空间飞行器中液固耦合晃动的非线性动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储液箱液固耦合问题广泛存在于工程实际中。在以燃烧高热值液体燃料为主要推动力的空间飞行器中,研究储液箱同液体燃料的耦合晃动问题具有很强的实际意义。本文主要利用运动稳定性理论,摄动法,C-L方法,Melnikov方法,对空间飞行器中的圆柱形液体燃料储液箱同液体燃料的耦合问题进行了研究。具体研究内容与主要研究成果如下。
     1.基于弹性力学、流体力学基本理论,建立弹性柱壳弯曲问题的基本微分方程以及液体的运动方程,并通过变分原理证明了等价性。利用模态展开方法,分别建立刚性储液箱同液体耦合模型和弹性储液箱同液体耦合模型。
     2.在给定的参数条件下,分析了刚性储液箱同液体燃料耦合晃动的非线性振动微分方程的稳定条件,以及耦合系统在受到周期干扰力时大幅晃动所带来的一些非线性动力学特征,通过耦合系统的相图和分岔图,发现系统在干扰力幅值增大时,会发生混沌现象。研究系统存在内共振的情况,表明:系统进入混沌的途径由非内共振条件下的概周期道路改变为阵发性道路,并在该系统首次发现了“混沌同步性”这一在耦合系统内共振条件下出现的新现象。
     3.用多尺度法、C-L方法研究飞行器中弹性充液系统在简谐激励下组合共振情形下的分岔行为,发现了非常复杂的局部分岔现象,得到了这一系统的分岔特性。研究表明:开折参数k1为零时,即为线性系统的情况,并由此可计算出充液转换点;当充液比小于0.43时,系统非线性刚度表现为硬特性;当充液比大于0.43时,表现出软特性。
     4.通过对飞行器多频激励模式下燃料晃动方程进行分析,得到了系统的在不同参数下的轨道模式,并确定了系统达到混沌运动的阀值,探明了系统通向混沌的途径通过对系统参数和实际物理参数之间的关系进行了分析,发现了值得注意的充液转换点。
     5.非线性动力学系统蕴含着复杂的动力学行为,例如分岔、混沌等现象。通过对多自由度分段光滑非线性自激振动微分方程进行近似解析计算,得到了该多自由度系统的一次近似解析解,提出了一种有效的计算方法解决了分段积分界限的确定问题。同时,利用C-L方法确定了两个自由度汽车悬架系统共振解与系统参数的联系,为实现悬架参数的优化控制提供了理论依据。
It is worthiness to deal with liquid-solid coupled problems, which is widely relyon industrial engineering problems,particularly in space vehicles which filled with high heat value fuel. The liquid-solid coupled sloshing research has practical significance. In this paper, using the dynamic stability theory, perturbation method, C-L method and Melnikov method, the coupled system combined by rigid and elastic cylindrical storage tank and liquid fuel was studied. Specific research contents and key findings are as follows.
     1. Based on the basic theory of elastic mechanics and fluid mechanics, the basic equations of the elastic tank and liquid fuel are established respectively, which equivalence is proved by variation principle as well. By using modal expansion method, the nonlinear equations of the rigid coupled system and elastic coupled system are established respectively.
     2. Given the system parameter, the stability conditions of rigid tank-liquid coupled system in aircraft are studied. For further analysis, whether or not in case of internal resonance, the bifurcation diagrams of the coupled system are gained respectively. By contrast, under the condition of internal resonance, the chaotic road is changed from almost periodic to paroxysmal, and a new phenomenon called“Chaos Synchronism”is found under the condition of internal resonance.
     3. By means of multiple scales and C-L method, the bifurcation behaviors of elastic tank-liquid coupled system with harmonic excitation in the case of combination resonance are studied, so that abundant nonlinear dynamical characteristics of the coupled system are obtained, which can make a further explanation of the relationship between physic parameters and bifurcation solutions. The result shows that: The case of linear systems happened when the unfolding parameter is zero, then the calculation of turning point is possible; furthermore, On one hand,when the fill ratio is less than 0.43, the system elastic performance turns to hard features; On the other hand, when the fill ratio greater than 0.43, the feature of the system become soft.
     4. By applying Melnikov method, the global dynamic behaviors of the sloshing equations in aircraft filled with liquid under multi-frequency excitied model are studied. Consequently, threshold values of heteroclinic bifurcation and subhamonic bifurcation are obtained, and mechanism of chaotic motion is determined. Meanwhile, the switch point which is highly noteworthiness is detected.
     5. General nonlinear dynamical systems contain the complicated dynamical phenomenon mostly, such as bifurcation, chaos and so on. First of all, the effect of the self-excited vibration of piecewise-smooth nonlinear system caused by dry friction was taken into consideration. Concurrently, a new method which is used to decide the subsection integral limits of the system is highlighted. Second, resonance solution to a suspension system with two degrees of freedom is investigated with the C-L method. Based on the relationship between parameters and the topological bifurcation solutions, motion characteristics with deferent parameters are obtained. The result provides a theoretical basis for the optimal control of vehicle suspension system parameters.
引文
[1] J Hunt, J Martin, Aero-Space Plane Figures of Merit, AIAA92-5058, 1992
    [2] P L Moses, V L Rausch, L T Nguyen, et al, Hypersonic Flight Demonstrators-Overview, Status and Future Plans, Acta Astronautica, 2004, 55:619~630
    [3]刘桐林,美国高超声速技术发展与展望,航天控制, 2004, 22(4):36~41
    [4]刘桐林,国外高超声速技术发展探析,飞航导弹, 2002, 6:30~40
    [5]丛敏,国外高超声速计划一瞥,飞航导弹, 2003, 3:9~10
    [6]沈剑,王伟,国外高超声速飞行器研制计划,飞航导弹, 2006, 8:1~9
    [7]车竞,高超声速飞行器乘波布局优化设计研究,西安:西北工业大学博士学位论文, 2006
    [8]徐勇勤,高超声速飞行器总体概念研究,西安:西北工业大学硕士学位论文, 2005
    [9]马兴瑞,王本利,苟兴宇,航天器动力学-若干问题进展及应用,科学出版社, 2001
    [10] J H Wang, C M Liou. Experimental Identification of Mechanical Joint Parameters, J of Vibration and Acoustics, 1991, 31(5):28~36
    [11]吴志刚,尹立中,王本利,连接结构刚度识别的偏微分方程反演方法, Journal of Harbin Institute of Technology, 2000, 32(2):500~503
    [12]宋彦国,张呈林,杨炳渊,一种识别复杂连接结构刚度参数的实用方法, Journal of Vibration Engineering, 2002, 15(3):323~326
    [13]杨炳渊,连接子结构试验建模的发展与应用, Structure & Environment Engineering, 2000, 01:51~58
    [14] Y Ren, An Interactive FRF Joint Identification Technique, Proc of 11th IMAC, 1993
    [15] A C Bindemann, Large Amplitude Vibration of Joint Flexible Structures, AIAA 291211242cp
    [16] K S Mohammad, Direct Parameter Estimation for Linear and Nonlinear Structures, J of Sound and Vibration. 1992, 152(3):332~338
    [17] K Wyckaert, The Identification of The Nonlinear Dynamical Behavior of a Flexible Robot Link, Proc of 8th IMAC, 1990
    [18] J G Maloney, M T Shelton, A Method for Determining Tacitical Missil Joint Compliances from Dynamic Test Date, The Shock and Vibration Bulletin, 1975, 45:103~105
    [19]王巍,于登云,马兴瑞,关于航天器铰接结构非线性动力学研究的几点建议,Chinese Space Science and Technology, 2004, 04:24~29
    [20]王巍,于登云,马兴瑞,航天器铰接结构非线性动力学特性研究进展, Advances in Mechanics, 2006, 36(02):233~238
    [21] M S Hachkowski, L D Peterson, Analytical Model of Nonlinear Hysteresis Mechanisms in A Rolling Element Joint, AIAA-99-1268, 1999
    [22] A Mahfouz, F Badrakhan, Chaotic Behaviour of Some Piecewise Linear Systems Part II: Systems with Clearance, Journal of Sound and Vibration, 1990, 143(2):289~328
    [23] Y Kim, Stability and Bifurcation Analysis of Oscillators with Piecewise linear Characteristics: A General Approach, Journal of Applied Mechanics, 1991, 58(6):545~553
    [24] W Shaw, C Pierre, E Peshedk, Modal Analysis Based Reduced Order Models for Nonlinear Structures: An Invariant Manifold Approach, The Shock and Vibration Digest, 1999, 150(1):170~173
    [25] E Pesheck, N Boivin, C Pierre. Nonlinear Modal Analysis of Structural Systems Using Multi Mode Invariant Manifolds, Nonlinear Dynamics, 2001, 25:183~205
    [26] N Boivin, C Pierre, W Shaw, Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifold, AIAA294216722CP, 1994
    [27] E Pesheck, C Pierre, W Shaw. A New Galerkin Based Approach for Accurate Nonlinear Normal Modes through Invariant Manifolds, Journal of Sound and Vibration, 2002, 249(5):971~993
    [28] D Jiang, Large Amplitude Nonlinear Normal Modes of Piecewise Linear Systems, Journal of Sound and Vibration, 2004, 217(3):869~891
    [29]李书良,刘勇琼,甘晓松,复合材料裙级间连接结构强度预测, Journal of Solid Rocket Technology, 2007, 30(06):494~497
    [30]郭颜红,门们,导弹壳体翼面安装座连接结构分析航空制造技术, Aeronautical Manufacturing Technology, 2008, 04:76~80
    [31]张庆雅,杨光松,安联,火箭发动机法兰连接结构的受力与变形分析, Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 01:153~156
    [32] H N Abramson, The Dynamic Behavior of Liquid in Moving Containers, NASA SP-106, 1966
    [33]王照林,刘延柱,充液系统动力学,北京:科学出版社, 2002
    [34] N N Mooniseev, Introduction to the Theory of Oscillations of Liquid-Containing Bodies, Advances in Applied Mechanics, 1964, 8:233~289
    [35]岳宝增,柔性全充液航天器大角度姿态机动混沌动力学, Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3):388~393
    [36] N N Moiseev, A A Petrov, The Calculation of Free Oscillation of a Liquid in a Motionless Container, Advances in Applied Mechanics, 1964, 9:91~154
    [37]尹立中,王本利,邹经湘,航天器液体晃动与液固耦合动力学研究概述,哈尔滨工业大学学报, 1999, 31(2):118~122
    [38] L Delorme, A Colagrossi, A Souto-Iglesias, etc, A Set of Canonical Problems in Sloshing, PartI: Pressure Field in Forced Roll-Comparison Between Experimental Results and SPH, Aerospace Science and Technology, 2008, 36(2):168~178
    [39] S Wiesche, Sloshing Dynamics of a Viscous Liquid in a Spinning Horizontal Cylindrical Tank, Aerospace Science and Technology, 2008, 12:448~456
    [40] R Ibrahim, Liquid Sloshing Dynamics: Theory and Applications, Cambridge University Press, 2005
    [41]包光伟,平放柱形贮箱内液体晃动的等效力学模型, Journal of Shanghai Jiaotong University, 2003, 37(12):1961~1964
    [42]汤晓昀,包光伟,柔性贮箱内液体晃动的分析模型, Journal of Shanghai Jiaotong University, 2004, 38(8):1414~1416
    [43]丁遂亮,包光伟,任意三维贮箱内液体晃动的模态分析及其等效力学模型, Chinese Quarterly of Mechanics, 2004, 25(1):62~68
    [44]尹立中,刘敏,王本利,矩形贮箱类液固耦合系统的平动响应研究, Journal of Vibration Engineering, 2000, 13(3):434~437
    [45]高索文,尹立中,王本利,等,矩形贮箱类液固耦合系统转动特性分析, Journal of Vibration and Shock, 2000, 19(03):17~19
    [46]尹立中,赵阳,王本利,贮箱类液固耦合动力学研究, Engineering Mechanics, 2000, 17(05):127~130
    [47]尹立中,马兴瑞,王本利,圆柱贮箱类液固耦合系统转动响应分析. Journal of Vibration Engineering, 2001, 14(01):68~71
    [48]余延生,马兴瑞,王本利,利用多维模态理论分析圆柱贮箱液体非线性晃动, Chinese Journal of Theoretical and Applied Mechanics. 2008, 40(2):261~266
    [49]余延生,马兴瑞,王本利,圆柱贮箱液体非线性晃动的多维模态分析方法, Applied Mathematics and Mechanics, 2007, 28(08):901~911
    [50] Faltinsen OM. A nonlinear theory of sloshing in rectangular tanks. Journal of Ship Research, 1974, 18(4):224~241
    [51] T Ikeda, R A Ibrahim, Nonlinear Random Responses of a Structure Parametrically Coupled with Liquid Sloshing in a Cylindrical Tank. Journal of Sound and Vibration, 2005, 284:75~102
    [52]岳宝增,刘延柱,王照林,低重力环境下三维液体非线性晃动的数值模拟, Journal of Astronautics, 2000, 21(04):25~30
    [53]岳宝增,刘延柱,王照林,三维液体非线性晃动动力学特性的数值模拟, Chinese Journal of Applied Mechanics, 2001, 18(01):111~115
    [54] Panigrahy, U K Saha, D Maity, Experimental Studies on Sloshing Behaviour Due to Horizontal Movement of Liquids in Baffled Tanks, Ocean Engineering, 2009,36(3-4):231~222
    [55] S F Shen, An Approximate Analysis of Nonlinear Flutter Problems, J.Aero Sci. 1959, 26:25~32
    [56] E J Breitbach, Effeet of Struetural Nonlinearities on Aircraft Vibrationan Flutter, Presented at the 45th Struetures and Materials Panel Meeting AGARD Report 665.Voss, 1977
    [57] E J Breitbach, Flutter Analysis of an Airplane with Multiple-structural Nonlinearities in the Control System. NASA TP1620, 1980
    [58] J J Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems. NewYork: Interscience Publishers, 1950
    [59] C Hayashi, Nonlinear Oscillations in Physical Systems, NewYork:McGraw Hill, 1964
    [60] B H K Lee, A Tron, Effects of Structural Nonlinearities on Flutter Characteristics of the CF-18 Aircraft, J. Aircraft, 1989, 26:781~786
    [61] R K Miller, The Steady State Response of Systems with Hardening Hysteresis, Paper ASME77-DET-71, 1977
    [62] H Ashley, G Zartarian, Piston Theory-a new Aero Dynamic Tool for Aeroelastician, Journal of Aeronautical Science, 1956, 23(12):1109~1118
    [63] I Nydick, P P Friendmann, X L Zhong, Hypersonic Panel Flutter Studies on Curved Panels, AIAAPaPer95-1485, 1995
    [64] R R Chen, M L Blosser, Metallic Thermal Projection System Panel Flutter Study, AIAAPaPer02-0501, 2002
    [65]陈劲松,曹军,超音速和高超音速翼型非定常气动力的一种近似计算方法,空气动力学学报, 1990, 8(3):229~344
    [66]杨炳渊,宋伟力,用当地流活塞理论计算大攻角翼面超音速颤振,振动与冲击, 1995, 54(2):60~64
    [67] D H Kim, I Lee, Transonic and Low Supersonic Aeroelastic Analysis of a Two-degree-of-freedom Airfoil with a Free-play Nonlinearity, Journal of Sound and Vibration, 2000, 234(5):859~880
    [68] S J Priee, H Alighanbari, B H K Lee, The Aeroelastic Response of a Two-dimensional Airfoil with Bilinear and Cubic Structural Nonlinearities, Journal of Fluids and Structures, 1995, 9:175~193
    [69] B H K Lee, L Gong, Flutter of an Airfoil with Cubic Restoring Force, Journal of Fluids and Structures, 1999, 13:75~101
    [70] D Berggren, Investigation of Limit Cycle Oscillations for a Wing Section with Nonlinear Stiffness, Aerospace Science and Technology, 2004, 8:27~34
    [71] P S Beran, S A Morton, A Continuation Method for the Calculation of Airfoil Flutter Boundaries, Joumal of Guidance, Control and Dynamics, 1997, 20(6):1165~1171
    [72] P S Beran, A Domain-decomposition Method for Airfoil Flutter Analysis. 36th AIAA Aerospace Science Meeting, AIAA98-0098, 1998
    [73] P S Beran, S A Morton, Hopf Bifurcation Analysis Applied to Deforming Airfoil at Transonic Speeds, 13th AIAA Computational Fluid Dynamics Conference, AIAA97-1772, 1997
    [74]刑景棠,周盛,崔尔杰,流固耦合力学概述,力学进展, 1997, 27(1):19~38
    [75] S M Soedel, W Soedel, On the Free and Forced Vibration of Plate Supporting a Freely Sloshing Surface Liquid, Journal of Sound and Vibration, 1994, 171(2): 159~171
    [76] Y K Cheung, D Zhou, Coupled Vibration Characteristic of a Rectangular Cantainer Bottom Plate, Journal of Fluid and Structure, 2000, 14:339~357
    [77] T Ikeda, N Nakagawa, Non-linear Vibration of a Structure Caused by Water Sloshing in a Rectangular Tank, Journal of Sound and Vibration, 1997, 201(1): 23~41
    [78] Y Yamamoto, A Vibration Principle for a Solid-Water Interation System, Int. J. of Engineering Science, 1981, 12:1757~1763
    [79] D Y Hsieh, Standing Water Waves in a Circular Basin, In: Proc. Int. ConL Hydrodynamics,Beijing:China Ocean Press, 1994, 21:74~79
    [80] M C Shen, N S Yeh, Exact Solution for Forced Capillary-gravity Waves in a Circular Basin under Hocking’s Edge Condition, Wave Motion, 1997, 26:ll7~l26
    [81] D Y Hsieh, Theory of Water Wave in an Elastic Vessel. Acta Mechianica Sinica, 2000, 16:297~112
    [82] D Y Hsieh, Water Waves in an Elastic Vesse1, Acta Mechanica Sinica, 1997, 13(4):289~303
    [83] S M Sun, M C Shen, D Y Hsieh, Nonlinear Theory of Forced Surface Waves in a Circular Basin, Wave Motion, 1995, 21:33l~341
    [84] M C Shen, S M Sun, D Y Hsieh, Forced Capillary-gracity Waves in a Circular Basin, Wave Motion, 1993, 18:401~412
    [85] D Y Hseih, P Deniddenko, Water Waves in a Circular Elastic Vessel: the Experiment, Presented at American Physical Society/Division of Fluid Dynamics 51st Annual Meeting, 1998
    [86] C C Chang, M C Shen, Chaotic Motion and International Resonance of Forced Surface Waves in a Water-filled Circular Basin, Wave Motion, 2000, 31:317~331
    [87] C C Chang, M C Shen, Nonlinear Capillary-gravity Waves under an Edge Condition, Journal of Engineering Mechanics, 2000, 38:391~402
    [88] J W Miles, Resonantly Forced Surface Waves in a Circular Cylinder, J Fluid Mech, 1984, 149:15~31
    [89] J W Miles, Nonlinear Faraday Resonance, J. Fliuid Mech., 1984, 83:153~158
    [90] J W Miles, Parametrically Excited Solitary Waves, J. Fluid Mech., 1984, 148: 451~460
    [91] Nayfeh, Surface Waves in Closed Basins Under Parameteric and Internal Resonances, Phys. Fluids, 1987, 30(10):2976~2983
    [92] M Faraday, On the Forms and States Assumed by Fluids in Contact with Vibrating Elastic Surfaces, Phil Trans R Soc Lond., 1831, 121:319~449
    [93] T B Benjamin, F Ursell, The Stability of the Plane Free Surface of a Liquid in Vertical Periodic Motion, Proc R Soc Lond., 1954, 255:505~515
    [94] A Lanza, Puttermans, Theory of Non-propagating Surface Solitions, Fluid Mech., 1984, 148:443~449
    [95] Chen Yushu, Leung Y T, Bifurcation and Chaos in Engineering, London: Springer-Verlag, 1998
    [96] Y S Chen, W F Langford, The Subharmonic Bifurcation Solution of Nonlinear Mathieu’S Equation and Euler Dynamically Buckling Problem.Acta Mech Sinica, 1988, 20:522~532
    [97] V K Melnikov, On the Stability of the Center for Time Periodic Motions, Sov Math Docklady, 1964, 5:581~585
    [98]王蓉孙,严震,流体力学和气体动力学,国防工业出版社, 1979
    [99]王勖成,有限单元法,清华大学出版社, 2003:13~28
    [100]哈尔滨工业大学理论力学教研组,理论力学,高等教育出版社, 1996:280~288
    [101]陆明万,罗学富,弹性理论基础,清华大学出版社, 2001:125~156
    [102]朱立明,柯葵,流体力学,同济大学出版社, 2009
    [103]徐振铎,不完全理想约束与用广义力表示的达朗贝尔原理,力学与实践, 1999, 21(4):71~72
    [104]王红,林晓宁,奇异二阶微分方程狄利克莱边值问题解的存在及惟一性,东北师大学报, 2006, 38(2):1~5
    [105]郭洪芝,复变函数,天津大学出版社, 2001:47~58
    [106] J C Luke, A variational principle for a fluid with free surface, J. Fluid Mech., 1967, 27(2):395~397
    [107] R L Seliger, G B Whitham, Variational principles in continuum mechanics, Proc. Roy. Soc. A., 1968, 305:1~25
    [108]钟万勰,分离变量法与哈密尔顿体系,计算力学学报, 1991, 8(3):229~240
    [109]程绪林,充液系统动力学问题,安庆师范学院学报, 2002, 8(4):20~22
    [110] Nayfeh, Nonlinear Oscillations, A WILEY-INTERSCIENCE PUBLICATION, 1979:39~63
    [111]李庆扬,王能超,易大义,数值分析,清华大学出版社, 2001:344~352
    [112] Liu Yu-Liang, Zhu Jie, Luo Xiao-Shu, Bifurcation and Stability of an Improved Time-delayed Fluid Flow Model in Internet Congestion Control, Chinese Physics B, 2009, 18(9):3772~3776
    [113] Ouyang Ke-Jian, Tang Jia-Shi, Liang Cui-Xiang, Amplitude Control of Limit Cycle in a VanderPol-Duffing System, Chinese Physics B, 2009, 18(11): 4748~4753
    [114] Wang Wei, Zhang Qi-Chang, Tian Rui-Lan, Shilnikov Sense Chaos in a Simplethree-dimensional System, Chinese Physics B, 2010,19(3):~
    [115] Liangqiang Zhou, Yushu Chen, Fangqi Chen, Global Bifurcation Analysis and Chaos of an Arch Structure with Parametric and Forced Excitation, Mechanics Research Communications, 2010, 37:67~71
    [116] Wei Zhang, Multi-pulse Chaotic Dynamics of Non-autonomous Nonlinear System for a Laminated Composite Piezoelectric Rectangular Plate, Acta Mech, 2010, 211:23~47
    [117] Liangqiang Zhou, Yushu Chen, Fangqi Chen, Stability and Chaos of a Damped Satellite Partially Filled with Liquid, Acta Astronautica, 2009, 65(11-12): 1628~1638
    [118] E Askari, F Daneshmand, Coupled Vibration of a Partially Fluid-filled Cylindrical Container with a Cylindrical Internal Body. Journal of Fluids and Structures, 2009, 25(2):389~405
    [119] Liu Xijun, Wang Dajun, Approximate Analytical Solution of the Self-excited Vibration of Piecewise-smooth Systems Induced by Dry Friction, Acta Mechanica Sinica, 1998, 14(1):78~84
    [120] Liu Xijun, Wang Dajun, Chen Yushu, Self-excited Vibration Caused by Dry Friction Between Two Elastic Dtructures, Acta Mechanica Sinica, 1998, 14(4):319~327
    [121] Liu Xijun, Wang Dajun, Chen Yushu, High-order Self-excited Vibration Induced by Dry Friction Between Two Elastic Structures, Acta Mechanica Sinica, 2001, 17(4):340~347
    [122] Liu Xijun, Wang Dajun, Chen Yushu, Self-excited Vibration of the Shell-liquid Coupled System Induced by Dry Friction, Acta Mechanica Sinica, 1995, 11(4):373~382
    [123] G Priyandoko, M Mailah, H Jamaluddin, Vehicle Active Suspension System Using Skyhook Adaptive Neuro Active Force Control. Mechanical System and Signal Prpcessing, 2009, 23(3):855~868
    [124] M M Fateh, S S Alavi, Impedance Control of an Active Suspension System, Mechatronics, 2009, 19(1):134~140
    [125] G Litak, M Borowiec, M I Friswell, Chaotic Vibration of a Quarter-car ModelExcited by the Road Surface Profile, Communications in Nonlinear Science and Numerical Simulation, 2008, 13(7):1373~1383
    [126]齐志鹏,.汽车悬架和转向系统的结构原理与检修,北京:人民邮电出版社, 2002
    [127]贾启芬,于雯,刘习军.汽车悬架系统的分段非线性振动机理的研究,工程力学, 2004, 23(2):319~327
    [128] M米奇克著,桑杰译,汽车动力学,北京:机械工业出版社, 1980
    [129]陈予恕,非线性振动,北京:高等教育出版社, 2002
    [130] Chen Yushu, Audrew Y T Leung, Bifurcation and Chaos in Engineering, London: Springe-Vereag, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700