成年豚鼠膀胱ICC上超极化激活环核苷酸门控通道(HCN)电生理的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,膀胱肌组织能够产生不受神经系统控制的自发性动作电位,但目前其机制尚未明了。前期的研究中已经证实了膀胱存在ICC,简单记录了Ih电流。这些结果都不能证实ICC在膀胱中到底起到何种作用。
     Ih电流(在心脏称为If电流)在胃肠道和心脏窦房结的研究中被认为是“起搏电流”,而HCN通道是Ih电流的分子基础。我们前期的系列研究中已经提示ICC上可能存在HCN通道,但是其电生理特征还尚未明确。同时,既往的实验方法中采用培养的ICC进行电生理实验,效果并不理想,其主要原因是培养后的ICC进行膜片钳实验时难度很大,而且其所测参数并不一定代表了真实生理状态下的情况。
     因此本实验的目的:建立一套稳定、可靠的急性分离方法以获得活性更好的ICC;观察ICC上HCN通道的表达,完善HCN通道基本的电生理参数,为进一步的研究提供实验基础和理论依据。
     主要实验结果与结论如下:
     1.建立了稳定可靠的急性分离方法,所得到的细胞经免疫组织化学实验方法确认是ICC;其酶消化方案为:Ⅱ型胶原蛋白酶2.0mg/ml,胰酶抑制剂2.0mg/ml,木瓜蛋白酶1.0mg/ml,BSA1.0mg/ml,其消化时间15min。
     2.采用c-Kit和HCN抗原的免疫荧光双标法,证明了c-Kit阳性的ICC细胞上具有HCN通道抗原的阳性表达。
     3.ICC上记录到了Ih电流,其激活电压位于-140mV~-90mV之间,电流幅度为300-800pA,具有电压依赖性,并能被ZD7288(20μM)和Cs~+(500μM)阻断。
     4.Ih电流反转电位42±2mV,PNa/P_K为0.42,膜电容为10-40pF;胞外ZD7288阻断Ih电流具有浓度依赖性,其IC50为24.7±6.5μmol/L,且其阻断效应不可逆;胞外Cs~+阻断Ih电流具有浓度依赖性,其IC50为232.5±24.8μmol/L,且其阻断效应可逆。
     5.胞外钠钾对HCN通道皆有影响,具有浓度依赖性,其浓度的改变会影响HCN通道的激活和电导;胞外给予TTX、TEA及Ba~(2+)对Ih电流无明显影响。
     6.胞外钙可明显影响HCN通道的激活时间,具有浓度依赖性;胞内cAMP可影响HCN通道的激活时间,具有浓度依赖性。
As we all know that spontaneous action potential(AP) can be recorded from muscular tissue of bladder, even if its nerval control is removed. But till now its mechanism is unknown to us.It has been confirmed the existence of the ICC in bladder on early study. The Ih current was recorded so simply. All of these results could not confirm which kind of role the ICC may play on functions.
     The Ih current is regarded as "pacemaker current" on the study of gastrointestinal tract and sinus node. HCN channels are the molecular basis of the Ih current. Our series of preliminary studies have prompted the existence of HCN channels on ICC in bladder. However, its electrophysiological characteristics have not yet been clear. Additionally, the method of using cultured ICCs was unsatisfactory in electrophysiological experiments. For the most main reason, It's very difficult to clamp patch on cultured ICCs. The test parameters could not meet the actual that is under physiological conditions.
     So the aim of our study: To find the method to get better ICCs by acute separation.To observe the expression of HCN by by c-Kit and HCN antigen using double-labeled immunofluorescence (IF). To get the basic electrophysiologic parameters of HCN. To provide the theoretical basis and experimental basis in further research.
     Main results and conclusions:
     1. We have got the stable and reliable method for better ICCs by acute separation. The Program for its enzymatic digestion:ⅡCollagenase 2.0mg/ml; Trypsin inhibitor 2.0mg/ml ;Papain 1.0mg/ml; BSA 1.0mg/ml. The time of digestion is 15 min.
     2. We have confirmed the existence of HCN by c-Kit and HCN antigen using double-labeled immunofluorescence (IF).
     3. Whole-cell patch clamp recorded a inward current which began to slowly active between -90mV~-140mV in voltage and time dependent manner without deactivation. The current range is 300-800pA. Ih current were blocked by 20μM ZD7288 and 500uM Cs~+.
     4. The reversal potential of Ih was 42±2mV, Na+ versus K+(PNa/PK) was 0.42, and membrane capacitance was 10-40pF. The extracellular ZD7288 blocked Ih current with concentration-dependent, and its IC50 was 24.7±6.5uM. the blocking effect of ZD7288 is not reversible. The extracellular Cs~+ blocked Ih current with concentration-dependent, and its IC50 was 232.5±24.8μM. the blocking effect of Cs~+ is reversible.
     5. Both the extracellular Na~+ and K~+ could impact activation and conductance of HCN with concentration-dependent. There were no significant effect on Ih current by adding extracellular drug such as TTX, TEA, and Ba~(2+).
     6. The extracellular Ca2+ could significantly affect the activation time of HCN with concentration-dependent. The intracellular cAMP could significantly affect the activation time of HCN with concentration-dependent.
引文
1. Maeda H,Yamagata A. Requirement of c-kit for development of intestinal pacemaker system [J]. Development,1992,116(2) :369-375.
    
    2. Komuro T. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig small intestine [J]. J Auton Nerv Syst,1996,61(2): 169-174.
    
    3. Sanders KM,Ordog T. Development and plasticity of interstitial cells of Cajal [J]. Neurogastroenterol Motil ,1999 ,11 (5) :311-338.
    
    4. Lang RJ, Tonta MA, Zoltkowski BZ, et al. Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers [J]. J Phy siol. 2006;576(Pt 3):695-705.
    
    5. Koh SD , Sanders KM , Ward SM. Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine [J]. J Physiol, 1998 ,513: 203-213A
    
    6. Lee JC , Thuneberg L , Berezin I , et al. Generation of slow waves in membrane potential is an intrinsic property of interstitial cells of Cajal [J]. Am J Physiol , 1999 , 277: 409-423.
    
    7. Vannucchi MG. Receptors in interstitial cells of Cajal: Identification and possible physilological roles [J]. Microsc Res Tech, 1999,47:325-335.
    
    8. SuzukiH.Cellular mechanisms of myogenic activity in gastric smooth muscle [J]Jpn J Physiol,2000,50(3):289-301.
    
    9. Thomsen L , Robinson TL , Lee JC , et al. Interstitial cells of Cajal generate a rhythmic pacemaker current [J]. Nat Med ,1998, 4: 848-851.
    
    10. Smet PJ,Jonavicius J,Marshall VR, et al. Distribution of nitric oxide Synthase-immunoreactive nerves and identification of the cellular targetsof nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry [J]. Neuro science, 1996,71(2) :337-348.
    
    11. Klemm MF,Exintaris B,Lang RJ. Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract [J]. J Physiol ,1999,Pt3:867-884.
    
    12. McCloskey KD,Gurney AM. Kit positive cells in the guinea pig bladder [J]. J Urol, 2002,168(2):832-836.
    
    13. Ahmed Shafik,Olfat El-Sibai,Ali Shafik,et al. Identification of interstitial cels of Cajal in human urinary bladder:concept of vesical pacemaker [J]. J Urology,2004,64(4): 809-813.
    
    14. Kay, A.R. and Wong, R.K.S. Isolation of neurons suitable for patch-clamping from the adult mammalian central nervous systems [J]. Neurosci. 1986,16:227-238.
    
    15. Drewe, J.A., Childs, G.V., and Kunze, D.L. Synaptic transmission between dissociated adult mammalian neurons and attached synaptic boutons [J]. Science. 1988,241:1810-1813.
    
    16. Blanton, M.G., Lo Turco, J.J., and Kriegstein, A.R. Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex.J [J]. Neurosci. 1989, 30: 203-210.
    
    17. Kay, A.R. and Connor, J.A. Preservation of the NMDA response of neurons acutely dissociated from the mature guinea pig hippocampus [J]. J. Neurosci. 1990, 33:77 -79.
    
    18. Edwards, F.A., Konnerth, A., Sakmann, B.,et al. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system [J]. Pfluegers Arch. 1989,414:414-612.
    
    19. Ferster, D. and Jagadeesh, B. EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording [J]. J. Neurosci. 1992,12:1262-1274.
    
    20. Aghajanian, G.K. and Rasmussen, K. Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices [J] . Synapse,1989.3:331-338.
    
    21. Akaike, N., Kaneda, M., Hori, N., et al. Blockade of N-methyl-D-aspartate response in enzyme-treated rat hippocampal neurons [J]. Neurosci. Lett. 1988,87:75-79.
    
    22. Allen, C.N., Brady, R., Swann, J., et al. N-methyl-D-aspartate (NMDA) receptors are inactivated by trypsin [J]. Brain. Res. 1988,458:147-150.
    
    23. Alonso, A., White, J.A., Oliver, A., et al. A survey of persistent Na+ currents in rat and human neurons [J] . Soc. Neurosci. 1993, 23:152.
    
    24. Brewer, G.J., Torricelli, J.R., Evege, E.K.,et al. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination [J]. J. Neurosci.Res. 1993,35:567-576.
    
    25. Budde, T., White, J., and Kay, A. Hyperpolarization-activated Na~+-K~+ current (Ih) in neocortical neurons blocked by external proteolysis and internal TEA [J]. J. Neurophysiol. 1994,72:2737-2742.
    
    26. Paulsen, R.E., Contestabile, A., Villani, L., et al. An in vivo model for studying function of brain tissue temporarily devoid of glial cell metabolism: The use of fluorocitrate [J]. J. Neurochem. 1987, 48:1377-1385.
    
    27. Ruoslahti, E. and Pierschbacher, M.D. New perspectives in cell adhesion: RGD and integrins [J]. Science. 1987, 238:491-497.
    
    28. White, J.A., Alonso, A., and Kay, A.R. A heart-like Na+ current in the medial entorhinal cortex [J]. Neuron, 1993.11:1037-1047.
    
    29. Yanagihara K, Noma A, Irisawa H. Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments [J]. J Physiol, 1980,30(6):841-57.
    
    30. Hart G. The kinetics and temperature dependence of the pace-maker current if in sheep Purkinje fibres [J]. J Physiol, 1983,337:401-16.
    
    31. Chesnoy-Marchais D. Characterization of a chloride conductance activated by hyper -polarization in Aplysia neurones [J]. J Physiol, 1983,342:277-308.
    
    32. Chesnoy-Marchais D, Evans MG. Chloride channels activated by hyperpolarization in Aplysia neurones [J]. Pflugers Arch, 1986,407(6):694-6.
    
    33. Champigny G, Lenfant J. Block and activation of the hyperpolarization-activated inward current by Ba and Cs in frog sinus venosus [J]. Pflugers Arch, 1986,407(6):684-90.
    
    34. Champigny G, Bois P, Lenfant J. Characterization of the ionic mechanism responsible for the hyperpolarization-activated current in frog sinus venosus [J]. Pflugers Arch, 1987,410(1-2): 159-64.
    
    35. DiFrancesco D, Tromba C. Inhibition of the hyperpolarization-activated current (if) induced by acetylcholine in rabbit sino-atrial node myocytes [J]. J Physiol, 1988,405:477-91.
    
    36. Edman A, Grampp W. Ion permeation through hyperpolarization-activated membrane channels (Q-channels) in the lobster stretch receptor neurone [J]. Pflugers Arch. 1989,413(3):249-55.
    
    37. Santoro B, Liu DT, Yao H, et al. Identification of a gene encoding a hyperpolarization -activated pacemaker channel of brain [J]. Cell. 1998;93(5):717-29.
    
    38. Santoro B, Tibbs GR. The HCN gene family: molecular basis of the hyperpolarization -activated pacemaker channels [J]. Ann N YAcad Sci. 1999;868:741-64. Review.
    
    39. Angstadt JD, Calabrese RL. A hyperpolarization-activated inward current in heart interneurons of the medicinal leech [J]. J Neurosci, 1989,9(8):2846-57.
    
    40. Tokimasa T, Akasu T. Cyclic AMP regulates an inward rectifying sodium-potassium current in dissociated bull-frog sympathetic neurones [J]. J Physiol, 1990,420:409-29.
    
    41. Coleman HA, Parkington HC. Hyperpolarization-activated channels in myometrium: a patch clamp study [J]. Prog Clin Biol Res. 1990;327:665-72.
    
    42. Yatani A, Brown AM. Regulation of cardiac pacemaker current If in excised membranes from sinoatrial node cells [J]. Am J Physiol, 1990,258: 1947-51.
    
    43. Denyer JC, Brown HF. Pacemaking in rabbit isolated sino-atrial node cells during Cs+ block of the hyperpolarization-activated current if [J]. J Physiol, 1990,429:401-9.
    
    44. Hisada T, Ordway RW, Kirber MT, et al. Hyperpolarization-activated cationic channels in smooth muscle cells are stretch sensitive [J]. Pflugers Arch. 1991,417(5):493-9.
    
    45. Van Ginneken AC, Giles W. Voltage clamp measurements of the hyperpolarization -activated inward current I(f) in single cells from rabbit sino-atrial node [J]. J Physiol, 1991,434:57-83.
    
    46. Satoh H, Sperelakis N. Identification of the hyperpolarization-activated inward current in young embryonic chick heart myocytes [J]. J Dev Physiol, 1991,15(4):247-52.
    
    47. Frace AM, Maruoka F, Noma A. External K+ increases Na+ conductance of the hyperpolarization-activated current in rabbit cardiac pacemaker cells [J]. Pflugers Arch, 1992,421(2-3):97-9.
    48. Schachtman DP, Schroeder JI, Lucas WJ, et al. Expression of an inward-rectifying potassium channel by the Arabidopsis KATl cDNA [J]. Science. 1992, 4;258:1654-8.
    
    49. Wang XJ, Golomb D, Rinzel J. et al. Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms [J]. Proc Natl Acad Sci. 1995, 92(12):5577-81.
    
    50. Pedarzani P, Storm JF. Protein kinase A-independent modulation of ion channels in the brain by cyclic AMP [J]. Proc Natl Acad Sci. 1995;92(25): 11716-20.
    
    51. Zaza A, Rocchetti M, DiFrancesco D. Modulation of the hyperpolarization-activated current (I(f)) by adenosine in rabbit sinoatrial myocytes [J]. Circulation. 1996, 94(4):734_41.
    
    52. Cerbai E, Pino R, Porciatti F, et al. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart [J]. Circulation. 1997;95(3):568-71.
    
    53. Gauss R, Seifert R, Kaupp UB. Molecular identification of a hyperpolarization -activated channel in sea urchin sperm [J]. Nature.1998,393: 583-587.
    
    54. Luthi A, Mccormick DA. H-current: Properties of a Neuronal and Network Pacemaker [J]. Neurons,1998, 21(1): 9-12.
    
    55. Vaccari T, Moroni A, Rocchi M, et al. The human gene coding for HCN2, a pacemaker channel of the heart [J]. Biochim Biophys Acta. 1999,1446(3):419-25.
    
    56. Richter H, Heinemann U, Eder C. Hyperpolarization-activated cation currents in stellate and pyramidal neurons of rat entorhinal cortex [J]. Neurosci Lett. 2000; 281(1):33-6.
    
    57. Southan AP, Morris NP, Stephens GJ, et al. Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells [J]. J Physiol. 2000;526 Pt 1:91-7
    
    58. Beaumont V, Zucker RS. Enhancement of Synaptic Transmission by Cyclic AMP Modulation of Presynaptic Ih Channels [J]. Nat Neurosci, 2000, 3 (2): 133-141.
    
    59. Yu H, Wu J, Potapova l,et al. MinK-related peptide 1: A beta subunit for the HCN ion channel subunit family enhances expression and speeds activation [J]. Circ Res. 2001;88(12):E84-7.
    
    60. Stevens DR, Seifert R, Bufe B, et al. Hyperpolarization-activated Channels HCN1 and HCN4 Mediate Responses to Sour Stimuli[J] . Nature,2001,4l3:631- 635.
    
    61. Poolos NP, Migliore M, Johnston D. Pharmacological Upregulation of H-channels Reduces the Excitability of Pyramidal Neuron Dendrites [J]. Nat Neurosci,2002,5(8): 767-774.
    
    62. Zagotta WN, Olivier NB, Black KD, et al. Structural basis for modulation and agonist specificity of HCN pacemaker channels[J]. Nature. 2003,425: 200-205.
    
    63. Zhao Y, Scheuer T, Catterall WA. Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment [J]. Proc Natl Acad Sci. 2004;101(51):17873-8.\
    
    64. Santoro B, Wainger BJ, Siegelbaum SA. Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction [J]. J Neurosci. 2004;24 (47): 10750-62.
    
    65. Xiao J, Nguyen TV, Ngui K, et al. Molecular and functional analysis of hyperpolarisa tion-activated nucleotide-gated (HCN) channels in the enteric nervous system [J]. Neuroscience. 2004;129(3):603-14.
    
    66. Tsang SY, Lesso H, Li RA. Dissecting the structural and functional roles of the S3-S4 linker of pacemaker (hyperpolarization-activated cyclic nucleotide-modulated) chan nels by systematic length alterations [J]. J Biol Chem. 2004;279(42):43752-9.
    
    67. Momin A, Cadiou H, Mason A, et al. Role of the hyperpolarization-activated current Ih in somatosensory neurons [J]. J Physiol. 2008;586(Pt 24):5911-29.
    
    68. Bender RA, Baram TZ. Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks [J]. Prog Neurobiol. 2008;86(3): 129-40.
    
    69. Romanenko VG, Nakamoto T, Catalan MA, et al. Clcn2 encodes the hyperpolarization -activated chloride channel in the ducts of mouse salivary glands [J]. Am J Physiol Gastrointest Liver Physiol. 2008;295(5):G1058-67.
    
    70. Huang J, Huang A, Zhang Q, et al. Novel mechanism for suppression of hyper -polarizationactivated cyclic nucleotide-gated pacemaker channels by receptor-like tyrosine phosphatase-alpha [J]. J Biol Chem. 2008;283(44):29912-9.
    
    71. Whitaker GM, Angoli D, Nazzari H, et al. HCN2 and HCN4 isoforms self2assemble and co-assemble with equal p reference to form functional pacemaker channels [J]. J Biol Chem, 2007, 282: 22900-22909.
    
    72. Brewster A , Bender RA , Chen Y, et al . Developmental Febrile Seizures Modulate Hippocampal Gene Expression of Hyperpolarization-activated Channels in an Isoform and Cell specific Manner [J ] . J Neurosci (S0020 - 7454) ,2002, 22 (11) :4591 - 4599.
    
    73. Sun Q , Tu HY, Xing GG, et al . Ectopic Discharges from Injured Nerve Fibers Are Highly Correlated wit h Tactile Allodynia only in Early , but Not Late , Stage in Rat s wit h Spinal Nerve Ligation [ J ] . Exp Neurol ( S0014 - 4886), 2005, 191:128 - 136.
    
    74. Dobrydnjov I , Axelsson K, Thorn SE , et al . Clonidine Combined wit h Small2dose Bupivacaine during Spinal Anesthesia for Inguinal Herniorrhaphy : A Randomized Double-blinded Study[J ] . Anest h Analg (S0003 - 2999) ,2003, 96 (5): 1496 - 1503.
    1.Maeda H,Yamagata A. Requirement of c-kit for development of intestinal pacemaker system [J]. Development, 1992,116(2) :369-375.
    2.Komuro T. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig small intestine [J]. J Auton Nerv Syst,1996,61(2) :169-174.
    3.Sanders KM.Ordog T. Development and plasticity of interstitial cells of Cajal [J].Neurogastroenterol Motil ,1999 ,11 (5) :311-338.
    4.Metzger R, Neugebauer A, Rolle U, et al. C-Kit receptor (CD117) in the porcine urinary tract [J]. Pediatr Surg Int. 2008;24(1):67-76.
    5. Hanani M,Freund HR. Interstitial cells of Cajal: their role in pacing and signal trans mission in the digestive system [J]. Acta Physiol Scand, 2000,170(3): 177-190.
    
    6. Huizinga JD,Robinson TL. The search for the origin of rhythmicity in intestinal contraction [J]. Neurogastroenterol Motil,2000,12(1):3-9.
    
    7. Torihashi S,Ward SM,Nishikawa SI,et al.C-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract [J]. Cell Tissue Res, 1995,280:97-111.
    
    8. Ishikawa K,Komuro T,Hirota S,et al. Ultrastructural identification of the c-kit-express ing interstial cells in the rat stomach:a comparision of control and Ws/Ws mutant rats [J]. Cell Tissue Res, 1997,289:137-143.
    
    9. SuzukiH.Cellular mechanisms of myogenic activity in gastric smooth muscle [J].Jpn J Physiol,2000,50(3):289-301.
    
    10. Lang RJ, Tonta MA, Zoltkowski BZ, et al. Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers [J]. J Physiol. 2006;576(Pt 3):695-705.
    11. Vannucchi MG. Receptors in interstitial cells of Cajal: Identification and possible physilological roles [J]. Microsc Res Tech, 1999,47:325-335.
    
    12. Kumuro T,Seki K,Horiguchi K. Ultrastuctual characterization of the interstitial cells of Cajal [J]. Arch Histol Cytol, 1999,62:295-316.
    
    13. Popescu LM, Gherghiceanu M, Cretoiu D, et al. The connective connection: inters titial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ [J]. J Cell Mol Med. 2005;9(3):714-30.
    
    14. Lang RJ, Klemm MF. Interstitial cell of Cajal-like cells in the upper urinary tract [J]. J Cell Mol Med. 2005;9(3):543-56. Review.
    
    15. Drake M. Interstitial cells of cajal in the human normal urinary bladder and in the bladder of patients with megacystis-microcolon intestinal hypoperistalsis syndrome [J]. BJU Int. 2004 Dec;94(9):1402.
    
    16. Salmhofer H,Neuhuber WL,Ruth P,et al. Pivotal role of the interstitial cells of cajal in the nitric oxide signaling pathway of rat small intestine.Morphological evidence [J]. Cell Tissue Res,2001,305:331-340.
    17. Wallace AS,Burns AJ. Development of the enteric nervous system,smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract [J]. Cell Tissue Res,2005,319:367-382.
    18. Biers SM, Reynard JM, Doore T, et al. The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor [J]. BJU Int. 2006;97(3):612-6.
    19. Hashitani H. Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis [J]. J Physiol. 2006;576(Pt 3):707-14.
    20. Torihashi S,Nishi K,Tokutomi Y, et al. Blockade of kit signaling induces transdifferen-tiation of interstitial cells of Cajal to a smooth muscle phenotype [J]. Gastroente-rology,1999,117:140-148.
    21. Balemba OB, Bartoo AC, Nelson MT, et al. Role of mitochondria in spontaneous rhythmic activity and intracellular calcium waves in the guinea pig gallbladder smooth muscle [J]. Am J Physiol Gastrointest Liver Physiol. 2008;294(2):G467-76.
    22. Collins C, Klausner AP, Herrick B, et al. Potential for Control of Detrusor Smooth Muscle Spontaneous Rhythmic Contraction by Cyclooxygenase Products Released by Interstitial Cells of Cajal [J]. J Cell Mol Med. 2009 Feb 20. [Epub ahead of print]
    23. Nakagawa T,Misawa H,Najima Y,et al. Absence of peristalsis in the ileum of WAV(V)mutant mice that are selectively deficient in myenteric interstitial cells of Cajal [J]. J Smooth Muscle Res,2005,41:141-151.
    24. 鄢俊安,卢根生,李龙坤等.豚鼠膀胱组织ICCs细胞间隙连接蛋白Connexin 43表达意义.第三军医大学学报,2008,30(7):561-563.
    25. Yoneda S.Effects of nifedipine and nickel on plateau potentials generated in sub-mucosal interstitial cells distributed in the mouse proximal colon [J].Smooth Muscle Res,2003,39(3):55-65.
    26. Rasmussen H, Hansen A, Smedts F, et al. CD34-positive interstitial cells of the human detrusor [J].APMIS. 2007; 115(11): 1260-6.
    27. Ward SM,Dixon RE,De Faoite,et al. Voltage-dependent calcium entry underlies pro-pagation of slow waves in canine gastric antrum [J]. J Physiol, 2004,561:793-810.
    28. Spencer NJ,Hennig GW,Smith TK. Electrical rhythmicity and spread ofaction poten tials in longitudinal muscle of guinea pig distal colon [J]. Am J Physiol Gastrointest Liver Physiol,2002,282(5):G904-917.
    
    29. Suciu L, Popescu LM, Gherghiceanu M. Human placenta: de visu demonstration of interstitial Cajal-like cells [J]. J Cell Mol Med. 2007;11(3):590-7.
    
    30. Lang RJ, Hashitani H, Tonta MA, et al. Spontaneous electrical and Ca2+ signals in typical and atypical smooth muscle cells and interstitial cell of Cajal-like cells of mouse renal pelvis [J]. J Physiol. 2007;583(Pt 3): 1049-68.
    
    31. Torihashi S,Fujimoto T,Trost C,et al. Calcium oscillation linked to pacemaking of interstitial cells of Cajal:requirement of calcium influxand localization of TRP4 in caveolae [J]. J Biol Chem,2002,277(21): 191-197.
    
    32. Smet PJ,Jonavicius J,Marshall VR, et al. Distribution of nitric oxide Synthase-immunoreactive nerves and identification of the cellular targetsof nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry [J]. Neuro -science, 1996,71(2) :337-348.
    
    33. Klemm MF,Exintaris B,Lang RJ. Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract [J]. J Physiol,1999,Pt3:867-884.
    
    34. McCloskey KD,Gurney AM. Kit positive cells in the guinea pig bladder [J]. J Urol, 2002,168(2):832-836.
    
    35. Ahmed Shafik,Olfat El-Sibai,Ali Shafik,et al. Identification of interstitial cels of Cajal in human urinary bladdenconcept of vesical pacemaker [J]. J Urology,2004,64(4): 809-813.
    
    36. Hashitani H,Fukuta H,TakanoH,et al.Origin and propagation of spontaneous excita tion in smooth muscle of the guinea-pig urinary bladder [J]. J Physiol,2001,530(Pt 2): 273-286.
    
    37. McCloskey KD. Characterization of outward currents in interstitial cells from the guinea pig bladder [J]. J Urol. 2005;173(1):296-301.
    
    38. Kubota Y, Biers SM, Kohri K, et al. Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder [J]. Neurourol Urodyn. 2006; 25(3):205-10.
    
    39. Davidson RA, McCloskey KD. Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons [J]. J Urol. 2005; 173(4): 1385-90.
    
    40. Brading AF, McCloskey KD. Mechanisms of Disease: specialized interstitial cells of the urinary tract—an assessment of current knowledge [J]. Nat Clin Pract Urol. 2005 Nov;2(11):546-54. Review.
    
    41. Johnston L, Carson C, Lyons AD, et al. Cholinergic-induced Ca~(2+) signaling in interstitial cells of Cajal from the guinea pig bladder [J]. Am J Physiol Renal Physiol. 2008;294(3):F645-55.
    
    42. McCloskey KD, Anderson UA, Davidson RA, et al. Comparison of mechanical and electrical activity and interstitial cells of Cajal in urinary bladders from wild-type and W/Wv mice [J]. Br J Pharmacol. 2009;156(2):273-83.
    1.Yanagihara K, Noma A, Irisawa H. Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments [J]. Jp-J Physiol, 1980,30(6):841-57.
    2.Hart G. The kinetics and temperature dependence of the pace-maker current if in sheep Purkinje fibres [J]. J Physiol, 1983,337:401-16.
    3.Chesnoy-Marchais D. Characterization of a chloride conductance activated by hyper -polarization in Aplysia neurones [J]. J Physiol, 1983,342:277-308.
    4.Chesnoy-Marchais D, Evans MG. Chloride channels activated by hyperpolarization in Aplysia neurones [J]. Pflugers Arch, 1986,407(6):694-6.
    5.Champigny G, Lenfant J. Block and activation of the hyperpolarization-activated inward current by Ba and Cs in frog sinus venosus [J]. Pflugers Arch,1986,407(6):684-90.
    6.Champigny G, Bois P, Lenfant J. Characterization of the ionic mechanism responsible for the hyperpolarization-activated current in frog sinus venosus [J]. Pflugers Arch, 1987,410(1-2): 159-64.
    
    7. DiFrancesco D, Tromba C. Inhibition of the hyperpolarization-activated current (if) induced by acetylcholine in rabbit sino-atrial node myocytes [J]. J Physiol, 1988,405:477-91.
    
    8. Edman A, Grampp W. Ion permeation through hyperpolarization-activated membrane channels (Q-channels) in the lobster stretch receptor neurone [J]. Pflugers Arch. 1989,413(3):249-55.
    
    9. Angstadt JD, Calabrese RL. A hyperpolarization-activated inward current in heart interneurons of the medicinal leech [J]. J Neurosci, 1989,9(8):2846-57.
    
    10. Tokimasa T, Akasu T. Cyclic AMP regulates an inward rectifying sodium-potassium current in dissociated bull-frog sympathetic neurones [J]. J Physiol, 1990,420:409-29.
    
    11. Coleman HA, Parkington HC. Hyperpolarization-activated channels in myometrium: a patch clamp study [J]. Prog Clin Biol Res. 1990;327:665-72.
    
    12. Yatani A, Brown AM. Regulation of cardiac pacemaker current If in excised membranes from sinoatrial node cells [J]. Am J Physiol, 1990,258: 1947-51.
    
    13. Denyer JC, Brown HE Pacemaking in rabbit isolated sino-atrial node cells during Cs+ block of the hyperpolarization-activated current if [J]. J Physiol, 1990,429:401-9.
    
    14. Hisada T, Ordway RW, Kirber MT, et al. Hyperpolarization-activated cationic channels in smooth muscle cells are stretch sensitive [J]. Pflugers Arch. 1991,417(5):493-9.
    
    15. Van Ginneken AC, Giles W. Voltage clamp measurements of the hyperpolarization -activated inward current I(f) in single cells from rabbit sino-atrial node [J]. J Physiol, 1991,434:57-83.
    
    16. Satoh H, Sperelakis N. Identification of the hyperpolarization-activated inward current in young embryonic chick heart myocytes [J]. J Dev Physiol, 1991,15(4):247-52.
    
    17. Frace AM, Maruoka F, Noma A. External K+ increases Na+ conductance of the hyperpolarization-activated current in rabbit cardiac pacemaker cells [J]. Pflugers Arch, 1992,421(2-3):97-9.
    
    18. Schachtman DP, Schroeder JI, Lucas WJ, et al. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA [J]. Science. 1992, 4;258:1654-8.
    
    19. Wang XJ, Golomb D, Rinzel J. et al. Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms [J]. Proc Natl Acad Sci 1995,92(12):5577-81.
    
    20. Pedarzani P, Storm JF. Protein kinase A-independent modulation of ion channels in the brain by cyclic AMP [J]. Proc Natl Acad Sci. 1995;92(25): 11716-20.
    
    21. Zaza A, Rocchetti M, DiFrancesco D. Modulation of the hyperpolarization-activated current (I(f)) by adenosine in rabbit sinoatrial myocytes [J]. Circulation. 1996, 94(4):734_41.
    
    22. Cerbai E, Pino R, Porciatti F, et al. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart [J]. Circulation. 1997;95(3):568-71.
    
    23. Gauss R, Seifert R, Kaupp UB. Molecular identification of a hyperpolarization -activated channel in sea urchin sperm [J]. Nature. 1998,393: 583-587.
    
    24. Santoro B, Liu DT, Yao H, et al. Identification of a gene encoding a hyperpolarization -activated pacemaker channel of brain [J]. Cell. 1998;93(5):717-29.
    
    25. Santoro B, Tibbs GR. The HCN gene family: molecular basis of the hyperpolarization -activated pacemaker channels [J]. Ann N YAcad Sci. 1999;868:741-64. Review.
    
    26. Luthi A, Mccormick DA. H-current : Properties of a Neuronal and Network Pacemaker [J]. Neurons, 1998, 21(1): 9-12.
    
    27. Vaccari T, Moroni A, Rocchi M, et al. The human gene coding for HCN2, a pacemaker channel of the heart [J]. Biochim Biophys Acta. 1999,1446(3):419-25.
    
    28. Richter H, Heinemann U, Eder C. Hyperpolarization-activated cation currents in stellate and pyramidal neurons of rat entorhinal cortex [J]. Neurosci Lett. 2000; 281(1):33-6.
    
    29. Southan AP, Morris NP, Stephens GJ, et al. Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells [J]. J Physiol. 2000;526 Pt 1:91-7.
    
    30. Beaumont V, Zucker RS. Enhancement of Synaptic Transmission by Cyclic AMP Modulation of Presynaptic Ih Channels [J]. Nat Neurosci, 2000, 3 (2): 133-141.
    
    31. Yu H, Wu J, Potapova I,et al. MinK-related peptide 1: A beta subunit for the HCN ion channel subunit family enhances expression and speeds activation [J]. Circ Res. 2001;88(12):E84-7.
    
    32. Stevens DR, Seifert R, Bufe B, et al. Hyperpolarization-activated Channels HCN1 and HCN4 Mediate Responses to Sour Stimuli[J] . Nature,2001,413:631- 635.
    
    33. Poolos NP, Migliore M, Johnston D. Pharmacological Upregulation of H-channeJs Reduces the Excitability of Pyramidal Neuron Dendrites [J]. Nat Neurosci,2002,5(8): 767-774.
    
    34. Zagotta WN, Olivier NB, Black KD, et al. Structural basis for modulation and agonist specificity of HCN pacemaker channels[J]. Nature. 2003,425: 200-205.
    
    35. Zhao Y, Scheuer T, Catterall WA. Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment [J]. Proc NatlAcadSci. 2004;101(51): 17873-8.
    
    36. Santoro B, Wainger BJ, Siegelbaum SA. Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction [J]. J Neurosci. 2004;24 (47): 10750-62.
    
    37. Xiao J, Nguyen TV, Ngui K, et al. Molecular and functional analysis of hyperpolarisa -tion-activated nucleotide-gated (HCN) channels in the enteric nervous system [J]. Neuroscience. 2004; 129(3):603-14.
    
    38. Tsang SY, Lesso H, Li RA. Dissecting the structural and functional roles of the S3-S4 linker of pacemaker (hyperpolarization-activated cyclic nucleotide-modulated) chan nels by systematic length alterations [J]. J Biol Chem. 2004;279(42):43752-9.
    
    39. Mistrik P, Mader R, Michalakis S, et al. The murine HCN3 gene encodes a hyper -polarization-activated cation channel with slow kinetics and unique response to cyclic nucleotides [J]. J Biol Chem. 2005;280(29):27056-61.
    
    40. Fan Y, Fricker D, Brager DH, et al. Activity-dependent decrease of excitability in rat hippocampal neurons through increases in I(h) [J]. Nat Neurosci. 2005;8( 11): 1542-51.
    
    41. Yamada R, Kuba H, Ishii TM, et al. Hyperpolarization-activated cyclic nucleotide -gated cation channels regulate auditory coincidence detection in nucleus laminaris of the chick [J]. J Neurosci. 2005;25(39):8867-77.
    
    42. Day M, Carr DB, Ulrich S, et al. Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels [J]. J Neurosci. 2005;25(38):8776-87.
    
    43. Chen X, Sirois JE, Lei Q, et al. HCN subunit-specific and cAMP-modulated effects of anesthetics on neuronal pacemaker currents [J]. J Neurosci. 2005;25(24):5803-14.
    44. Akhavan A, Atanasiu R, Noguchi T, et al. Identification of the cyclic-nucleotide-binding domain as a conserved determinant of ion-channel cell-surface localization [J]. J Cell Sci. 2005;118(Pt 13):2803-12.
    
    45. Zolles G, Klocker N, Wenzel D, et al. Pacemaking by HCN channels requires interac tion with phosphoinositides [J]. Neuron. 2006;52(6): 1027-36.
    
    46. Nikolaev VO, Bunemann M, Schmitteckert E, et al. Cyclic AMP imaging in adult card iac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2 -adrenergic receptor-mediated signaling [J]. Circ Res. 2006;99(10):1084-91.
    
    47. Yu X, Guo L, Yin G, et al. Effect of non-specific HCN1 blocker CsC1 on spatial learning and memory in mouse [J]. J Huazhong Univ Sci Technolog Med Sci. 2006;26 (2): 164-6.
    
    48. Masuda N, Hayashi Y, Matsuyoshi H, et al. Characterization of hyperpolarization -activated current (Ih) in dorsal root ganglion neurons innervating rat urinary bladder [J]. Brain Res. 2006;1096(1):40-52.
    
    49. Aponte Y, Lien CC, Reisinger E, et al. Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus [J]. J Physiol. 2006;574(Pt 1):229-43.
    
    50. Schulz DJ, Goaillard JM, Marder E. Variable channel expression in identified single and electrically coupled neurons in different animals [J]. Nat Neurosci. 2006;9(3): 356-62.
    
    51. Brager DH, Johnston D. Plasticity of intrinsic excitability during long-term depression is mediated through mGluR-dependent changes in I(h) in hippocampal CAl pyramidal neurons [J]. J Neurosci. 2007;27(51): 13926-37.
    
    52. Jung S, Jones TD, Lugo JN Jr, et al. Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy [J]. J Neurosci. 2007;27 (47):13012-21.
    
    53. Decher N, Chen J, Sanguinetti MC. Voltage-dependent gating of hyperpolarization -activated, cyclic nucleotide-gated pacemaker channels molecular coupling between the s4-s5 and c-linkers [J]. J Biol Chem. 2004; 279(14): 13859-13865.
    
    54. Ying SW, Jia F, Abbas SY, et al. Dendritic HCN2 channels constrain glutamate-driven excitability in reticular thalamic neurons [J]. J Neurosci. 2007;27(32):8719-32.
    
    55. Tsay D, Dudman JT, Siegelbaum SA. HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CAl pyramidal neurons [J]. Neuron. 2007;56(6): 1076-89.
    
    56. Maher MP, Wu NT, Guo HQ, et al. HCN channels as targets for drug discovery [J]. Comb Chem High Throughput Screen. 2009;12(1):64-72. Review.
    
    57. Biel M. Cyclic Nucleotide-regulated Cation Channels [J]. J Biol Chem. 2009; 284(14): 9017-21.
    
    58. Momin A, Cadiou H, Mason A, et al. Role of the hyperpolarization-activated current Ih in somatosensory neurons [J]. J Physiol. 2008;586(Pt 24):5911-29.
    
    59. Bender RA, Baram TZ. Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks [J]. Prog Neurobiol. 2008;86(3): 129-40.
    
    60. Romanenko VG, Nakamoto T, Catalan MA, et al. Clcn2 encodes the hyperpolarization -activated chloride channel in the ducts of mouse salivary glands [J]. Am J Physiol Gastrointest Liver Physiol. 2008;295(5):G 1058-67.
    
    61. Huang J, Huang A, Zhang Q, et al. Novel mechanism for suppression of hyper -polarizationactivated cyclic nucleotide-gated pacemaker channels by receptor-like tyrosine phosphatase-alpha [J]. J Biol Chem. 2008;283(44):29912-9.
    
    62. Campanac E, Daoudal G, Ankri N, et al. Downregulation of dendritic I(h) in CA1 pyramidal neurons after LTP. J Neurosci. 2008;28(34):8635-43.
    
    63. Yeh J, Kim BS, Gaines L, et al. The expression of hyperpolarization activated cyclic nucleotide gated (HCN) channels in the rat ovary are dependent on the type of cell and the reproductive age of the animal: a laboratory investigation [J]. Reprod Biol Endocrinol. 2008;6:35.
    
    64. Varga V, Hangya B, Kránitz K, et al. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum [J]. J Physiol. 2008; 586(16):3893-915.
    
    65. Sánchez-Alonso JL, Halliwell JV, Colino A. ZD 7288 inhibits T-type calcium current in rat hippocampal pyramidal cells [J]. Neurosci Let. 2008;439(3):275-80.
    
    66. Winograd M, Destexhe A, Sanchez-Vives MV. Hyperpolarization-activated graded persistent activity in the prefrontal cortex [J]. Proc Natl Acad Sci. 2008; 105(20): 7298 -303.
    
    67. Oertel D, Shatadal S, Cao XJ. In the ventral cochlear nucleus Kvl.1 and subunits of HCN1 are colocalized at surfaces of neurons that have low-voltage-activated and hyperpolarization-activated conductances [J]. Neuroscience. 2008;154(1):77-86.
    
    68. Barbuti A, DiFrancesco D. Control of cardiac rate by "funny" channels in health and disease [J]. Ann N Y Acad Sci. 2008;1123:213-23. Review.
    
    69. Matsuda Y, Ang FY, Nakajima K, et al. Effects of hyperpolarization-activated channel blocker ZD7288 on polar excitations of frog sciatic nerve [J]. J Physiol Sci. 2008; 58(2):99-104.
    
    70. Lyashchenko AK, Tibbs GR. Ion binding in the open HCN pacemaker channel pore: fast mechanisms to shape "slow" channels [J]. J Gen Physiol. 2008;131(3):227-43.
    
    71. Jiang YQ, Xing GG, Wang SL, et al. Axonal accumulation of hyperpolarization -activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat [J]. Pain. 2008;137(3):495-506.
    
    72. Podda MV, D'Ascenzo M, Leone L, et al. Functional role of cyclic nucleotide-gated channels in rat medial vestibular nucleus neurons [J]. J Physiol. 2008;586(3):803-15.
    
    73. Angelo K, London M, Christensen SR, et al. Local and global effects of I(h) distribu tion in dendrites of mammalian neurons [J]. J Neurosci. 2007;27(32):8643-53.
    
    74. Boyes J, Bolam JP, Shigemoto R, et al. Functional presynaptic HCN channels in the rat globus pallidus [J]. Eur J Neurosci. 2007;25(7):2081-92.
    
    75. Deng P, Zhang Y, Xu ZC. Involvement of I(h) in dopamine modulation of tonic firing in striatal cholinergic interneurons [J]. J Neurosci. 2007;27(12):3148-56.
    
    76. Sokolov S, Scheuer T, Catterall WA. Gating pore current in an inherited ion channel -opathy [J]. Nature. 2007;446(7131):76-8.
    
    77. Proenza C, Yellen G. Distinct populations of HCN pacemaker channels produce voltage-dependent and voltage-independent currents [J]. J Gen Physiol. 2006; 127(2): 183-90.
    
    78. Chen X, Shu S, Bayliss DA. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine [J]. J Neurosci, 2009,29(3):600-9.
    
    79. Maher MP, Wu NT, Guo HQ,et al. HCN channels as targets for drug discovery.Comb Chem High Throughput Screen. 2009,12(1):64-72. Review.
    
    80. Dibattista M., Mazzatenta A, Grassi F, et al. Hyperpolarization-activated cyclic nucleotide-gated channels in mouse vomeronasal sensory neurons [J]. J Neurosci, 2008,29(3):600-9.
    81. Hogan QH, Poroli M. Hyperpolarization-activated current (I(h)) contributes to excitability of primary sensory neurons in rats [J]. Brain-Res. 2008, 1207: 102-10.
    
    82. Winograd M, Destexhe A, Sanchez Vives, et al. Hyperpolarization-activated graded persistent activity in the prefrontal cortex [J]. Proc-Natl-Acad-Sci. 2008,105(20): 7298-303.
    
    83. Zha Q, Brewster AL, Richichi C, et al. Activity-dependent heteromerization of the hyperpolarization-activated, cyclic-nucleotide gated (HCN) channels: role of N-linked glycosylation [J]. J-Neurochem. 2008, 105(1): 68-77.
    
    84. Qu Y, Whitaker GM, Hove-Madsen L, et al; Hyperpolarization-activated cyclic nucleotide-modulated 'HCN' channels confer regular and faster rhythmicity to beating mouse embryonic stem cells [J]. J-Physiol. 2008, 586(3): 701-16.
    
    85. Luo L, Chang L, Brown SM, et al. Role of peripheral hyperpolarization-activated cyclic nucleotide-modulated channel pacemaker channels in acute and chronic pain models in the rat [J]. Neuroscience. 2007, 144(4): 1477-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700