胃远端腺癌miRNA表达谱及miR-204调控机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     微小RNAs (micro RNAs, miRNAs)是一类长约21~25 nt的非编码单链RNA分子,广泛存在于动植物中。它通过与靶mRNA完全或不完全的互补配对,产生基因沉默、发挥负性调控基因表达的作用。研究发现,特定的miRNA在细胞增殖、分化、凋亡、基因调控及肿瘤的发生中扮演重要的角色。其在胃癌的发生、发展中起癌基因或者抑癌基因的作用,为胃癌的诊断、治疗和预后评估提供了新的工具。但迄今为止,真正确认功能的miRNA还微乎其微,而且其发挥作用的具体机制也有待进一步的研究以明确。已有报道,与胃远端腺癌相比,贲门腺癌不仅位置独特,发病机制也存在不同。
     目的:
     筛选胃远端腺癌中差异表达的miRNAs,观察其与临床病理因素的关系,并就其在胃癌发生、发展中的作用及其机制进行初步的研究。
     方法:
     1.取我科实验室液氮冻存的胃远端腺癌及配对正常组织进行HE染色,确认病理情况;采用Agilent人miRNA寡核苷酸基因芯片,对3对胃远端(体、窦)腺癌组织及配对正常组织进行检测,筛选胃远端腺癌差异表达的miRNAs.
     2.选择特定miRNAs,在20例胃远端腺癌及配对正常组织中用实时荧光定量PCR进行验证,并观察其与患者年龄、肿瘤大小、分期、淋巴结转移等临床病理因素的关系;在得到确认差异表达的miRNAs后,同法观察其在17例贲门腺癌与胃远端腺癌之间表达是否存在差异、胃腺癌患者血清中的表达状况、人胃粘膜细胞系与人胃癌细胞系的表达状况。
     3.选择特定miRNA转染人胃癌细胞系,运用MTS法、流式细胞术观察其对胃癌细胞增殖、凋亡的影响。
     4.运用TargetScan等生物信息学方法,预测特定miRNA可能的靶基因。
     结果:
     1.通过对液氮冻存胃远端腺癌及配对正常组织的HE染色,确认了各自的病理状况;miRNAs芯片检测,发现共47条miRNAs在胃远端腺癌组织和配对正常组织中表达差异显著,上调的24条,下调的23条;在这些差异表达的miRNAs中,miR-204. miR-196b、miR-101、miR-107等27条首次报道于胃远端腺癌中;
     2.选择3个高表达miRNAs:miR-18b、miR-93、miR-196b和2个低表达的miRNAs:miR-204、miR-375进行实时荧光定量PCR分析,显示在胃远端腺癌患者样本中,miR-196b、miR-204、miR-375的表达情况与芯片一致,但其与患者年龄、癌栓有无、肿瘤直径、分化程度、分期、淋巴结转移情况均没有关联;同时,miR-204水平在胃腺癌患者血清中显著升高,ROC曲线分析显示,血清miR-204水平对胃腺癌患者和健康对照的鉴别效能为0.844(95%CI:0.579-0.973,p=0.002),敏感性和特异性分别为100%和75%,最佳cut-off值为0.0343(2-△ct,相对于U6 snRNA);在贲门腺癌和胃远端腺癌中,miR-375表达均下调,而胃远端腺癌下调的更明显,两者有显著性差异。
     3.转染成熟miR-204 mimics于人胃癌细胞系MGC-803、BGC-823.SGC-7901,发现不论是不同转染浓度,抑或是不同时间点,对肿瘤细胞的增殖、凋亡没有明显的影响。
     4.生物信息学显示BCL-2, NR3C1, SOCS6等可能为miR-204的靶基因。
     结论:
     1.胃远端腺癌有其独特的miRNA表达谱;
     2.验证的差异表达miRNAs与胃远端腺癌临床病理情况无明显相关;贲门腺癌与远端胃腺癌存在miRNA的表达差异;血清miR-204可能作为胃腺癌潜在的分子标志物。
     3.过表达miR-204对胃癌细胞系的增殖和凋亡没有明显的影响。
     4.预测BCL-2, NR3C1和SOCS6等可能为miR-204的靶基因。
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs of 21-25 nt that are found in diverse organisms including plants and animals and involve in negatively post-transcriptional gene expression regulation, mainly through partial base-pairing to the complementary sites within the 3'-UTR (3'-untranslated region,3'-UTR) of their target messenger RNAs (mRNAs). Through years of researches, it was found that miRNAs play a very important role in controlling various cellular processes such as proliferation, differentiation, apoptosis and tumorigenesis. Recently, some miRNAs were observed to function as oncogene or tumor suppressor in the initiation and development of gastric cancer, which provides a novel tool for the diagnosis, treatment and prognostic evaluation of gastric cancer. However, the biological functions of most miRNAs are still largely illusive until now and their functional mechanisms need to be further investigated. Additionally, Several stydies have reported that cardia adenocarcinoma has its specific pathogenesis.
     To screen and identify the differentially expressed miRNAs in distal (corpus and antrum) gastric adenocarcinoma and then evaluate the relationship of miRNAs' expression and clinicopathological factors in patients with distal gastric adenocarcinoma. Furthermore, the functional mechanism of corresponding miRNAs in the course of development and progression of gastric carcinoma were preliminarily investigated.
     1. Three distal gastric adenocarcinoma tissues and their paired normal tissues conserved in liquid nitrogen were selected from the tissues archives in the Labs of our department and their pathological features were confirmed through HE staining.
     2. Agilent human oligonucleotide miRNA microarray were used to profile miRNAs expression in aforementioned matched tissues. Furthermore, five miRNAs with differential expressions in distal gastric adenocarcinoma were selected and validated in an independent set of 20 distal gastric adenocarcinoma and paired normal tissues by using real-time RT-PCR. Then, the relationships between miRNAs expression levels and age, tumor size, staging, grading and lymphonode metastasis were investigated. Additionally, the differential expression levels between 17 cardia adenocarcinoma and distal gastric adenocarcinoma, the expression conditions in serum and several gastric tumor cell lines were observed by using the same method.
     3. MTS method and flow cytometry were employed to observe the proliferation and apoptosis of tumor cells that transfected with specific miRNA.
     4、To predict the possible targets of miRNA through bioinformatics.
     1. Pathological conditions are validated through HE staining for distal gastric adenocarcinoma and paired normal tissues. By using miRNAs microarray,47 miRNAs were found to be differentially expressed between tumor tissues and normal tissues, with 24 miRNAs up-regulated while 23 down-regulated respectively. Among these miRNAs, miR-204, miR-196b, miR-101, miR-107 and other 23 miRNAs are reported here in distal gastric adenocarcinoma for the first time.
     2. Differential expression levels of miR-196b, miR-204 and miR-375 found with miRNA microarray are validated by using real time RT-PCR. However, no relationship between the expression levels of these three miRNAs and clinopathological factors is observed. In addition, level of miR-204 is found to increased in serum of gastric adenocarcinoma comparing normal controls. It yields an AUC (the area under the ROC curve) of 0.844 (95% CI:0.579-0.973; p=0.002) with 100% sensitivity and 75% specificity in discriminating gastric adenocarcinoma from healthy controls, using the cut-off value 0.0343 (normalized). The expressions of miR-375 in distal gastric adenocarcinma and cardia adenocarcinoma are both decreased, while the latter is more significant.
     3. There are no significant impact on the proliferation and apoptosis of gastric tumor cell lines after transfecting mature miR-204 mimics, independent of the transfectional concentration or time points.
     4. Bioinformatics indicates that BCL-2, NR3C1 and SOCS6 may be the targets of miR-204.
     1.There is a specific miRNA profile in distal gastric adenocarcinoma.
     2.There are no significant correlation between levels of specific miRNAs and clinopathological factors in distal gastric adenocarcinoma. The levels of specific miRNAs in distal gastric adenocarcinoma and cardia adenocarcinoma are different. The abundance of miR-204 is significant higher in patients with gastric adenocarcinoma comparing healthy controls. And it may be a potential biomarker for gastric adenocarcinoma.
     3. There are no significant impact on the proliferation and apoptosis of gastric tumor cell lines after over expression of mature miR-204.
     4. BCL-2, NR3C1 and SOCS6 may be targets of miR-204.
引文
1. Kunisaki, C., H. Makino, R. Takagawa, et al., Tumor diameter as a prognostic factor in patients with gastric cancer. Ann Surg Oncol,2008.15(7):p.1959-67.
    2. Esquela-Kerscher, A. and F.J. Slack, Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer,2006.6(4):p.259-69.
    3. Lu, J., G. Getz, E.A. Miska, et al., MicroRNA expression profiles classify human cancers. Nature,2005.435(7043):p.834-8.
    4. Garzon, R., G.A. Calin, and C.M. Croce, MicroRNAs in Cancer. Annu Rev Med,2009.60:p.167-79.
    5. Cimmino, A., G.A. Calin, M. Fabbri, et al., miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A,2005.102(39):p. 13944-9.
    6. Calin, G.A., A. Cimmino, M. Fabbri, et al., MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A,2008.105(13):p. 5166-71.
    7. Johnson, S.M., H. Grosshans, J. Shingara, et al., RAS is regulated by the let-7 microRNA family. Cell,2005.120(5):p.635-47.
    8. Lee, Y.S. and A. Dutta, The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev,2007.21(9):p.1025-30.
    9. Mott, J.L., S. Kobayashi, S.F. Bronk, et al., mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene,2007.26(42):p.6133-40.
    10. Volinia, S., G.A. Calin, C.G Liu, et al., A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A,2006. 103(7):p.2257-61.
    11. Ventura, A., A.G. Young, M.M. Winslow, et al., Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell,2008.132(5):p.875-86.
    12. Voorhoeve, P.M., C. le Sage, M. Schrier, et al., A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 2006.124(6):p.1169-81.
    13. Katada, T., H. Ishiguro, Y. Kuwabara, et al., microRNA expression profile in undifferentiated gastric cancer. Int J Oncol,2009.34(2):p.537-42.
    14. Liu, T., H. Tang, Y. Lang, et al., MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett,2009.273(2):p. 233-42.
    15. Xiao, B., J. Guo, Y. Miao, et al., Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta,2009.400(1-2):p.97-102.
    16. McColl, K.E., Cancer of the gastric cardia. Best Pract Res Clin Gastroenterol, 2006.20(4):p.687-96.
    17. Mitchell, P.S., R.K. Parkin, E.M. Kroh, et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A,2008. 105(30):p.10513-8.
    18. Wang, J., J. Chen, P. Chang, et al., MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila Pa),2009.2(9):p.807-13.
    19.林三仁,张莉.胃癌研究的回顾与展望.胃肠病学,2002.7(3):p.133-144.
    20. Hossain, A., M.T. Kuo, and G.F. Saunders, Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol,2006. 26(21):p.8191-201.
    21. Zhang, Y., J. Guo, D. Li, et al., Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. Med Oncol,2009.
    22. Guo, J., Y Miao, B. Xiao, et al., Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol, 2009.24(4):p.652-7.
    23. Tsukamoto, Y, C. Nakada, T. Noguchi, et al., MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res,2010.70(6):p.2339-49.
    24. Luo HC, Z.Z., Zhang X, et al, microRNA expression signature in gastric cancer. Chinese Joural of Cancer Research,2009.21:p.74-80.
    25. Wang, Y., Z. Li, C. He, et al., MicroRNAs expression signatures are associated with lineage and survival in acute leukemias. Blood Cells Mol Dis, 2010.44(3):p.191-7.
    26. Lujambio, A., G.A. Calin, A. Villanueva, et al., A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A, 2008.105(36):p.13556-61.
    27. Chen, L., H.X. Yan, W. Yang, et al., The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol,2009.50(2):p.358-69.
    28. Connolly, E., M. Melegari, P. Landgraf, et al., Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol,2008.173(3):p. 856-64.
    1. Liu, T., H. Tang, Y. Lang, et al., MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett,2009.273(2):p. 233-42.
    2. Wong, M.L. and J.F. Medrano, Real-time PCR for mRNA quantitation. Biotechniques,2005.39(1):p.75-85.
    3. Guo, J., Y. Miao, B. Xiao, et al., Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol,2009.24(4):p.652-7.
    4. Leivonen, S.K., R. Makela, P. Ostling, et al., Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene,2009.28(44):p.3926-36.
    5. Du, L., J.J. Schageman, M.C. Subauste, et al., miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res,2009.7(8): p.1234-43.
    6. Li, Y., W. Tan, T.W. Neo, et al., Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci,2009.100(7):p.1234-42.
    7. Kim, Y.K., J. Yu, T.S. Han, et al., Functional links between clustered microRNAs:suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res,2009.37(5):p.1672-81.
    8. Nam, E.J., H. Yoon, S.W. Kim, et al., MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res,2008.14(9):p.2690-5.
    9. Popovic, R., L.E. Riesbeck, C.S. Velu, et al., Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood, 2009.113(14):p.3314-22.
    10. Wang, Y., Z. Li, C. He, et al., MicroRNAs expression signatures are associated with lineage and survival in acute leukemias. Blood Cells Mol Dis, 2010.44(3):p.191-7.
    11. Wu, W., Z. Lin, Z. Zhuang, et al., Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev,2009.18(1):p. 50-5.
    12. Chen, L., H.X. Yan, W. Yang, et al., The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol,2009.50(2):p. 358-69.
    13. Garzon, R., M. Garofalo, M.P. Martelli, et al., Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A,2008.105(10):p.3945-50.
    14. Zanette, D.L., F. Rivadavia, G.A. Molfetta, et al., miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res, 2007.40(11):p.1435-40.
    15. Mathe, E.A., G.H. Nguyen, E.D. Bowman, et al., MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus:associations with survival. Clin Cancer Res,2009.15(19):p.6192-200.
    16. Ladeiro, Y., G. Couchy, C. Balabaud, et al., MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology,2008.47(6):p.1955-63.
    17. Tsukamoto, Y., C. Nakada, T. Noguchi, et al., MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res,2010.70(6):p.2339-49.
    18. Ach, R.A., H. Wang, and B. Curry, Measuring microRNAs:comparisons of microarray and quantitative PCR measurements, and of different total RNA prep methods. BMC Biotechnol,2008.8:p.69.
    19. Mitchell, P.S., R.K. Parkin, E.M. Kroh, et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A,2008. 105(30):p.10513-8.
    20. Lawrie, C.H., S. Gal, H.M. Dunlop, et al., Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol,2008.141(5):p.672-5.
    21. Chen, X., Y. Ba, L. Ma, et al., Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 2008.18(10):p.997-1006.
    22.铁轶,付汉江,郑晓飞.循环miRNA与肿瘤诊断.中国科学C辑:生命科学,2009.39(1):p.64-68.
    23. Wang, K., S. Zhang, B. Marzolf, et al., Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A,2009. 106(11):p.4402-7.
    24. Saito, H., Y. Fukumoto, T. Osaki, et al., Distinct recurrence pattern and outcome of adenocarcinoma of the gastric cardia in comparison with carcinoma of other regions of the stomach. World J Surg,2006.30(10):p.1864-9.
    25. Gulmann, C., H. Hegarty, A. Grace, et al., Differences in proximal (cardia) versus distal (antral) gastric carcinogenesis via the retinoblastoma pathway. World J Gastroenterol,2004.10(1):p.17-21.
    1. Katada, T., H. Ishiguro, Y. Kuwabara, et al., microRNA expression profile in undifferentiated gastric cancer. Int J Oncol,2009.34(2):p.537-42.
    2. Liu, T., H. Tang, Y. Lang, et al., MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett,2009.273(2):p. 233-42.
    3. Xiao, B., J. Guo, Y. Miao, et al., Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta,2009.400(1-2):p.97-102.
    4. Bandres, E., N. Bitarte, F. Arias, et al., microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res,2009.15(7):p.2281-90.
    5. Gantier, M.P., A.J. Sadler, and B.R. Williams, Fine-tuning of the innate immune response by microRNAs. Immunol Cell Biol,2007.85(6):p.458-62.
    6. Poy, M.N., L. Eliasson, J. Krutzfeldt, et al., A pancreatic islet-specific microRNA regulates insulin secretion. Nature,2004.432(7014):p.226-30.
    7. Greco, S.J. and P. Rameshwar, MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. Proc Natl Acad Sci U S A,2007.104(39):p.15484-9.
    8. Cheng, H.Y., J.W. Papp, O. Varlamova, et al., microRNA modulation of circadian-clock period and entrainment. Neuron,2007.54(5):p.813-29.
    9. Jopling, C.L., M Yi, A.M. Lancaster, et al., Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science,2005.309(5740):p. 1577-81.
    10. Esquela-Kerscher, A. and F.J. Slack, Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer,2006.6(4):p.259-69.
    11. Si, M.L., S. Zhu, H. Wu, et al., miR-21-mediated tumor growth. Oncogene, 2007.26(19):p.2799-803.
    12. Ozen, M., C.J. Creighton, M. Ozdemir, et al., Widespread deregulation of microRNA expression in human prostate cancer. Oncogene,2008.27(12):p. 1788-93.
    13. Bloomston, M., W.L. Frankel, F. Petrocca, et al., MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA,2007.297(17):p.1901-8.
    14. Szafranska, A.E., T.S. Davison, J. John, et al., MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene,2007.26(30):p.4442-52.
    15. Murakami, Y., T. Yasuda, K. Saigo, et al., Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene,2006.25(17):p.2537-45.
    16. Bandres, E., E. Cubedo, X. Agirre, et al., Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer,2006.5:p.29.
    17. Visone, R., P. Pallante, A. Vecchione, et al., Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene,2007.26(54): p.7590-5.
    18. Huang, J., L. Zhao, L. Xing, et al., MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells,2010. 28(2):p.357-64.
    19. Wang, F.E., C. Zhang, A. Maminishkis, et al., MicroRNA-204/211 alters epithelial physiology. FASEB J,2010.
    20. Wu, W., Z. Lin, Z. Zhuang, et al., Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev,2009.18(1):p. 50-5.
    21. Chen, L., H.X. Yan, W. Yang, et al., The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol,2009.50(2):p. 358-69.
    22. Garzon, R., M. Garofalo, M.P. Martelli, et al., Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A,2008.105(10):p.3945-50.
    23. Zanette, D.L., F. Rivadavia, G.A. Molfetta, et al., miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res, 2007.40(11):p.1435-40.
    24. Lee, Y., X. Yang, Y. Huang, et al., Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS Comput Biol,2010.6(4):p. e1000730.
    25. Goodwin, C.J., S.J. Holt, S. Downes, et al., Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS. J Immunol Methods,1995.179(1):p.95-103.
    26. Yanaihara, N., N. Caplen, E. Bowman, et al., Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell,2006.9(3):p. 189-98.
    27. Iorio, M.V., M. Ferracin, C.G. Liu, et al., MicroRNA gene expression deregulation in human breast cancer. Cancer Res,2005.65(16):p.7065-70.
    28. Fabbri, M., R. Garzon, A. Cimmino, et al., MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A,2007.104(40):p.15805-10. 29. Li, N., H. Fu, Y. Tie, et al., miR-34a inhibits migration and invasion by
    down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett,2009.275(1):p.44-53.
    30. Tavazoie, S.F., C. Alarcon, T. Oskarsson, et al., Endogenous human microRNAs that suppress breast cancer metastasis. Nature,2008.451(7175):p. 147-52.
    31. Muller, D.W. and A.K. Bosserhoff, Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene,2008.27(52):p.6698-706.
    1. Bushati, N. and S.M. Cohen, microRNA functions. Annu Rev Cell Dev Biol, 2007.23:p.175-205.
    2. Min, H. and S. Yoon, Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med,2010.42(4):p.233-44.
    3. Lewis, B.P., I.H. Shih, M.W. Jones-Rhoades, et al., Prediction of mammalian microRNA targets. Cell,2003.115(7):p.787-98.
    4. Krek, A., D. Grun, M.N. Poy, et al., Combinatorial microRNA target predictions. Nat Genet,2005.37(5):p.495-500.
    5. Enright, A.J., B. John, U. Gaul, et al., MicroRNA targets in Drosophila. Genome Biol,2003.5(1):p. R1.
    6. Roubelakis, M.G., P. Zotos, G. Papachristoudis, et al., Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application. BMC Bioinformatics,2009.10 Suppl 6:p. S20.
    7. Fedele, M., G.M. Pierantoni, R. Visone, et al., Critical role of the HMGA2 gene in pituitary adenomas. Cell Cycle,2006.5(18):p.2045-8.
    8. Tomasini, R., A.A. Samir, A. Carrier, et al., TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem,2003.278(39):p.37722-9.
    9. Tomasini, R., M. Seux, J. Nowak, et al., TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity. Oncogene,2005.24(55):p.8093-104.
    10. Chang, W., L. Ma, L. Lin, et al., Identification of novel hub genes associated with liver metastasis of gastric cancer. Int J Cancer,2009.125(12):p.2844-53.
    11. Lai, R.H., Y.W. Hsiao, M.J. Wang, et al., SOCS6, down-regulated in gastric cancer, inhibits cell proliferation and colony formation. Cancer Lett,2010.288(1): p.75-85.
    12. Ohta, H., K. Aoyagi, M. Fukaya, et al., Cross talk between hedgehog and epithelial-mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers. Br J Cancer,2009.100(2):p.389-98.
    13. Wang, J., G. Li, H. Ma, et al., Differential expression of EphA7 receptor tyrosine kinase in gastric carcinoma. Hum Pathol,2007.38(11):p.1649-56.
    14. Krutzfeldt, J., M.N. Poy, and M. Stoffel, Strategies to determine the biological function of microRNAs. Nat Genet,2006.38 Suppl:p. S14-9.
    15.夏伟,曹国军,邵宁生.MicroRNA靶基因的寻找及鉴定方法研究进展.中国科学C辑:生命科学,2009.39(1):p.121-128.
    1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell,1993,75 (5):843-854
    2. Reinhart BJ, Slack FJ, Basson M, et al. The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J]. Nature,2000,403 (6772):901-906
    3. Zhang L, Coukos G. MicroRNAs:a new insight into cancer genome [J]. Cell Cycle,2006,5(19):2216-2219
    4. Calin GA, Croce CM. MicroRNA signatures in human cancers[J]. Nat Rev Cancer,2006,6(11):857-866
    5. Sevignani C, Calin GA, Siracusa LD, et al. Mammalian microRNAs:a small world for fine-tuning gene expression [J]. Mamm Genome,2006,17(3):189-202
    6. Obernosterer G, Leuschner PJ, Alenius M, et al. Post-transcriptional regulation of microRNA expression. RNA,2006,12(7):1161-1167
    7. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature,2005, 436(7048):181-182
    8. Lagos-Quintata M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science,2001; 294(5543):853-858
    9. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297
    10. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer.2006,6(4):259-269
    11. Lu J, Gets G, Miska EA, et al. MicroRNA expression profiles classify human cancer. Nature,2005,435(7043):834-838
    12. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 2006,103(7):2257-2261
    13. Katada T, Ishiguro H, Kuwabara Y, et al. microRNA expression profile in undifferentiated gastric cancer. Int J Oncol,2009,34(2):537-542
    14. Liu T, Tang H, Lang Y, et al. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett,2009,273(2):233-242
    15. Xiao B, Guo J, Miao Y. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta,2009,400(1-2):97-102
    16. Zhang Z, Li Z, Gao C, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest,2008,88(12):1358-1366
    17. Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer cell, 2008,13(3):272-286
    18. Kim do N, Chae HS, Oh ST, et al. Expression of viral microRNAs in Epstein-Barr virus-associated gastric carcinoma. J Virol,2007,81(2):1033-1036
    19. Motoyama K, Inoue H, Nakamura Y, et al. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res,2008,14(8):2334-2340
    20. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell,2005,120(5):635-647
    21. Xia L, Zhang D, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2in human gastric cancer cells. Int J Cancer, 2008,123(2):372-379
    22. Bandres E, Bitarte N, Arias F, et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res,2009,15(7):2281-2290
    23.王迎昕,郜恒骏,陈锡美.miRNA与消化系统肿瘤的关系.国际内科学杂志,2008,35(10):609-612
    24. Chan SH, Wu CW, Li AF, et al. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res, 2008,28(2A):901-911
    25. Li Z, Zhan W, Wang Z, et al. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem Biophys Res Commun,2006,348(1):229-237
    26.蔡世荣,陈创奇,王昭,等.促肝再生磷酸酶-3在胃癌患者组织中的表达及其对胃癌细胞生长的影响.中华医学杂志,2008,88(33)2326-2330
    27. Ji Q, Hao X, Meng Y, et al. Restoration of tumor suppressor miR-34 innibits human p53-mutant gastric cancer tumorspheres. BMC Cancer, 2008,21(8):266-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700