 426-428;
    
    [38]Collett T S, Ladd J. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data. Ocean Drilling Program,Scientific Result,the Ocean Drilling Program, 164,2000:179-191;
    
    [39]Brown C E. Role of environmental geology in US Department of Energy's advanced research and development programs to promote energy security in the United States. Environmental Geology (Berlin), 1995, 26(4): 220-231;
    
    [40]Jianchun Dai, Haibin Xu, Fred Snyder, et al. Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deepwater Gulf of Mexico[J], Leading Edge, 2004,23(1): 60-70;
    
    [41]Colwell F, Mstsumoto R, Reed D. A review of the gas hydrates, geology, and biology of the Nankai Trough. Chemical Geology. 2004, 205: 391-404;
    
    [42]Milkov A V, Sassen R. Economic geology of offshore gas hydrate accumulations and provinces. Mar Petrol Geol, 2002,19: 1-11;
    
    [43]Kvenvolden K A. A Review of the Geochemistry of Methane in Natural Gas Hydrate. Organic Geochemistry, 1995 23: 997-1008;
    
    [44]Lorenson T D, Microscopic Character of Marine Sediment Containing Disseminated Gas Hydrate, Examples from the Blake Ridge and the Middle America Trench. In: Annals New York Academy of Sciences, Volume 912 Gas hydrates: Challenges for the future. 2000: 189-194;
    
    [45]Handa Y P. A Calorimetric Study of Naturally Occurring Gas Hydrate [J]. Ind. Eng. Chem. Res., 1988,27(5): 872-874;
    
    [46]Collins M J, Handa Y P; Ratcliffe C I, NMR studies of guest species in clathrate hydrates: chemical shifts and cage occupancy ratios. Chemical Congress of North America, Absrtacts of Papers, vol. 3, Geoc 19,1988;
    
    [47]Mciver R D. Hydrate of natural gas-important agent in geological processes [J]. Geological society of American Abstract with Programs, 1977, 9: 1089-1090;
    
    [48]Kvenvolden K A., Gas hydrate geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187;
    
    [49]Hyndman R, Spence G A.Seismic study of methane hydrate marine bottom simulating reflectors. Journal of Geophysical Research , 1992, 97(BS): 6683-6698;
    
    [50]Bangs N, Sawyer D S, Colovchenko X Free gas at the base of gas hydrate zone in the vicinity of the Chile triple junction[J].Geology, 1993,21: 905-908;
    [51]Katzman, Holbrook W S, Paull C K. Combined vertical-incidence and wide-angle seismic study of a gas hydrate zone, Black Ridge[J]. Journal of Geophysical Research, 1994, 99: 17975-17995;
    
    [52]Andreassen K, Hart P E, MacKay M. Amplitude versus offset modeling of the bottom simulating reflection associatedw ith sub2marine gas hydrate[J]. Marine Geology, 1997, 137: 25240;
    
    [53]Wyllie M R J, Gardner G H F, Gergory A R. Some phenomena pertinent to velocity logging. Journal of Petroleum Technology. 1961, 13(7): 629-636;
    
    [54]Pearson C F, Halleck P M, Mcgulre P L, et al. Natural gas hydrate: a review of in situ properties[J]. J Phys Chem, 1983, 87: 4180-4185;
    
    [55] 金庆焕等.天然气水合物资源概况.第一版.北京:科学出版社,2006年;
    
    [56]Max M D. Oceanic methane hydrate: A "frontier "gas resource[J]. Petroleum J. Geology, 1996, 19(1): 41-56;
    
    [57]Spence G D, Minshull T A. Seismic studies of methane gas hydrate, offshore Vancouver Island. American Geophysical Union. 1993,74(43): 583;
    
    [58]Miller J J. An analysis of a seismic reflection from the base of a gas hydrate zone, offshore Peru [J]. AAP G Bulletin, 1991,75(5): 910-924;
    
    [59]Lee M W. Seismic character of gas hydrates on the southesatern U. S Continental Margin[J ]. Marine Geophysical Researches, 1994,16:163-184;
    
    [60]MacKay M E, Jarrard R D, Westbrook G K, Hyndman R D, and Shipboard Scientific Party of Ocean Drilling Program Leg 146, Technical notes and additions to: origin of bottom-simulating reflectors: geophysical evidence from the Cascadia accretionary prism. In: Carson B, Westbrook G K, Musgrave R J, et al. Proc. ODP, Sci. Results, 146(Ptl): College Station, TX (Ocean Drilling Program), 1995:461-463;
    
    [61]Lee M W, Hutchinson D R, Dillon W P, et al. Method of estimating the amount of in situ gas hydrates in deep marine sediments. Mar. Pet. Geol., 1993, 10: 493-506;
    
    [62]Kastner M, Kvenvolden K A, Whiticar M J, et al. Relation between pore fluid chemistry and gas hydrates associated with bottom-simulating reflectors at the Cascadia Margin, Sites 889 and 892. In: Carson B, Westbrook G K, Musgrave R J, et al. Proc. ODP, Sci, Results, 146 (Pt. 1): College Station, TX (Ocean Drilling Program). 1995: 175-187;
    
    [63]Yuan T, Hyndman R D, Spence G D, et al. Seismic velocity increase and deep-sea gas hydrate concentration above a bottom-simulating reflector on the northern Cascadia continental slope. J. Geophys. Res., 1996,101: 13655-13671;
    
    [64]Lee M W, Gas hydrates amount estimated from acoustic logs at the Blake Ridge, sites 994,995, and 997.In: Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Vol 164, 2000: 193-198;
    
    [65]Collett T S, Wendlandt R F. Formation wvaluation of gas hydrate-bearing marine sediments on the Blake Ridge with downhole geochemical log measurements. In: Paull C K, Matsumoto R Wallace P J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 164. 2000: 199-215;
    
    [66]Wyllie M R J, Gregory A R, Gardner G H F. An experimental investigation of factors affecting elastic wave velocities in porous media[J].Geophysics, 1958,23(3): 459-493;
    [67]Scholl D W, Hart P E. Velocity of amplitude structures on seismic-reflection profiles; possible massive gas-hydrate deposits and underlying gas accumulations in the Bering Sea basin. In: Howell D G, Wiese K, Ranelli M, et al. U. S. Geological Survey Professional Paper, Report: P1570,1993:331-351;
    
    [68]Korenaga J, Singh S C. Natural gas hydrates on the southeast U S margin: constraints from full waveform and travel time inversions of wideangle seismic data. Journal of Geophysical Research. 1997,102: 345-365;
    
    [69] Lee M W. Methods of generating synthetic acoustic logs from resistivity logs for gas- hydrate- bearing sediments. U. S. Geological Survey Bulletin, Report: B 2170,1999;
    [70]Ecker C, Lumley D E. AVO analysis of methane hydrate seismic data. Eos, Transactions, American Geophysical Union. 1993, 74(43):370;
    
    [71]Ecker C, Lumley D E. Seismic AVO analysis of methane hydrate structures. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies. 1994, 64: 1100-1103;
    [72]Ecker C, Dvorkin J, Nur A. Sediments with gas hydrates; internal structure from seismic AVO. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies. 1996, 66: 1767-1770;
    
    [73]Ecker C. [Seismic characterization of methane hydrate structures]. Stanford University, Stanford, CA, United States (USA). 1998;
    
    [74]Ecker C, Dvorkin J, Nur A. Sediments with gas hydrates:internal structure from seismic AVO. Geophysics. 1998, 63(5): 1659-1669;
    
    [75]Ecker C. Seismic characterization of methane hydrate structures[Ph. D. thesis]. CA: Standford University, 2001;
    
    [76]Ecker C, Lumley D, Tura A, et al. Estimating separate steam thickness and temperature maps from 4D seismic data; an example from San Joaquin Valley, California. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies. 1999,69: 2032-2034;
    [77]Xia G Y, Sen M K, Stoffa P L. Mapping of elastic properties of gas hydrates in the Carolina Trongh by waveform inversion. Geophysics. 2000, 65(3): 735-744;
    
    [78]Hyndman R D, Yuan T, Moran K. The concentration of deep sea gas hydrates from downhole electrical resistivity logs and laboratory data. Earth and Planetary Science Letters. 1999, 172(1-2): 167-177;
    
    [79]Collett T S, Lee M W. Well-log characterization of marine and terrestrial gas hydrate accumulations. Annual Meeting Expanded Abstracts-American Association of Petroleum Geologists. 1999: A25
    [80]Ecker C, Dvorkin J, Nur A M. Estimating the amount of gas hydrate and free gas from marine seismic data.Geophysics.2000,65(2):565-573;
    [81]MacDonald G J,The future of methane as an energy resource.Annual Review of Energy.1990,15(3):53-83;
    [82]Makogon Y E,Hydrate of hydrocarbons.Oklahoma:Pennwell Books,1997:103;
    [83]Matsumoto R,Borowski W S.Gas hydrate estimates from newly determined oxygen isotopic gractionation(α_GH-IW)and δ ~18O anomalies of the interstitial waters:leg 164,Blake Ridge.In:Paull C K,Matsumoto R,Wallace P J,et al.Proceedings of the Ocean Drilling Program,Scientific Results,Vol.164,2000:59-66;
    [84]Matsumoto R,Paull C,Wallace P.Gas Hydrate on the Blake Ridge and Carolina Rise[R].Ocean Drilling Program,Leg164 Preliminary Report,1996;
    [85]UBP佐藤干夫等UBP;李日辉.大然气水合物甲烷量及资源量的计算.海洋地质动态,1999,15(9):5-19;
    [86]Culberson L,McKetta J.The solubility of methane in water at pressures to 10000 psi.Petrol.Trans.1951,192:223-226;
    [87]Expedition 311 Scientists.Methods.In:Riedel M,Collett T S,Malone M J,et al.Proceedings of the Integrated Ocean Drilling Program,Volume 311.2006,102;
    [88]Xu W.Phase balance and dynamic equilibrium during formation and dissociation of methane gas hydrate.Fourth Int.Conf.Gas Hydrates.2002.19023:199-200;
    [89]Xu W.Modeling dynamic marine gas hydrate systems.Am.Mineral.2004,89:1271-1279
    [90]Serra,O.,Fundamentals of Well-Log Interpretation 1984.(Vol.1):The Acquisition of Logging.Data:Dev.Pet.Sci.,15A:Amsterdam(Elsevier).
    [91]Archie G E.The electrical resistivity log as an aid in determining some reservoir characteristics.J Pet.Technol.1942,5:1-8;
    [92]Paull C K,Buelow W J,Ussler W,et al.Increased contin-ental margin slumping frequency during sea level lowstands above gas hydrate-bearing sediments[J].Geology,1996,24:143-146;
    [93]Collett T S..Well log evaluation of gas hydrate saturations.Trans.Soc.Prof.Well Log Analysts,Thirty-Ninth Ann.Logging Symp.,1998,Pap.MM;
    [94]Wood A B,A Textbook of Sound(2nd ed.).New York(MacMillan):1941;
    [95]Timur A.Velocity of compressional waves in porous media at permafrost temperature.Geophysics,1968,33:584-595;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700