玉米×Teosinte远缘杂种后代重要性状的表型及遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米由于长期自然和人工选择造成遗传多样性相对于野生近缘种明显降低。现代玉米育种主要是杂种优势利用,多集中在少数骨干自交系的遗传改良,造成组配的杂交种品种遗传基础狭窄。对于我国来说玉米属于外引作物,种植历史仅500余年,可利用的玉米育种材料相对贫乏,很难育成突破性品种。没有种质的不断创新就没有玉米杂种优势水平的提高。因此,种质的创制与拓宽是玉米育种的战略任务,其中开发和利用野生资源是其重要的途径之一。
     大色草是玉米近缘野生植物,为一年生草本。植株生长旺盛,具有高分粟性和分枝性,籽粒蛋白质含量高,对多种玉米病害免疫或高抗,是玉米育种可利用的基因源。同时大色草又是典型的短日照植物,在温带不能正常繁殖。本研究以大自草,玉米自交系掖478、综31、3153,以及包括3153x大当草选系在内的76个RILs为材料,进行大色草光周期、蛋白质含量杂种优势、远缘杂交创新玉米种质、大色草分粟性和RIL形态和产量性状的SSR标记关联分析,探索大当草短日照诱导开花的敏感苗龄、最佳的日照时数,通过杂交导入有利性状进行玉米改良与种质资源创新。取得如下结果:
     1.19一26d是大色草能否接受诱导的临界苗龄,苗龄(sd一47d)越大诱导效果越好;gh是诱导生殖生长的最佳日照时数;各日照处理的POD活性随苗龄的增大呈现一定的规律性变化,但不能直接反映大当草生长发育状况;a、b、。、d四条POD酶带是大当草处于营养生长阶段的生化标记,e、f、g三条POD酶带的出现表明进入生殖生长阶段,POD酶的相对含量主导着大色草的生长发育方向;采用40一47d苗龄每日gh短日照处理的大色草与掖478、综31花期相遇,通过远缘杂交育成NX3153等自交系。
     2.远缘杂种BC:产量性状表现最大值,而且变异系数最小,F:除穗长外,穗粗、穗行数、行粒数都大于Fl,并存在广泛的遗传变异,而穗粗、穗行数、行粒数都比Fl变化幅度大。Fl穗重、穗粒重表现极大的变异系数,F:变异系数大幅度降低,表现最稳定的是穗粗和穗行数。F:抽雄期、开花期、吐丝期、株高、穗位高比Fl、BCI变异幅度大、分离严重,BC:变异系数逐渐变小、分离减缓。Fl、FZ、BCI、BC:花期不遇个体顺序减少。Fl、F:的AIS较长,自身授粉结实困难,BCZ最短,自身可以正常授粉。不同类群玉米与有分粟的F:杂交后代分粟产生的效果不同,属于瑞德类群的65232抑制分粟效果最好。
     3.本研究对76个玉米重组自交系的形态、遗传多态性进行研究,并对17个性状与48个SSR位点进行了关联分析。76个重组自交系分为3个主类群5个亚群,通过K检验、回归分析和组合分析分别检测到82、59和40个明显的关联。17个性状单独分析时,Q一SSR与穗部性状之间的关联达27.8%,显著高于其它组合2.3%一6.3%的关联。含有大自草的RILs的变异范围较广,在三个主类群以及五个亚群中都有分布,但分布很不均匀,第一主群的第一亚群中最少,短锥形和短筒形类群中最多。
     4.17个性状之间的相关程度存在较大差别。玉米茎秆弯曲、叶宽、玉米雄穗一级分支数和穗上长度与株高的比率4个形态学性状之间、以及与其它31个性状之间不存在显著相关外,其它13个性状彼此都存在相关性。穗位高与穗粗,穗粗与粒行数,粒行数与叶片夹角,穗粗与百粒,重、穗形、开花吐丝间隔,穗形与百粒重、开花吐丝间隔,穗长与粒型都达到极显著正相关;粒行数与行粒数,行粒数与开花吐丝间隔、穗形、穗粗、百粒重,百粒重与粒型、穗长,穗形与穗长,穗粗与粒型都存在极显著负相关。
     5.71个性状还存在着星状辐射、三角、四角以及线性等特殊关联。①穗粗与其它9个性状存在关联,表现明显的星状辐射关系,其中5个极显著正相关关系、3个极显著负相关关系、1个显著正相关关系,是所有研究的性状中关联最多、极显著正相关关系最多、极显著正相关关系与极显著负相关关系对立最明显的性状,同时还存在1个间接极显著正相关关系的性状。穗粗除与其他产量因素间存在复杂的关联外,还与穗位、叶片夹角等形态性状的存在关联。其次是穗形,存在7个关联,百粒重存在6个关联;②百粒重、穗形、开花吐丝间隔三者之间以及穗粗、百粒重、穗形三者之间存在极显著正相关三角关联;③穗粗、百粒重、穗形、开花吐丝间隔四者之间的极显著正相关四角关系;④EH一ED一EL反向极显著相关线性关系,表明穗位越高果穗越粗,穗长变短,EH一LA一AB反向显著相关线性关系。
The genetic diversity of maize was significantly reduced compared with wild relative species,due to the effects of long-term natural selection and artificial selection.Maize genetics and breeding is mainly based on the utilization of heterosis and concentrated on the genetic improvement of a small number of main inbred lines,which resulted in the narrow genetic base of the hybrid varieties.Maize originated in the Americas and it has been planted in China only for 500 years,consequently,maize breeding germplasn is relatively scarce,it is difficult to breed breakthrough high-yielding single cross hybrid.Germplasm innovation is needed in raising the level of heterosis.Therefore,development of maize new germplasm is the primary strategic task in maize breeding, in which the development and exploit of wild resources is one of the most important ways.
     Teosinte. is one of the available gene sources in maize breeding.lt is an annual herb,one of the maize wild relative species,with the characteristics of high tillering and branching, high protein content in grain, immune or high resistant on a variety of maize diseases. Meanwhile,Teosinte is a typical short-day plant and can not reproduce normally in the temperate regions. In order to study the short-day sensitive seedling age , the optimal day-length for reproductive induction of Teosinte,make it possible to transfer novel genes into elite inbred lines to create new maize germplasms by inducing the flowering time of Teosinte. synchronized with elite maize cultivars,we investigated the photoperiod and proteins content heterosis of Teosinte., studied the Teosinte,'s tillering,maize germplasm innovation through distant hybridization.Also we did the association analysis of the RIL agronomic traits,yield traits and SSR markers,with Teosinte.,maize inbred line Y478,Zong31,3153,and 76 RILs comprise of 6 selected inbred lines from 3153xTeosinte. as the materials.
     The main results are as follows:
     1. The results show that the sensitive productive induction stage in Teosinte. is between 19d and 26d in seedling age. The induction rate becomes higher with the Teosinte seedlings become older (from 5d to 47d). The optimal day-length for reproductive induction is 9 hours POD activity shows certain correlation with the seedling age, but has no implication on the growth conditions. Four types of POD isoenzymes, i.e. a, b, c and d, are good characteristics for vegetative growth, and the POD isoenzymes of e, f, g feature reproductive growth. Furthermore, the composition of these POD isoenzymes determines whether Zea. luxurians. enters into reproductive growth. Through 9 hours's short-day treatment in the seedling age from 40 to 47d, the flowering time of Teosinte. meet well with Ye 478 and Zong 31,therefore,several inbred lines ,such as ,NX3153 have been bred successfully.
     2. The investigation of tiller, tasseling stage, ASI, plant height and ear height from distant hybridization progeny F_i displayed that ,there is no difference in the tillers,plant traits and ear characteristics of reciprocal crosses,but the tiller restraint of different hybridization ways is distinct in progenies, which suggested that evolution level of different maize groups is different.Through transfering beneficial traits to the general maize from Teosinte., a number of excellent maize introgression lines were obtained,which provide evidence for the identification of Teosinte elite gene and molecular markers location.
     3. In this study,we characterized morphological and genetic diversity for 76 recombinant inbred lines ,and analysed the association of 17 morphological characters or values and 48 SSR markers. The 76 recombinant inbred lines were divided into three major groups and five sub-groups. 82,59 and 40 significant correlation were revealed through the only K-test, only logistic regression and both analysis,respectively. The association between the Q-SSR and the ear characters was 27.8%, significantly higher than the other combiantion( 2.3% -6.3%) when 17 traits were analysed independently.The RILs with teosinte had wide variation range, and were distributed in the three major groups and five subgroups, but the distribution is very uneven, the distribution in the first sub-group of the first main group was least and conversely in the short conical and cylindrical groups.
     4. There is a big difference in the correlation of 17 traits. The four morphological traits, corn stalk bending, leaf width, maize tassel branch number and the ratio of length above ear to the plant height,displayed no significant correlation,likewise, with the other 13 traits.But other 13 traits were correlated with each other. Ear height and ear diameter, ear diameter and kernel row number, kernel row number and leaf angle, ear diameter and hundred kernel weight, ear shape, anthesis silking internal have reached a very significant positive correlation,likewise,ear shape and hundred kernel weight, anthesis silking intervaEar Length and kernel type were also significant positive correlation. Kernel row number and kernel number per row,kernel number per row and anthesis silking interval, ear shape, ear diameter, hundred kernel weight displayed a very significant negative correlation. Hundred kernel weight and kernel type,ear length were negatively related.Ear shape and ear length,ear diameter and kernel type also reached very significantly negative correlation.
     5. Star emission,triangle, square and linear and other special association were also existed in 17 traits.The results are as below,①ear diameter showed an obvious star emissions association with the other 9 traits, 5 of which were a significant positive correlation,3 of which dispalyed a highly significant negative correlation,I of which showed a highly significant positive correlation,and was a trait that had most correlation,most highly significant positive correlation,the contrast of highly significant positive correlation and highly significant negative correlation of which was most obvious.Meanwhile,there was a trait that had a indirect highly significant positive correlation with ear diameter.Ear diameter was correlated with ear height and leaf angle besides complex correlation with other yield factor.②Hundred kernel weight,ear shape, anthesis silking internal showed a highly significant positive triangle correlation each other,the same as ear diameter, hundred kernel weight,ear shape.③Ear diameter, hundred kernel weight,ear shape, anthesis silking internal had a highly significant positive square correlation each other.(EH-ED-EL showed a reversely highly significant linear correlation,which indicated the higher the ear height,the thicker the ear. EH—LA—AB also had a reversely significantly linear correlation.
引文
[1]Mangelsdorf P C, Reeves R G. Theorigin of maize[J]. Proceedings of the National Academy ofSciences.l938,24:303-312.
    [2]Beadle G W. Teosinte and the origin of maize[J] Journal of Heredity,1939,30:45-47.
    [3]Molina M C. Naranjo C A. Cytogenetic Studies in the genus ZeaA. Evidence for five as the basicchromosome number[J].Theor Appl Genet. 1987,73:542-550.
    [4]Shaver D L. A study of meiosis in perennial teosinte,in tetraploid maize and in their tetraploidhybrid[J].Carologia,1962,15:43-57.
    [5]Iltis H H, Doebley J F, Guzman R M.Zea di]pioperennis(Gramineae):a new teosinte fromMexico[J].Science,1979,203:186-188.
    [6]Nault L R,Gordon D T, Damsteegt VD, et al. Response of annual and perennial teosintes (Zea)to sex maize viruses[J].Plant Disease Rep,1982,66:61-62.
    [7]Nault L R, Maize bushy stunt and corn stunt:A comparison of disease symptoms, pathogen hostranges, and vectors[J].Phytopathology,1980,70:659-662.
    [8]Srinivasan G,Brewbaker J LGenetic analysis of hybrids between maize and perennialteosinte. I .Morphological traits[J].Maydica,1999,44:353-369.
    [9]Srinivasan G,Brewbaker J LGenetic analysis of hybrids between maize and perennialteosinte. II .ear traits[J].Maydica,1999,44:371-384.
    [10]郭乐群,谷明光,杨太兴,等.药物诱导玉米远缘杂种孤雌生殖获得异源种质纯系及其育种研究[J].遗传学报,1997,24(6):537-543.
    [11] Doebley J,Stec A,Wendel J, et al.Genetic and morphological analysis of a maize-teosinte F_2population:mplications for the origin of maize[J]. Proceedings of the National Academy ofSciences,1990,87:9888-9892.
    [12] Dorweiler J,Stec A,Kermicle J, et al.Teosinte glume architecture 1: A genetic locus controlling akey step in maize evolution[J].Seience,1993.262:233-235.
    [13] Wang H,Nussbaum-Wagler T,Li B, et a/.The origin of naked grains ofmaize[J].Nature,2005,36:714-719.
    [14] Doebley J,Stec A,Gustus C.teosinte branchedl and the origin of maize:evidence for epistasis andthe evolution of dominance[J].Geneties,1995,141:33-346.
    [15] Doebley J,Stec A,Hubbard L.The evolution of apieal dominance inmaize[J].Nature,1997,386:485-488
    [16] Brunner S,Fengler K,Morgante M, et al.Evolutiono of DNA sequence non-homologies amongmaize inbreds[J].Plant Cell, 2005,17:343-360.
    [17] Lai J,Li Y,Messing J, et al.Gene movement by Helitron transposons contributes to the haplotypevariability of maize[J]. Proceedings of the National Academy of Sciences,2005,102:9068-9073.
    [18] Yamasaki M.Tenaillon M I,Bi I V, et al.A large scale screen for artificial selection in maizeidentifies candidate agronomic Loci for domestication and crop improvement[J].PlantCell,2005,17:2859-2872.
    [19] Whitt S R,Wilson L M,Tenaillon M I, et al.Genetic diversity and selection in the maize starchpathway[J]. Proceedings of the National Academy of Sciences,2002,99:12959-12962.
    [20] Jaenicke-Despres V,Buckler E S,Smith B D, et al.Early allelic selection in maize as revealed byancient DNA[J].Science,2003,302:1206-1208.
    [21] Smith J S C,Duvick D N,Smith O S, et a/.Changes in pedigree backgrounds of pioneer brandmaize hybrids widely grown fom 1930 to 1999 [J].CroPSei,2004,44:1935-1946.
    [22]吴景锋.我国主要玉米杂交种种质基础评述[J].中国农业科学,1983,2:1-8.
    [23]曾三省.中国玉米杂交种的种质基础[J].中国农业科学,1990,23(4):1-9.
    [24]田志国,张志煌,彭泽斌,等.我国玉米种质问题浅析及对策[J].玉米科学,2000,8(2):15-17.
    [25]Stalker H T.Utilization of wild species in crop improvement[J]. Advances in Agronomy,1980,33: 111-147.
    [26]Rabinovich S V.Importance of whea-rye translocations for breedingmodem cultivars of Triticum aestivum L[J].Euphytica,1998,100:323-340.
    [27]诚艮,冯柿高,陈佩度.将野生二粒小麦的火粒和籽粒高蛋白含量性状向普通小麦转移[J]. 南京农业人学学报,2001,24(2):16-19.
    [28] Multani D S,Khush G S,Reyes B G, et a/.Alien genes introgression and development of monosomic alien addition lines from Oryza latifolia Desv.to rice, Oryza sativa L[J].Theor Appl Genet,2003,107:395-405.
    [29]Garriga-Caldere F,Huigen D J,Angrisano A, et al Transmission of alien tomato chromosomesfrom BC] to BC2 progenies derivedfrom backcrossing potato(+) tomato fusion hybrids topotato:the selection ofsingle additions for seven different tomato chromosomes[J].Theor ApplGenet,1998,96:155-163.
    [30]Saha SJenkins J N,Wu J X, et o/.Effects of chromosome-specific introgression in upland cottonon fiber and agronomic traits[J].Genetics,2006,172:1927-1938.
    [31]Guo L Q,Gu M QYan T X.Produetlon of alloplasmic pure through chemically inducedparthenogenesis of female gametophyte of maize distant hybrid[J] .Development andreproductive biology,1998,7(l):55-62.
    [32]Wang J,Xing F N,Xia G M.Agropyron elongatum chromatin localization on the wheatchromosomes in an introgression line[J].Plant,2005,221:277-286.
    [33]Xia G M,Xiang F N,Zhou A F, et a/.Asymmetric somatic hybridization between wheat (Triticumaestivwn J..\ and Aprnnvmn elmuxahimfHnsrt NevishirTlThenr Annl fie.net 9.00^ 1
    [34]陈穗云,罗振,权太勇,等小麦与高冰草不对称体细胞杂种F_5代部分株系的根尖染色体分 析[J].热带作物学报.2003.10(3):263-266。
    [35]Xu C H,Xia G M,Zhi D Y, et a/.Integration of maize nuclear and mitochondrial DNA into thewheat genome through somatic hybridization[J].Plant Science,2003,169:1001-1008.
    [36]Mangelsdorf P CThe origin and evolution o fmaize[J].Adv Genetics,1947,l:161-207.
    [37]Evans M M S,Kermicle J LTeosinte crossing barrierl,a locus governing hybridization of teosintewith maize[J].TheorAppl Genet,2001,103:259-265.
    [38]Baltazar B M,de Jesus Sanche-Gonzalez J,de la Cruz-Larios L, et a/.Pollination between maizeand teosinte:an important determinant of gene flow in Mexico[J].Theor ApplGenet,2005,110(3):519-526.
    [39]Cohen J I,Galinat W CPotential use of alien germplasm for maize improvement[J].Crop.Science! 984.24!im 1 -1015
    [40]李冬郁,郭乐群,张忠,等.玉米野生近缘种类玉米的研究和利用[J].玉米科学,2010,9(2):11-31.
    [41]Klein J D, Mufrad I L, Cohen S. Establishment of wheat seedling after early sowing and germination in an arid Mediterranean environm entfJl-Agronomy Journal, 2002,94:585-593.
    [42]周洪生,邓迎海,李竞雄.玉米(Zea mays L)×大刍草(Zea diploperennis L)远缘杂交选育玉米自交系的研究[J].作物学报,1997,23(3):333-337.
    [43]刘纪麟.玉米育种学[D].北京:中国农业出版社,2002
    [44]刘永建,张莉萍,潘光堂,等.CIMMYT玉米种质群体主要农艺性状的遗传变异和光周期敏感 性[J].西南农业学报,1999,12(3):30-34.
    [45]任永哲,陈彦惠,库丽霞,等.玉米光周期反应研究简报[J].玉米科学,2005,13(4):86-88.
    [46]韩天富,王金陵.光周期对大豆叶片过氧化物酶活力和同工酶的影响[J].东北农业大学学 报,1995,26(3):214-219.
    [47] Kochba J K.Difference in peroxidase activity and isoenzymes in embryogenic and non-embrogenic 'shamoutic' orange ovular callus lines[J]. Plant Cell. Physiology,1977,18:463-467.
    [48]关佩聪.丝瓜的光周期反应[J].园艺学报,1990,17(2):126-132.
    [49]连丽君,李朝霞,王雷,等.短日照处理对墨西哥玉米开花与种子成熟的影响[J].山东农业科 学,2006,6:20-23.
    [50]Holland J B,Goodman M M.Combining ability of tropical maize accessions withU.S.germplasm[J]. Crop Science, 1995,35: 767-776.
    [51]Galston A W,Davies P IHormonal regulation in. higher plants[J].Science ,1969,163:1288-1297.
    [52]Lee T T. Interaction of cytokinin,auxin and gibberellin on peroxidase isoenzymes in tobaccotissues cultured in vitro[J].Canadian Journal of Botany,1972,50:2471-2477.
    [53]Penel C, Greppin H,Boisard J.In vitro photomodulation of a peroxydase Activity throughMembrane-bound Phytochrome[J]. Plant Science Letters,1976,6:117-121.
    [54]Shin M,Nakamura W.Indoleacetic Acid Oxidase Activity of Wheat Peroxidase[J].The Journal ofBiochemistry, 1962,52:444-451.
    [55]杨肇驯,王文宏,谭克辉.冬小麦幼苗春化期间过氧化物酶的变化[J].植物生理学 报,1981,7(4):311-316.
    [56]Bergquist R R.Transfer from Tripsacum dactyloides to corn of a major gene locus conditioningresistance to Puccinia sorghi[J].Phytopathology,1982,71:518-520.
    [57]Leblancn O,Grimanelli DJslam-Faridi N, et a/.Reproductive behavior in maize-TripsacumPolyhaploid Plants:implications for the transfer of apomixis into maize[J].J
    [58]Wei W H,Zhao W P,Song Y C,et a/.Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea maysxZea
    [59]孙敬三,陈纯贤,路铁刚.禾本科植物染色体消除型远缘杂交的研究进展[J].植物学通 报,1998,15(1):1-7.
    [60]张树榛.植物育种学[D].北京:北京农业大学出版社.1989.
    [61]Gu M G,Ding Y C, Zhang X Q.Giem-sa Banding of Mitotic Chromosomes in Diploid Perennial Teosinte,Maize and Their Hybrids[J] Acta Genetica Sinica,1984,ll(4):276-280.
    [62]Ding Y C,Gu M QZhang X Q& a/.Studies on Meiotic Chromosomes in Diploid Perennial TeosintcMaize and Their HvbridsFJl Acta Genetica Sinica.l982.9(6>:455-460.
    [63]曹墨菊,荣廷昭,唐祈林.栽培玉米与近缘野生材料杂交后代的性状表现[J].西南农业学报,2002,15(2): 9-12
    [64]Xu Y B,Shen Z TDiallel analysis of tilller number at different growth stages in rice(Oryza sativaL.) [JJ.Theoretical and Applied Genetics,1991,83(2):243-249.
    [65]U X Y,Qian Q, Fu Z M.Control of tillering in rice[J].Nature,2003,422:618-621.
    [66]Doebley J,Stec A O,Hubbard L.The evolution of apical dominace inmaize[J].Nature,1997,386:485-488.
    [67]Rood S B, Major D J. Inheriance of tillering and flowering in early maturingmaize[J].Euphytica,1981,30:327-334.
    [68]Lonnquist J H.Mass selection for prolificacy in maize[J].Der Zucter,1967,37:185-188.
    [69]Russell W A.Testcrosses of one-and two-ear types of corn belt maize inbreds.LPerifrmance atfour Plant stand densities[J].Crop Sci,1968,8:244-247.
    [70]Sorrells M E, Lonnquist J H,Harris R E.Inheritance of Prolificacy in Maize[J].CropSci,1979,19:301-306.
    [71]杨允奎,杜世灿,邓孝贞.玉米果穗遗传的初步研究[J].遗传,1979,2:21-22.
    [72]Dvuiek D N.Contniuous baekerossing to transe frPorlifieaey to a single-earedlineofmaize[Jl.CroPSei,1性〕74,14:69-71.
    [73]荣廷昭,刘礼超,倪昔玉.玉米果穗数变异的研究[J].四川农学院学报,1983,1(1):93-98.
    [74]Hallauer A R.Heritability of prolificacy in maize[J].The Journal of Heredity,1974,65:163-168.
    [75]Laile C A.Genetic variance and selection value of ear number in corn[J].Crop Sci,1968,8:540-543.
    [76]Harris R E.Control and Inheritance of prolificacy in maize[J].Crop Sci,1976,16:843-850.
    [77]Flint-Garcia S A,Thuillet A C,Yu J M,et alMaize, association populations high-resolutionplatform for quantitative trait locus dissection[J].Plant J,2005,44:1054-1064.
    [78]Gupta P K,Rustgi S,Kulwal P LLinkage disequilibrium and association studies in higherplantsrPresent status and future prospects[J] JPlant Mol Biol,2005,57:461-485.
    [79]Wright S l,Bi I V.Schroeder S C E,et a/.The Effects of Artificial Selection on the MaizeGenome[J].Science,2005s308:1310-1314.
    [80]Yamasaki M,Tenaillon M LA large-scale screen for artificial selection in maize identifiescandidate agronomic loci for domestication and crop improvement[J].PIantCell,2005,17:2859-2872.
    [81]Clark R M,Linton E,Messing l,et a/.Pattern of diversity in the genomic region near the maizedomestication gene tbl[J]. Proceedings of the National Academy of Sciences,2004,101:700-707.
    [82]Eyre-Walker A,Gaut R L,Hilton K,et d. Investigation of the bottleneck leading to thedomestication of maize[J]. Proceedings of the National Academy ofSciences,1998,95:4441-4446.
    [83]Buckler E S.Thorasberry J M,Kresovich S.Molecular diversity,structure and domestication ofgrasses[J].Genet Res Camb,2001,77:213-218.
    [84]Zondervan K T,Cardon L R.The complex interplay among factors that influence allelicassociation[J].Nat Rev Genet,2004,5:89-100.
    [85]Kerem B S.Rommens J M,Buchanan J A.Identification of the cystic fibrosis gene:geneticanalysis[J].Science,1989,245:1073-1080.
    [86]Corder E H,Saunders A N M,Risch N J.A protective effect of apolipoprotein E type 2 allele forlate onset Alzheimer disease[J].Nat Genet,1994,7:180-184.
    [87]Thornsberry J M,Goodman M M,Doebley 3,et a/.Dwarf8 polymorphisms associate with variationin flowering time[J].Nat Genet,2001,28:286-289.
    [88]Salvi S G,Sponza M,Morgante D,et a/.Conserved noncoding genomic sequences associated witha flowering-time quantitative trait locus in maize[J]. Proceedings of the National Academy of
    [89]杨小红,严建兵,郑艳萍,等.植物数量性状关联分析研究进展IJ].作物学报,2007,33(4):523-530.
    [90]Andersen J R,Schrag T,Melchinger A E,et al.Validation of DwarfS polymorphisms .associatedwith flowering time in elite European inbred lines of maize(Zea mays L) [JJ.Theor ApplGenet,2005,Hl:206-217.
    [91]Camus-Kulandaivelu L>Veyrieras J B,Madur D.Maize adaptation to temperateclimate:relationship with population structure and polymorphism in the Dwarf8gene[J].Genetics,2006,10:1534-1572.
    [92]Wilson L M,Whitt S R,Ibanez A M,e/ a/.Dissection of maize kernel composition and starchproduction by candidate gene 39 association[J].Plant Cell,2004,16:2719-2733.
    [93]Andersen J R,Zein I/Wenzel G.,et a/.High levels of linkage disequilibrium and associations withforage quality at a Phenylalanine Ammonia-Lyase locus in European maize(Zea maysL)inbreds[J].TheorApplGenet,2007,114:307-319.
    [94]Szalma S JJBuckler E S,Snook M B,et {{/.Association analysis of candidate genes for maysin andchlorogenic acid accumulation in maize silksfJl.Theor AddI Genet,2005,110:1324-1333.
    [95]于永涛.玉米核心自交系群体结构及耐旱相关候选基因rab17的等位基因多样性分析[D]。中 国农业科学院博士学位论文,2006.
    [96]赵曦.玉米耐旱候选基因dhn2与表型性状的关联分析[[D].中国农业科学院硕士学位论 文,2008.
    [97]Harjes C E,Rocheford T R,Bai L,et a/.Natural genetic variation in lycopene epsilon cyclasetapped for maize biofortifi cation[J].Science,2008,319:330-333.
    [98]Manicacci D,Camus-Kulandaivelu L,Fourmann M,ef a/.Epistatic Interactions between 0paque2Transcriptional Activator and Its Target Gene CyPPDKl Control Kernel Trait Variation inMaize[J].PlantPhysiology,2009,150:506-520.
    [99]Arumuganathan K,Earle E D.Nuclear DNA content of some important plant species[J].Plant MolBiol Rep,1991,9:208-218.
    [100] Aranzana M J,Kim S,Nordborg M.Genome-wide association mapping in Arabidopsis identifiespreviously known flowering time and pathogen tolerance genes[J].Plos Genet,2005,l:531-539.
    [101] Buckler E S,Gaut B S,McMullen M D.Molecular and functional diversity of maize[J].CurrentOpinion in Plant Biology,2006,9:172-176.
    [102] Flint-Garcia S A,Thornsberry J M,Buckler E S.Structure of linkage disequilibrium inpIants.Annu.Rev[J].PlantBioI,2003,54:357-374.
    [103] Kraakman A T,Niks R E,Berg P M.Linkage disequilibrium mapp ing of yield and yield stabilityin modern sp ring barley cultivars[J].Genetics,2004,168:435-446. [104] Laurie C QChasalow S D,Dudley J W^t a/.The genetic architecture of response to long-termartificial selection for oil concentration in the maize kernel[J].Genetics,2004,168:2141-2155.
    [105] Parrisseaux B,Bernardo R.In silico mapping of quantitative trait loci in maize[J].Theor ApplGenet,2004,109:508-514.
    [106] Breseghello F,Sorrells M E.Association mapping of kernel size and milling quality in wheat(Triticum aestivum L.)cultivars[J].Genetics,2006,172:1165-1177. [107] Remington D L,Thornsberry J M,Matsuoka Y,et a/.Structure of linkage disequilibrium andphenotypic associations in the maize genome[J].Proceedings of the National Academy ofSciences,2001.98:11479-11484.
    [108] Sharbel T F,Haubold B,Mitchell-Olds T.Genetic isolation by distance in Arabidopsisthaliana:biogeography and postglacial colonization of Europe[J].Mol Ecol,2000,9:2109-2118.
    [109] Cardon LR,Palmer L J.Population stratification and spurious allelic association.Lancet,2003,361:598-604.598-604.
    [110] Knowler W C/Williams R QPettitt D J.Gm3;5,13,14 and type 2 diabetesmellitus:an associationin American Indians with genetic admixture[J].American Journal of HumanGenetics,1988,43:520-526
    [111] Yu J,Pressoir QBriggs W H:A unified mixed model method for association mapping accountingfor multio le levels of relatednessfJl-Nat Genet.2005.38:203-208.
    [112]石云素.玉米种质资源描述规范利数据标准[D]北京:中国农业出版社,2006.
    [113]张志良.植物生理学实验指导[D]一匕京:高等教育出版社,1990.
    [114]岳彩鹏,韩锦峰,陈卫华.烟草开花研究进展[J].烟草科技,2001,9:36-40.
    [115] Rohlf J RNumerical Taxonomy and multivariate analysis system.Version 1.70. NTSYS-pcManual Book[D], Applied Biostatistics, New York,1992.
    [116] Orloci L. An algorithm for cluster seeking in ecological collectionsfJ]. Vegetatio,1972,27:339-345.
    [117] Veldboom L, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstressenvironments .1. Grain yield and yield components[J]. Crop Science, 1996,36:1310-1319.
    [118] Austin D, Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci forgrain yield and yield components in maizefj]. Theoretical and Applied Genetics,1996,92:817-826.
    [119] Beavis W D, Smith 0 S, Grant D, et al. Identification of quantitative trait loci using a smallsample of topcrossed and F4 progeny from maize[J]. Crop Science, 1994,34,882-896.
    [120] Saghai-Maroof M A, Soliman K M. Ribosomal DNA spacer length polymorphisms in barley:Mendelian inheritance, chromosomal location, and population,and population dynamics[J].Proceedings of the National Academy of Sciences, 1984,81(17): 8014-8018.
    [121] Peakall R, Smouse P E. GenAIEx 6: genetic analysis in Excel. Population genetic software forteaching and research[J]. Molecular Ecology Notes, 2006,6:288-295.
    [122] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocusgenotype data[J]. Genetics, 2000,155,945-959.
    [123] Flint-Garcia S A, Thuillet A C, Yu J, et al. Maize association population: a high-resolutionnlatform for Quantitative trait locus dissectionffl. Plant Journal. 2005.44.1054-1064.
    [124]刘磊,刘世琦,许莉,等.光周期及春化处理对洋葱蛋白质合成代谢与POD活性的影响[J]. 西北农业学报,2005,14(6):90-95.
    [125]曹墨菊,荣延昭,唐祈林.栽培玉米与近缘野生材料杂交后代的性状表现[J].西南农业学 报.2002.15(2):9-122.
    [126] Xie G Z.Study on agricultural characteristics of maize, Zea luxurians and their hvbridfJl.Aericultural Studv in China.l995.44<'2>?:93-100.
    [127]芦立婷,陈景堂,黄亚群,等.玉米自交系×大刍草远缘杂交后代性状变异研究初探[J].西北植 物学报,2005.25(9):1751-1755.
    [128] Veldboom L, Lee M. Molecular-marker-facilitated studies of morphological traits in maize.2:Determination of QTLs for grain yield and yield components[J]. Theoretical and AppliedGenetics, 1994,89,451-458.
    [129] Goldman I, Rocheford T R, Dudley J W. Quantitative trait loci influencing protein and starchconcentration in the Illinois long term selection maize strains[J]. Theoretical and AppliedGenetics, 1993,87,217-224.
    [130] Goldman I, Rocheford T R, Dudley J W. Molecular markers associated with maize kernel oil concentration in an Illinois high protein x Illinois low protein cross[J]. Crop Science, 1994,34, 908-915.
    [131] Abler B S, Edwards M, Stuber C W. Isoenzymatic identification of quantitative trait loci in crosses of elite maize inbreds[J]. Crop Science, 1991,31,267-274.
    [132]王秀蓉.短日照对烤烟多叶品种生长发育的影响[J].中国烟草学报,1991,3:3%40.
    [133]李云荫,王桂霞,郭继红.不同纬度地区大豆短日照处理对过氧化物酶同工酶的影响[J].大豆科学,1984,3(2):121-126.
    [134]王振华,王义波,王永普,等.普通玉米主要品质性状的杂种优势及优势相关性分析[J].玉米 科学,1998,6(3):25-28.
    [135]周正卿,刘志勇,徐秀珍,等.普通玉米籽粒蛋白质和赖氨酸含量的遗传和相关研究[J].河北 农业技术师范学院学报,1990,4(2):27-32.
    [136] Omholt S W,Plahte E,Yehaug L,et a/.Gene regulatory networks generating the phenomena of additivity,dominance and epistasis[J].Genetics,2000,155:969-980.
    [137]李莹.玉米×人刍草选系主要性状的配合力及遗传分析[D].四川农业大学硕士学位论文, 2009
    [138] Lafarge T A, BrOad I J? Hammer G L.Tillering in Grain Sorghum over a Wide Range ofPopulation Densities:Identification of a Common Hierarchy for Tiller Emergence) Leaf AreaDevelopment and Fertility[J].Aunals of Botany, 2002, 90:87-98.
    [139] Liu Guifu, XU Haiming, YANG Jian, ZHU Jun.Genetic analysis on tiller number and Plantheightper plant in riee(Oryza sativa L.)[J].Journal of Zhejiang University(Agric.&Life Sei.),2006, 32T5V527-534.
    [140]杜维俊,赵晓明,李贵全.薏苡属种间杂种F1性状遗传的研究[J].山西农业大学学 报,1998,18(1):20-23.
    [141]李贵全,赵晓明,宋秀英.薏苡×川谷远缘杂交的研究[J].作物学报,1997,23(1):119-123.]142]芦立婷,陈景堂,祝丽英等.玉米与大刍草远缘杂交创新种质及利用研究进展.河北农业大 学学报,2003,26(增刊):9-11
    [143] Cohen J I, Galinat W C.Potential use of alien germplasm for maize improvement.Crop Seience,1984,24:1011-1015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700