典型天气大气辐射传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气辐射传输特性是指电磁波在大气中传输时,大气中的粒子对电磁波吸收和散射作用,作用效果包括两方面:一方面,大气对目标自身辐射能量以及目标对太阳辐射的反射能量经过大气传输路径到达成像系统镜头前的能量衰减;另一方面,大气对太阳辐射能量单次散射和多次散射、对目标场景周围环境热辐射的多次散射、大气中粒子的自身热辐射等致使辐射传输到成像系统镜头前能量增强。辐射在大气中的能量衰减通常用大气透过率来表示,能量增强通常用大气程辐射来表示。本文以实际工程应用为背景,实时计算大气的红外传输衰减和路径辐射,从而得到去除大气干扰的、以及目标真实的辐亮度,主要开展了以下研究:
     1)通过分析大气参数、吸收截面、散射截面、辐射传输距离、频率等计算因子和大气分子消光光学厚度之间的关系,根据大气中气体的成分,研究了水汽和氮气分子连续光谱吸收光学厚度,以及二氧化碳、甲烷、臭氧、一氧化碳和一氧化二氮等分子的带光谱吸收光学厚度的计算方法。最后进行了大气分子散射光学厚度的计算。
     2)建立典型天气(霾、雾、沙尘以及雨等)条件下气溶胶粒子复折射率数据库,依据气溶胶粒子谱分布实验数据,完善了典型天气气溶胶粒子谱分布模型,结合气溶胶粒子复折射率数据库与大气能见度等大气参数,利用米散射理论计算典型天气条件下气溶胶消光光学厚度,根据光学厚度和大气透过率的关系,完善了在3~5μm波段,针对典型天气,大气传输路径中大气透过率的计算模型。通过对典型天气大气透过率仿真计算的结果表明,本文所建立的模型可以正确有效地进行霾、雾、沙尘以及雨等典型天气条件下大气透过率的计算。
     3)提出了基于高斯光束空间传输小光斑可调原理实现远距离大气透过率和大气程辐射组合验证的测量方法。通过分别测量激光器出口处的光斑和探测器接收光斑的能量分布,分析了二者光斑的能量差值,计算得到该波长经过传输距离的大气透过率和大气程辐射综合影响的结果。从远距离测量大气透过率和大气程辐射组合验证的角度出发,通过改变失调的卡塞格伦天线的主副镜之间的位置,使传输光斑半径在一定的传输距离、尺寸范围内可调,并且从实验仿真上验证了其可行性。该系统可以解决远距离测量大气透过率和大气程辐射的组合验模问题。本文以He-Ne激光器为例,设计了卡塞格伦天线的主副镜参数,使光斑半径大小在40~60mm、传输距离在10 km内范围可调。
     4)提出了典型天气大气程辐射的计算模型。以大气辐射传输理论为基础,针对光谱波长3-5微米,综合分析了光学厚度的计算方法以及倾斜路径与太阳参数对大气程辐射模型的影响,对霾、雾、沙尘和雨天建立了大气程辐射计算模型。大气程辐射模型包括大气对太阳辐射的单次和多次散射,大气对地表热辐射传输的多次散射以及传输路径的大气自身热辐射四个子模型。仿真结果验证了大气程辐射模型的正确性。
     5)本文针对典型天气对大气辐射传输特性模型进行了仿真验证,将本文大气辐射传输特性模型的参数输入和PcModWin软件参数输入保持一致,将二者的输出结果进行比较,计算出不同天气不同波数的大气透过率和大气程辐射的仿真误差,得到典型天气条件下的大气透过率的最大相对误差为3.846%,大气程辐射的最大相对误差为5.011%,能够满足一般红外探测工程上对误差的要求。
When electromagnetic waves transmit in atmosphere, the characteristics of atmospheric radiation transmission refer to two aspects based on the effects of absorption and scattering between the particles in the atmosphere and electromagnetic wave:on one hand, the energy of target radiations and solar radiations reflected in front of the camera imaging system is attenuated through atmospheric transmission. On the other hand, the energy in front of the camera imaging system is enhanced because of the energy of solar radiations of single scattering and multiple scattering, the target thermal radiation of multiple scattering and the particles thermal radiation in the atmosphere. Atmospheric transmittance is usually expressed energy attenuation of the radiation in the atmosphere. Atmospheric path radiation is usually expressed energy enhanced. Based on engineering applications in practice and to calculate infrared atmospheric transmission and path radiance real-time without atmospheric interference, the following contents are the major research works of this thesis:
     1. The relationship between the calculation factors and atmospheric molecular extinction optical depth is analyzed, the calculation factors including atmospheric parameters, absorption cross sections, scattering cross sections, radiative transmission distance, frequency etc. Absorption optical depths of continuous spectral of water vapor and nitrogen and absorption optical depths of band spectral of carbon dioxide, methane, ozone, carbon monoxide and an oxide of nitrogen are calculated according to the composition of gases in the atmosphere. Finally scattering optical depth of atmospheric molecular is calculated.
     2. The database for complex refractive index of aerosol particle under the conditions of typical weather (haze, fog, dust and rain, etc.) was set up. The model of aerosol size distribution was improved according to the experimental data of aerosol size distribution, and atmospheric parameterswere considered such as atmospheric visibility.the optical depths of aerosol extinction in the typical weather are calculated by Mie scattering theory.According to the relationship between optical depth and atmospheric transmittance, the calculation model of the atmospheric transmittance is improved from3 to 5 micron spectral wavelength. The simulation verifies the model correct by simulation calculation of atmospheric transmittance in typical weather.
     3. The small spot adjustable system for Gaussian beam in space is presented based on atmospheric transmittance measurement principle and long-distance. The radius of beam can be adjustable within a certain size at a certain distance by changing the position of primary and secondary mirror of the offset Cassegrain antenna. The feasibility verifies through experimental simulation, which can solve the measurements problem of long-distance atmospheric transmittance. The parameters of primary and secondary mirror for Cassegrain antenna of He-Ne laser are designed to achieve the radius of beam adjustable between40 mm and 60mm within 10 km.
     4. Considering the calculation method of optical depths, the slant path and solar parameters, the calculation model of atmospheric path radiation for the typical weather is proposed based on 3 to 5 micron spectral wavelength of the background and the theory of atmospheric radiation. The model of atmospheric path radiation includes the model of single scattering and multiple scattering of solar radiation, the model of multiple scattering of surface thermal radiation the particles thermal radiation in the atmosphere. The simulation verifies the model correct by simulation calculation of atmospheric path radiation in typical weather.
     5. The models of atmospheric radiation transmission for the typical weather in this paper are verified by simulation. The simulation results are analyzed under the premise for keeping the inputting parameters the same for the model of this paper and PcModWin software. The errors are calculated compared to the standard value which is calculated by PcModWin software. Based on error simulation calculations of different wave number and different weather,the maximum relative error of the atmospheric transmittance is 3.846%, and The maximum relative error of the atmospheric path radiation is 5.011% for the typical weather.that proves the validity of the model.
引文
[1]孙贤明.大气中离散随机介质的波传播和散射特性研究:(博士学位论文).西安:西安电子科技大学,2007.
    [2]杨贵军,柳钦火,刘强,等.中红外大气辐射传输解析模型及遥感成像模拟.光谱学与光谱分析,2009,29(3):629-633.
    [3]薛妍.大气光谱辐射传输与散射特性及应用:(硕士学位论文).西安:西安电子科技大学,2001.
    [4]刘长盛.大气辐射学.南京:南京大学出版社,1990年.
    [5]卢鹏.大气辐射传输模式的比较及其应用:(硕士学位论文).北京:中国气象科学研究院,2009.
    [6]邱荣.大气中的辐射传输及应用:(硕士学位论文).成都:电子科技大学,2006.
    [7]张小达,张鹏,李小龙,等.《标准大气与参考大气模型应用指南》介绍.航天标准化,2010,3:8-11.
    [8]李臣明,朱国权,韩子鹏,等.不同标准大气对远程弹箭射程影响的计算分析.弹箭与制导学报,2006,2:32-34.
    [9]E.J.麦卡特尼著.潘乃先,毛节泰,等译.大气光学,科学出版社,1988.
    [10]List R J, Smithsonian Meteorological Tables Smithsonian Institution 1966. Washington D C. Campen C F, Handbook of Geophysics Macmillian. New York.1960.
    [11]McClatchey, R.A.. Optical Properties of the atmosphere, Rept, AFCRL-71-0279,1971. Washington D.C..
    [12]Elterman, L. Vertical attenuation model with eight surface meteorological range 2 to 13 km Rept, AFCRL-70-0200,1971. Washington D.C..
    [13]石广玉.大气辐射学.科学出版社,2007年.
    [14]汪自军.基于卫星临边辐射的大气痕量气体含量反演研究:(博士学位论文).长春:吉林大学,2011.
    [15]J Joiner, PK Bhartia. Accurate determination of total ozone using SBUV continuous spectral scan measurements. J Geophys Res,1997,1O2(D11):12957-12969.
    [16]石广玉.计算9.6微米臭氧带冷却率的一种新方法.中国科学B辑,1984,3:378-385.
    [17]宋正方编著.应用大气光学基础,北京:气象出版社,1990.
    [18]金群锋.大气折射率影响因素的研究:(硕士学位论文).杭州:浙江大学,2006.
    [19]F E Jones. Simplified equation for calculating the refractivity of air. Appl. Opt.1980,19: 4129-4130.
    [20]F E Jones. The Refractivity of Air. J. Res. NBS,1981,86:27-32.
    [21]H Matsumoto. The Refractive Index of Moist Air in the 3μm Region.Metrologia,1982,18:49-52.
    [22]K P Birch. M J Downs. The Results of a Comparison between Calculated and Measured values of the Refractive Index of Air. Sci. Instrum.,1988,21:694-695.
    [23]K P Birch, M J Downs. An Updated Edlen Equation for the Refractive Index of Air. Metrologia,1993,30:155-162.
    [24]K P Birch, M J Downs. Correetion to the Updated Edlen Equation for the Refractive Index of Air. Metrologia,1994,31:315-316.
    [25]P E Ciddor, R J Hill. Refractive Index of Air 2:Group Index. Applied Optics,1999,38(9): 1663-1667.
    [26]P E Ciddor. Refractive Index of Air:New Equations for the Visible and Near Inrfared. Applied Optics,1996,35(9):1566-1573.
    [27]J M Rueger. Refractive Indices of Light:Infrared and Radio Waves in the Atmosphere. Report of the Ad-Hoc Working Party of the IAG Special Commission SC3 on Fundamental Constnats. 1993-1999,22nd General Assembly of IUGG, Birmingham, UK,1999,18-30.
    [28]J.M. Rueger. Refractive Indices of Light:Infrared and Radio Waves in the Atmosphere. Report of the Ad-Hoc Working Party of the IAG Special Commission SC3 on Fundamental Parmaeters(SCFC), 1999-2003,23rd General Assembly of IUGG,Sapporo, Japan,2003,11-30.
    [29]J M Rueger. Refractive Indices of Light:Infrared and Radio Waves in the Atmosphere. Unisurv Report S-68, School of Surveying and Spatial Information Systems, University of New South Wales, Sydney, Australian,2002,1311-1321.
    [30]张华,石广玉.一种快速高效的逐线积分法大气吸收计算方法.大气科学,2010,24(1):111-121.
    [31]陈秀红,魏合理,徐青山.红外大气透过率的计算模式.红外与激光工程,2011,40(5):811-816.
    [32]Mlawer E J, Taubman S J, Brown P D etal. Radiative Transferfor Inhomogeneous Atmospheres: A Validated Correlated-k Model for the Longwave. Journal of Geophysical Research,1997,102(D14): 16663-16682.
    [33]周建波,魏合理,陈秀红.用K分布法计算大气吸收的进展.大气与环境光学学报,2008,3(2):92-98.
    [34]张华.非均匀路径相关K分布方法研究:(博士学位论文)北京:中国科学院大气研究所,1999.
    [35]Ambartzumian V. The effect of the absorption lines on the radiative equilibrium of the outer layers of the stars. Publication Obs. Astron. Univ. Leningrad,1936,6:7-18.
    [36]Hongmei Zhang, Michael F Modest. Multi-group full-spectrum k-distribution database for water vapor mixtures in radiative transfer calculations. International Journal of Heat and Mass Transfer,2003, 46(19):3593-3603.
    [37]Lacis A A, Hansen J E. A parameterization for the absorption of solar radiation in the earth's atmosphere. J.Atmos.Sci.,1974,31:118-133.
    [38]Shi Guangyu. An accurate calculation and representation of the infrared transmission function of the atmospheric constituents. Japan:Doctorial Dissertation of Tohoku University,1981.
    [39]Sun Zhian, Rikus L. ESFT-improved application of exponential sum fitting transmissions to inhomogeneous atmosphere. J.Geophy. Res.,1999,104:6291-6304.
    [40]Cusack S, Edwards J M, Crowther J M. Investigating K-distribution methods for parameterizing gaseous absorption in the Hadley centre climate model. J. Geophy. Res.,1999,104:2051-2057.
    [41]Pinnock Simon, Shine Keith P. The Effects of Changes in HITRAN and Uncertainties in the Spectroscopy on Infrared Irradiance Calculations 1998. Journal of Atmospheric Sciences,55(11): 1950-1964.
    [42]Xuan Feng, Feng Sheng Zhao, Wen Hua Gao. Effect of the improvement of the HITRAN database on the radiative transfer calculation. Journal of Quantitative Spectroscopy and Radiative Transfer 2007 108(2):308-318.
    [43]Kratz David P. The sensitivity of radiative transfer calculations to the changes in the HITRAN database from 1982 to 2004 2008. Journal of Quantitative Spectroscopy Radiative Transfer,109(6): 1060-1080.
    [44]徐丽华.大气程辐射遥感影像与大气环境质量研究:(博士学位论文).上海:华东师范大学,2005.
    [45]廖国楠著.郭彩丽,等译.《大气辐射传输导论》,气象出版社,2004.
    [46]J E Selby, R A McClatchey. Atmospheric Transmittance from 0.25 to 28.5 Microns:Computer Code LOWTRAN3, Report,1975.
    [47]C Frohlich, Glenn E Shaw. New determination of Rayleigh scattering in the terrestrial atmosphere, Applied Optics,19(11):1773-1775.
    [48]吴雨航.大气程辐射对遥感图像像元值贡献估计:(硕士学位论文).长春:东北师范大学,2006.
    [49]Barry A, Bodhaine. On Rayleigh Optical Depth Calculations. Journal of atmospheric and oceanic technology.16(6):1854-1860.
    [50]张玉洁,陈艳,张武,等MODIS资料遥感黄土高原半干旱地区气溶胶光学厚度.兰州大学学报(自然科学版)2011,47(1):43-51.
    [51]盛裴轩,毛节泰,等.大气物理学,北京大学出版社,2003.
    [52]李学彬,宫纯文,李超,等.雾滴谱分布和雾对红外的衰减.激光与红外,2009,39(7):742-745.
    [53]董文.中国北黄海海区大气气溶胶光学特性观测研究:(硕士学位论文).青岛:中国海洋大学2009.
    [54]Vermote E, Tame D, Derz J.L. etal.6S User Guide Version 2. France:Laboratoire d'Optiqu Atmospheri, 1997,110-160.
    [55]N Jacquinet-Husson, N A Scott, A Chedin etal. The Geisa Spectroscopic Database:Current And Future Archive Forearth And Planetary Atmosphere Studies. Journal of Quantitative Spectroscopy and Radiative Transfer.2008,109(6):1043-1059.
    [56]尹宏.大气辐射学基础.气象出版社,1993.
    [57]H C Van der Hulst. Light Scattering by Small Particles, New York,1957.
    [58]D Toublanc. Henyey-Greenstein and Mie Phase Functions in Monte Carlo radiative transfer computa-tions. Appl. Opt.1996,35(18):3270-3274.
    [59]S K Sharma, A K Roy. New Approximate Phase Functions:Test for Nonspherical Particles. J. Quant. Spectrosc. Radiat. Transfer.2000,64:327-337.
    [60]徐希孺,王平荣.用蒙特-卡罗方法计算大气点扩散函数.遥感学报,1999,3(4):268-277.
    [61]Unsworth M H, J L Monteith. Aerosol and solar radiation in Britain. J. Roy Meteor. Soc.,1972,98,778-797.
    [62]邱金桓,杨景梅,潘继东.从全波段太阳直射辐射确定大气气溶胶光学厚度Ⅱ:实验研究.大气科学,1995,(05):586-596.
    [63]Gueymard C. Turbidity determination from broadband irradiance measurements:A detailed multicoefficient approaeh. J.Appl.Meteor,1998,37,414-435.
    [64]罗云峰,吕达仁,李维亮,等.近30年来中国地区大气气溶胶光学厚度的变化特征.科学通报,2000,45(5):549-554.
    [65]周秀骥,李维亮,罗云峰.中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟.大气科学,1998,(04):34-43.
    [66]李成才,毛节泰,AlexisKai,利用Modis遥感大气气溶胶及气溶胶产品的应用.北京大学学报(自然科学版),2003,(51):108-117.
    [67]Torres O, Bhartia P K, Herman J R etal. A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements. J.Atlnos.Sci.,2002,59(1): 398-413.
    [68]徐祥德,周秀骥,施晓晖.城市群落大气污染源影响的空间结构及尺度特征.中国科学D辑,2005,(51):1-19.
    [69]郝增周,潘德炉,白雁SeawiFS遥感资料分析中国海域气溶胶光学厚度的季节变化和分布特征.海洋学研究,2007,25(1):50-57.
    [70]段靖,毛节泰.长江三角洲大气气溶胶光学厚度分布和变化趋势研究.环境科学学报,2007,27(4):537-543.
    [71]李栋,陈文忠MODIS遥感中国东部海域气溶胶光学厚度与现场测量数据的对比分析.光学学报)2010,30(10):2828-2836.
    [72]刘桂青,李成才.长江三角洲地区大气气溶胶光学厚度研究.环境保护,2003,8:50-54.
    [73]李学彬,胡顺星,徐青山,等.大气气溶胶消光特性和折射率的测量.强激光与粒子束,2007,19(2):207-210.
    [74]黎洁,毛节泰.光学遥感大气气溶胶特性.气象学报,1989,47(4):450-456.
    [75]Schuster A. Radiation through a foggy atmosphere. Astrophysics J.,1905,21(1):1-22.
    [76]Schwarzchild K. Equilibrium of the Sun's atmosphere. Nachr.Ges.Wiss.Gottingen Math.-Phys Klasse,1906,1:41-53.
    [77]张峰.漫射光化通量的二流四流混合近似算法求解:(硕士学位论文).北京:中国气象科学研究院,2010.
    [78]Maheu B, Letoulouzan J N, Gouesbet G. Four-flux models to solve the scattering transfer equation in terms of Loren-Mie parameters, Applied Optics,1984,23(19):3353-3362.
    [79]Fu Q,K N Liou, M C Cribb etal. Multiple Scattering Parameterization in Thermal Infrared Radiative Transfer.J.Atmos.Sci.,1997,54:2799-2812.
    [80]Qiang Fu, K N Liou. On the correlated k-distribution Method for Radiative Transfer in Nonhomogenecous Atmospheres. Journal of the Atmospheric Sciences,1992,49:2139-2156.
    [81]邱金恒.一个改进的8-Eddington近似.科学通报,1998,8:1712-1716.
    [82]D M Tim, B Steffen Beirle, etal. The Monte Carlo Atmospheric Radiative Transfer Model Mcartim: Introduction And Validation Of Jacobians And 3d Features. Journal of Quantitative Spectroscopy and Radiative Transfer,2011,112(6):1119-1137.
    [83]谈和平,夏新林,刘林华,阮立明.红外辐射特性与传输的数值计算——计算热辐射学.哈尔滨:哈尔滨工业大学出版社,2006.
    [84]S Liang, H Fang, M Chen. Atmospheric Correction of Landsat Etm+ Land Surface Imagery I.Methods. Geoscience And Remote Sensing IEEE Transactions on.2001,39(11):2490-2498.
    [85]D B Mechem,Y L Kogan, M.Ovtchinnikov etal. Large-Eddy Simulation of Pbl Stratocumulus: Comparison of Multi-Dimensional And Ipa Longwave Radiative Forcing.12Th ARM Science Team Meeting Proceedings, St.Petersburg, Florida,2002.
    [86]宋晓宇,王纪华,刘良云,等.垂直角度光学遥感影像邻近像元影响纠正.光电子激光,2008,19(4):537-541.
    [87]Kneizys F X, Shettle E P, Abreu L W etal. User guide to LOWT RAN 7. Air Force Geophysics Laboratory, Hanscom, AFB, MA 01731,1988.
    [88]孟凡斌,郑丽.基于LOWTRAN7的红外大气透过率计算方法.光电技术应用,2009,24(3):29-33.
    [89]李放,吴北婴.辐射传输LOWTRAN程序气溶胶模式分析评述.遥感技术与应用.1996,11(1):62-66.
    [90]汪宏七,赵高祥.离散坐标法和LOWTRAN7辐射传输计算的比较.红外与毫米波学报,1995,14(2):105-111.
    [91]沈同圣,熊璋,王学伟等.用LOWTRAN7计算红外导引头的接收能量.激光与红外,2000,30(6):349-351.
    [92]刘广达,江月松MODTRAN软件集成环境开发.应用光学,2007,28(3):317-320.
    [93]王丽美.大气水汽含量的遥感反演方法研究:(硕士学位论文).阜新:辽宁工程技术大学,2009.
    [94]江照意.典型目标场景的红外成像仿真研究:(博士学位论文).杭州:浙江大学,2007.
    [95]毛克彪,覃志豪.大气辐射传输模型及MODTRAN中透过率计算.测绘与空间地理信息,2004,30(6):1-3.
    [96]文军,王介民,何淑杰.辐射传输PCModWin程序及应用前景评述.遥感技术与应用,1997,12(4):46-52.
    [97]王迪,李承芳,熊飞.大气红外辐射传输的简便算法与MODTRAN的比较.光学技术,2006,32(12):446-450.
    [98]魏合理,陈秀红,饶瑞中.通用大气辐射传输CART介绍.大气与环境光学学报,2007,2(6):293-298.
    [99]陈秀红,魏合理,吕炜煜,等.CART软件计算的红外大气透过率和实测值比较.激光与红外,2009,39(4):403-406.
    [100]K N Liou. An Introduction to Atmospheric Radiation (Second Edition), Academic Press. New-York,2002.
    [101]Chandrasekhar S.. Radiative Transfer OxfordUnivPress, Oxford,1950.
    [102]Stamnes, K., TSay, W. Jayaweera. Numericallystable algorithm for diserete- ordinate method radiative transfer in multiple scattering and emitting layered media. Applied Optics,1988,27,2502-2509.
    [103]丁丽娟,程杞元.数值计算方法.北京理工大学出版社,2010.
    [104]Stokes G.G.. On the composition and resolution of streams of polarized light from different sourees. Trans. Cambridge Philos.Soe.,1852,9,399-423.
    [105]Vande Hulst H.C.. Multiple lights scattering:tables formulas and application. New York:Aeademic press,1980.
    [106]Hansen J.E., Hovenier J.W.. Interpretation of the Polarization of Venus. J. Aimos. Sci.,1974, 31:1137-1160.
    [107]Takano Y., Liou K.N. Solar radiative transfer in cirrus clouds Single scattering and optical properties of hexagonal ice crystals. J. Atmos. Sei.,1989a,46:3-19.
    [108]杨炳尉.标准大气参数的公式表示.宇航学报,1983,1:83-86.
    [109]National oceanic and atmospheric administration etal. U.S. Standard Atmosphere, The superintendent U.S. government printing office, New York,1976.
    [110]闫巨盛,王盘兴,段明铿.全球大气位势高度场气候变率的球函数分析.应用气象学报,2006,17(2):145-151.
    [111]张建奇,方小平著.红外物理,西安电子科技大学出版社,2004.
    [112]杨阳.起伏地形下重庆市水汽压的精细空间分布:(硕士学位论文).南京:南京气象学院,2004.
    [113]H Barrell, J E Sears. The Refraction and dispersion of air for the visible spectrum. Phil. Trans. Roy. Soe. A.1939:238.
    [114]吴北婴等编著.大气辐射传输实用算法.气象出版社,1999.
    [115]李翠娜.大气气体吸收的温度依赖关系研究:(硕士学位论文).南京:南京信息工程大学,2008.
    [116]Drayson S R. Rapid computation of the voigt profile. JQSRT,1976,16:611-614.
    [117]Kratz D P, Cess R.D. Infrared radiation models for atmospheric ozone. Journal of GeoPhys Res., 1988,93:7047-7054.
    [118]Ramanathan, Dickinson RE. The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system.. Journal of the Atmospheric Sciences,1979,36: 1084-1104.
    [119]Mlawer E J, Taubman S J, Brown P D etal. Radiative transfer for inhomogeneous atmospheres: RRTM a validated correlated-k model for the longwave. JGR,1997,102:16663-16682.
    [120]Jilin Gu, Wenhai Xu. A method research on atmosphere molecule extinction optical depth. MTIS2011 (IEEE), hangzhou,6:4764-4767.
    [121]J. E. Selby, R. A. McClatchey. Atmospheric Transmittance from 0.25 to 28.5 Microns:Computer Code LOWTRAN3, Report,1975.
    [122]Van de Hulst H C.. Light Scattering by Little Partieles, NewYork, Wiley,1957.
    [123]Bohren C F, Huffman D R. Absorption and scattering of light by small particles, NewYork, JohnWiley,1983.
    [124]Kerker M.. The scattering of light and other electromagnetic radiation, NewYork Academic Press,1969.
    [125]袁易君,任德明,胡孝勇.Mie理论递推公式计算散射相位函数.光散射学报,2006,17(14):366-371.
    [126]杨晔,张镇西,将大宗.Mie散射物理量的数值计算.应用光学,1997,18(4):17-19.
    [127]张振维,吴振森,沈广德,等.雾对10.6μm红外辐射的衰减特性研究.红外与毫米波学报,2002,21(2):95-98.
    [128]Junge C E. Atmospheric Chemistry Advances in Geophysics. New York:Academic Press,1958.
    [129]Deirmendjian D. Scattering and polarization properties of water clouds and hazes in visible and near infrared. Applied Optics,1964,3(2):187-196.
    [130]周秀骥,陶善昌,姚克亚.高等大气物理学:上册.气象出版社,1991.
    [131]Lin C, Baker M, CharlsonR J. Absorption coefficient of atmospheric aerosol:a method for measurement. Applied Optics,1973,12(6):1356-1363.
    [132]Wolff G T, Stroup C M, Stroup D P. The coefficient of haze as a measure of particulate elemental carbon. J Air Pollu Control Associ,1983,33(8):764-751.
    [133]HU Huan-ling, XU Jun, HUANG Zheng. The characteristics of the imaginary part of aerosol refractive index in some places of easterrt china. Chinese of Atmos Sci.1991,15(3):18-23.
    [134]Adams K M. Real-time in situ measurements of atmospheric optical absorption in the visible via photoacoustic spectroscopy:evaluation of the photoacoustic cells. Applied Optics,1988,27(19): 4052-4056.
    [135]李学彬,胡顺星,徐青山,等.大气气溶胶光学特性和折射率的测量.强激光与粒子束,2007,19(2):207-210.
    [136]仇盛柏,陈京华.我国典型地区不同积分时间降雨率的换算公式.电波科学学报,1997,12(1):112-117.
    [137]J S Marshall, W McK Palme. The distribution of raindrops with size. Shorter Contributions,1948: 165-166.
    [138]顾吉林,许文海.高斯光束空间传输小光斑可调系统的设计.红外与激光工程,2010,39(4):671-674.
    [139]顾吉林,毕春娜,尹淑慧.角量控制的激光天线的设计.光学技术,2006,32(S):148-154.
    [140]Liu Ding-Yu, Gu JiLin. The progress optical spot preservation technique. In:Proc. SPIE,2008 International Symposium on Photoelectronic Detection and Imaging 2007-Laser, Ultraviolet, and Terahertz Technology,2007, Beijing, V(6622):66220A.
    [141]GU Ji-lin, XU Wen-hai. Method Research on the Calculation Atmospheric Path Radiation in Foggy Weather. In:Proc. SPIE,2011 International Symposium on Photoelectronic Detection and Imaging 2011-Laser, Ultraviolet, and Terah-ertz Technology,2011, Beijing.8193 (2):81934M.
    [142]殷忠玲,刘秉安,冯关平.基于场论谈基尔霍夫定律新的表达式推导.现代电子技术,2011,34(19):190-192.
    [143]黄永义.普朗克黑体辐射定律的建立过程.广西物理,2011,32(3):32-36.
    [144]曹鼎汉.维恩位移定律及其应用.红外技术,1994,16(2):46-48.
    [145]Kratz D P, Cess R D. Infrared radiation models for atmospheric ozone. Journal of GeoPhys Res.1988,93:7047-7054.
    [146]Ramanathan, Dickinson RE. The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system.. Journal of the Atmospheric Sciences,1979,36: 1084-1104.
    [147]Mlawer E J, Taubman S J, Brown P D etal. Radiative transfer for inhomogeneous atmospheres: RRTM a validated correlated-k model for the longwave. JGR,1997,102:16663-16682.
    [148]Iqbal M. An Introduction to Solar Radiation. New York:1983.
    [149]邵慧,钱永莆,王谦谦.太阳辐射日变化对R15L9气候模拟效果的影响.高原气象,1998,17(2):158-168.
    [150]Blanco Muriel M.. Computing the Solar Vector. Solar Energy,2001,70(5):431-441.
    [151]Spencer J W, Fourier series representation of the position of the sun. Search,1971,2(5):172-173.
    [152]谈小生,葛成辉.太阳角的计算方法及其在遥感中的应用.国土资源遥感,1995,24(2):48-57.
    [153]布劳威尔,克来门斯著.刘林,丁华泽.天体力学方法.北京:科学出版社,1986.
    [154]曹华梁.全天候户外景象长波红外成像建模与合成:(博士学位论文).武汉:华中科技大学2005.
    [155]James A., Coakley Jr. Two-stream approximation in radiative transfer:Including the angle of the incident radiation. Journal of the atmospheric sciences, 1975,32:409-418.
    [156]杜竹峰,卢益民,杨宗凯,等.多次散射激光雷达接收信号的模拟.量子电子学报,1997,15(5):503-508.
    [157]孙毅义,董浩,毕朝辉,等.大气辐射传输模型的比较研究.强激光与粒子束,2004,16(2):149-153.
    [158]Itai Dror S, Atar Shlomit Grossman. Accurate method for prediction of atmospheric transmission according to weather. Optical Engineering,1996,35(9):2548-2555.
    [159]Alexandre A, Yegorov. Use of waveguide light scattering for precision measurements of the statistical parameters of irregularities of integrated optical waveguide materials. Optical Engineering,2005,44(1): 014601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700