水平井水力压裂数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先综述了国内外水力压裂技术研究现状和水力压裂数值模拟方法的发展过程,指出了现阶段水力压裂技术存在的问题,并对各种水力压裂数值模拟方法做了简要的评述。油井水力压裂增产措施是一个复杂的过程,相应的数学模型具有高度非线性,采用解析方法无法求解。采用有限元数值模拟方法模拟现场水力压裂裂缝扩展过程,能够对裂缝起裂和扩展的机理进行分析和解释,并可以对具体地层的压裂施工过程和裂缝形态进行预测,在理论和工程应用上都有重要的意义。
     采用损伤力学方法对水力压裂裂缝起裂和扩展机理进行了研究。随着压裂液的注入,一部分流体渗流进入地层,一部分存留在裂缝中,两部分流体共同作用使裂缝尖端的有效应力增大,当裂缝尖端的有效应力增大到地层介质的抗拉强度时介质中出现损伤,随着损伤的增加,裂尖处地层介质能够承受的有效应力随裂缝张开的位移增大而减小,直至完全破坏,失去抗拉能力。
     根据饱和多孔介质固体骨架的平衡方程和多孔介质中流体的连续性方程,建立了储层渗流应力耦合数学模型,模型中引入了Jaumann应力速率公式描述多孔介质固体骨架的有限变形效应,并考虑了初始有效应力、初始孔隙压力、初始流体密度和初始孔隙度对耦合模型的影响。基于与微分方程等价的加权余量公式,在空间域采用有限元离散,在时间域进行隐式差分格式离散,导出了以单元节点位移和单元节点孔隙压力为未知量的储层渗流应力耦合的瞬态非线性增量有限元方程。该数学模型引入假设条件少,考虑因素全面,为储层渗流应力耦合有限元方程的一般形式。
     采用大型有限元软件ABAQUS建立了水力压裂的轴对称有限元模型,对大庆油田四口水平井的压裂过程进行了数值模拟研究,其中一口水平井采用分段压裂,其余三口水平井采用限流法压裂。模型中包括射孔孔眼、套管、水泥环、油层、微环隙和横向裂缝。采用ABAQUS用户子程序UFIELD考虑了砂比变化对压裂液性能的影响。数值模拟结果输出每个压裂时刻的应力、应变、位移和孔隙压力等数据,并可以直接得到缝口压力时间历程曲线。
     对于分段压裂,由于每个压裂层段射孔孔眼数较多,射孔孔眼摩阻可以忽略不计,缝口压力等于井底压力,分段压裂施工现场可以直接测量得到井底压力曲线和地面井口压力曲线,数值模拟结果得到的缝口压力曲线和压裂施工现场的井底压力曲线吻合良好,验证了数值模型的正确性。本文采用降阻比法,结合现场压裂施工曲线数据,通过修正相关系数,提出了适用于大庆油田水平井的压裂液管柱沿程摩阻计算公式。分段压裂数值模拟输出的的缝口压力和地面压力结果与相应的现场测量数据吻合良好,验证了本文提出的压裂液管柱沿程摩阻计算公式的正确性。对于限流法压裂,射孔孔眼摩阻不可忽略。提出了释放系数和孔眼直径计算公式,在此基础上得到了射孔孔眼摩阻计算公式。限流法压裂施工现场只能够测量得到地面井口压力曲线,而数值模拟的结果却只能输出缝口压力曲线。限流法压裂的数值模拟结果与现场测量数据吻合良好,验证了本文提出的释放系数和孔眼直径计算公式的正确性。
     在上述模型的基础上通过改变某一参数的数值,进行了参数影响数值模拟研究,这些参数包括岩石渗透率、弹性模量、断裂能、初始有效应力、压裂液黏性系数等,并分析和解释了这些参数对模拟结果的影响。
     采用三维有限元数值模拟技术对大庆油用一口水平井的分段压裂过程进行了数值模拟,计算模型包括射孔孔眼、井筒、水泥环、油层、隔层、微环隙和横向裂缝,模拟了裂缝在油层和隔层中的扩展以及在微环隙(水泥环和油层之间)中的扩展,形成了典型的T型裂缝。模拟结果和现场数据吻合良好。
     考虑层状地层条件下隔层和油层的地质参数和物性参数对压裂结果(特别是裂缝高度)的影响,这些参数包括隔层地应力、隔层弹性模量、隔层抗拉强度和压裂液黏性系数。分析了这些参数对模拟结果的影响。
A comprehensive review on the state of the art in the hydraulic fracturing technology is presented. Though in the last decades, substantial effort has been devoted to develop effective hydraulic fracturing technology, there are still many problems remain. Since the hydraulic fracturing process is very complicated, there is tremendous challenge in modeling hydraulic fracturing process, and any analytic solution is impossible. In this thesis, the finite element method is adopted to model the hydraulic fracturing process. The mechanism of fracture initiation and propagation can be explained, and the fracture geometry can be predicted by numerical simulating of hydraulic fracturing with the finite element method, which is of great value in theory and application.
     Damage mechanics theory is adopted to study the mechanism of fracture initiation and propagation. During the injection of fracturing fluid, part of the fracturing fluid permeates into the formation, the other remains in the fractures. The two parts of the fracturing fluid together increase the effective stress at the fracture tip. Once the effective stress at the fracture tip reachs the corresponding tensile strength, as the further increasement of damage, the value of the effective stress that the fracture tip can hold decreases as the opening displacement increases, until compete damage occurs.
     From the equilibrium equations of the solid skeleton and continuity equations of fluid for saturated porous media, a mathematical model of reservoirs is constructed. In the model, Jaumann stress rate formula is introduced to address the finite deformation effect of the solid skeleton of porous media. The parameters including the in-situ stress, initial pore pressure, initial fluid density and initial porosity of a reservoir layer are also taken into account in the model. With finite element discretization in the space domain and implicit differential discretization in the time domain, an instantaneous nonlinear fluid-solid coupling incremental finite element formula is derived based on the weighted residual formula for the equivalent equations of the mathematical model. The degrees of freedom of the finite element formula include nodal displacements and nodal pore pressures. This model gains its generality due to few simplification hypothesis and comprehensive factors being taken into account.
     An axisymmetric model is contructed by the FEA software ABAQUS, numerical simulation study is carried out on four oil wells in Daqing Oilfield with the model. Among the four oil wells, one is staged fractured, and the others are limited entry fractured. The model consists of perforation, wellbore, cement casing, oil layer, micro-annulus and transverse fracture. The effect of volume fraction of sand on the properties of fracturing fluid is modeled with the user subroutine UFIELD of ABAQUS. The numerical simulations yield the results including stress, strain, displacement, pore pressure, fracture geometry, and history curves of pressure at the facture mouth.
     For staged fracturing, since the number of perforations is large, the perforation friction is negligible, and the pressure at the fracture mouth equals to bottomhole pressure. The pressures at bottomhole and on surface for staged fracturing can be directly measured in filed treatment. The pressure curve at the fracture mouth putputed from numerical simulation fits well with corresponding field data, which validates the model. In this paper, the drag ratio formula is adopted to calculate the pipe string friction by combining field treatment curves and correcting corresponding coefficient of drag ratio formula. From the obtained data of the pipe string friction, a formula calculating the pipe string friction by inverse seeking the parameters in the drag ratio formula is proposed. There is a good coincidence between simulated pressure at the fracture mouth and field measured bottomhole pressure, which verifies the correctness of the proposed formula of pipe string friction. For limited entry fracturing, the perforation friction is significant. A calculation formula for perforation friction based on the calculation methods of discharge coefficient and perforation diameter is derived. In limited entry fracturing, only the surface pressure can be obtained from field measured data, the surface pressure can be got from simulation results. The agreement of surface pressures from field treatment and numerical simulation validates the calculation formula of the proposed discharge coefficient and perforation diameter.
     By adjusting the parameters in the aforementioned model, a parametric study is carried out to ascertain the effect of the parameters. The parameters includes the rock permeability, the elastic modulus, the fracture energy, the magnitude and direction of in-situ stress as well as the viscosity coefficient of fracturing fluid. The mechanism of parameters effect on simulation results is presented.
     Furthermore three-dimensional finite element numerical simulation technology is carried out for simulating the staged fracturing process of an oil well in Daqing Oilfield with FEA software ABAQUS. The proposed numerical model includes perforation, wellbore, cement casing, oil layer, barrier layer, micro-annulus and transverse fracture. Micro-annulus fracture and transverse fracture generate simultaneously and a typical T-shaped fracture occurs at the early stage of treatment history, then the micro-annulus disappears and only the transverse fracture remains and propagates. The simulation results are in good coincidence with field measurement data.
     The effect of geographic and petrophysical parameters of oil and barrier layers under the layered geographic condition on the fracture geometry (especially the fracture height), bottomhole pressure and pore pressure of the formation is studied. These parameters include the in-situ stress, elastic moduli and tensile strengths in barrier layer, and the viscosity of the fracturing fluid. The mechanism of the effect of these parameters on simulation results is analyzed.
引文
[1]陈勉,金衍,张广清.石油工程岩石力学[M].北京:科学出版社,2008,162-163.
    [2]Adachi, J., Siebrits, E., Peirce, A., et al. Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics & Mining Sciences.2006,44:739-757.
    [3]Economides, M.J., Nolte, K.G. Reservoir Stimulation[M].3rd ed. Old Tappan, NJ:Prentice Hall Inc,2002,133-141.
    [4]Economides, M.J., Nolte, K.G. Reservoir Stimulation[M].3rd ed. Old Tappan, NJ:Prentice Hall Inc,2002,20-30.
    [5]刘振宇,刘洋,贺丽艳,等.人工压裂水平井研究综述[J].大庆石油学院学报,2002,26(4):96-99.
    [6]Grebe, J.J., Stoesser, M. Increasing crude production 20,000,000 bbl from established fields[J]. World Petroleum J,1935,473-482.
    [7]Veatch, R.W., Moschovidis, Z.A., Fast, C.R. An overview of hydraulic fracturing[R]. In: Gidley, Holditch, Nierode Veatch, editors. Recent advances in hydraulic fracturing. Monograph.12. Richardson:Society of Petroleum Engineers; 1989.
    [8]Economides, M.J., Nolte, K.G. Reservoir Stimulation[M].3rd ed. Old Tappan, NJ:Prentice Hall Inc,2002,1-7.
    [9]姜瑞忠,蒋廷学,汪永利.水力压裂技术的近期发展与展望[J].石油钻采工艺,2004,26(4):52-56.
    [10]Robert, S.S. Oil Well Stimulation[M].刘德铸译.北京:石油工业出版社,2003.
    [11]蒋金宝,林英松,阮新芳,等.低渗透油藏改造技术的研究与进展[J].钻采工艺,2005,28(5):50-53.
    [12]杨秀夫,刘希圣,陈勉,等.国内外水压裂缝几何形态模拟研究的发展现状[J]. West-China Exploration Engineering.1997,9(6):8-11.
    [13]王晓泉,陈作,姚飞.水力压裂技术现状及技术展望[J].钻采工艺,1998,21(2):29-34.
    [14]Espina, C., Baldassa, D. Hydraulic fracturing:Modeling and Optimization Using Latest Generation Logs and Conductivity Optimization Technologies[R].2009, SPE 119460-MS.
    [15]McDaniel, R.R., Holmes, D.V., Borges, J.F. Determining Propped Fracture Width From a New Tracer Technology[R].2009, SPE 119545-MS.
    [16]Khristianovich, S.A., Zheltov, Y.P. Formation of vertical fractures by means of highly viscous liquid[C]. Proceedings of the Fourth World Petroleum Congress, Section Π,3-5.
    [17]Khristianovich, S.A., Zheltov, Y.P. Formation of vertical fractures by means of highly viscous liquid[C]. Proceedings of the Fourth World Petroleum Congress, Section Π,23-26.
    [18]Griffith, A.A. The phenomena of rupture and flow in solids[M]. Phil. Trans. Royal Society of London,1921:163-198.
    [19]Geertsma, J., Deklerk, F. A rapid method of predicting width and extent of hydraulically induced fractures[J]. JPT,1969,21(12):1571-1581
    [20]Daneshy, A.A. On the design of vertical hydraulic fractures[J]. JPT,1973,25:83-97.
    [21]Daneshy, A.A. Numerical solution of vertical hydraulic fractures[J]. JPT,1978,28: 132-140.
    [22]Perkins, T.K., Kern, L.R. Width of hydraulic fracture[J]. JPT,1961,13:937-949.
    [23]Nordgren, R.P. Propagation of vertical hydraulic fracture[J]. SPE.J,1978,12:306-314.
    [24]Carter, R.D. Derivation of the general equation for estimating the extent of the fracture area[J]. Drilling and Prod. Prac. API,1957:261-270.
    [25]Geertsma, J. A comparison of the theory equilibrium cracks[J]. Advance in Applied Mechanics.1962,7:55-60.
    [26]Geertsma, J., Haafkens, R. Comparison of the theories to predict width and extent of vertical hydraulically induced fractures[C].31st Annual Petroleum Mechanical Engineering Conference,1976.
    [27]Advani, S.H., Lee, J.K. Finite element model simulations associated with hydraulic fracturing[R]. SPE. J,1982,22:209-218.
    [28]Cleary, M. P. Comprehensive design formulae for hydraulic fracturing[R]. SPE, Sept.1980, No.9259.
    [29]Settari, M.P., Cleary. Development and testing of a pseudo-three-dimensional model of hydraulic fracture geometry[R]. SPE 10505,1985.
    [30]Yew, C.H., Koelsch, T.A. Study on the mechanics of hydraulic fracturing[R]. EXXON Production Research Company Special Report. EPR.15PR.80.
    [31]Lu, C.K., Yew, C.H. On bonded half-planes containing two arbitrarily oriented cracks sturdy of containment of the hydraulically induced fractures[R]. SPE 11871,1983.
    [32]Bouteca, M.J.3D analytical model for hydraulic fracturing:Theory and field test. SPE 13276,1984.
    [33]王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998.
    [34]杨利波.拟三维水力压裂设计fD].北京:中国石油大学硕士学位论文.1988.
    [35]刘翔鄂.水力压裂裂缝垂向延伸机理研究报告[R].1988.
    [36]陈勉,陈志喜,黄荣樽,等.非均匀地层水力压裂研究[J].东北大学学报(自然科学版),1994,15:309-312.
    [37]陈治喜.水力压裂裂缝起裂和扩展[D].北京:中国石油大学博士论文,1996.
    [38]Kassir, M.K., Sih, G.C. Three-dimensional stress distribution around an elliptical crack under arbitrary loadings[J]. Journal of Applied Mechanics.1966,33:601-611.
    [39]Cruse, T.A. Numerical solutions in three dimensional elastostatics[J]. Int. J. Solids Structures,1969,5:1259-1274.
    [40]Bui, H.D. An Integral equations method for solving the problem of a plane crack of arbitrary shape[J]. J. Mech. Phys. Solids,1977,25:29-39.
    [41]Weaver, J. Three-dimensional crack analysis [J]. Int. J. Solids Structures,1977,13:321-330.
    [42]Clifton, R.J., Abou-Sayed, A.S. On the computation of the three-dimensional geometry of hydraulic fractures[R]. SPE 9843,1979.
    [43]Bouteca, M.J.3D analytical model for hydraulic fracturing:theory and field test[R]. SPE 13276,1984.
    [44]孙聚晨,等.全三维水力压裂程序的研制报告[R].1996.
    [45]陈卫忠,伍国军,贾善坡.ABAQUS在隧道及地下工程中的应用[M].北京:中国水利水电出版社,2010,228-232.
    [46]王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社.2006,148-153.
    [47]Christie, I.F. A re-appraisal of merchant's contribution to the theory of consolidation. Geotechnique,1964,14(4):309-320.
    [48]Bui, H.N., Small, J.C., Hull, T. Secondary compression of clays[M]. Proc. ASCE. JSMFD, 1961,87(SM4):1081-1088.
    [49]陈宗基.固结及次时间效应的单维问题[J].土木工程学报,1958,5(1):1-10.
    [50]Rendulic, L. Proenziffer and porenwasserdruck in tonen[J]. Bauingenieur,1936,7:51-53.
    [51]Barron, R.A., Consolidation of fine-grained soils by drain wells[J]. Trans, ASCE,1948,113: 718-724.
    [52]Biot., M.A. General theory of three-dimensional consolidation[J]. J. Appl. Phys,1941,12: 155-164.
    [53]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [54]李锡夔,朴光虎,邓子辰.考虑固结效应的结构-土壤相互作用分析及其有限元解[J].计算结构力学及其应用,1990,7(3):1-11.
    [55]张洪武,钟万勰,钱令希.饱和土壤固结分析的算法研究[J].力学与实践,1993,15(1):20-22.
    [56]张洪武,钟万勰,钱令希.土固结分析的一种有效算法[J].计算结构力学及其应用,1991,8(4):389-395.
    [57]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994.13(4):299-308.
    [58]黎水泉,徐秉业.双重介质裂缝型油气藏油水两相流动与固体变形耦合数学模型[J].天然气工业,1999,19(4):43-45.
    [59]仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报,2000,16(1):1-5.
    [60]冉启全,顾小芸.弹塑性变形油藏中多相渗流的数值模拟[J].计算力学学报,1999,16(1):24-31.
    [61]董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报,1999,19(1):64-70.
    [62]薛世峰,宋惠珍.非混融饱和两相渗流与孔隙介质耦合的理论研究-方程解耦与有限元公式[J].地震地质,1999,21(3):253-260.
    [63]劭国建.岩体初始地应力场的反演回归分析[J].水利水电科技进展,2000,20(5):36-38.
    [64]陈卫忠,伍国军,贾善坡.ABAQUS在隧道及地下工程中的应用[M].北京:中国水利水电出版社,2010,458-461.
    [65]赵奎,金解放,等.声发射测量原岩应力研究现状及进展[J].矿业快报,2005,438(12):4-6.
    [66]张书瑞,翟阳,等.应用录井资料求地应力剖面[J].录井资料,2003,14(3):36-40.
    [67]张广清,金衍,陈勉.利用围压下岩石的凯泽效应测定地应力[J].岩石力学与工程学报,2002,21(3):360-363.
    [68]周小平,王建华.测量地应力的新方法[J].岩土力学,2002,23(3):316-320.
    [69]景锋,梁合成,边智华,等.地应力测量方法研究综述[J].华北水利水电学院学报,2008,29(2):71-74.
    [70]欧阳建,王贵文.电测井地应力分析及评价[J].石油勘探与开发,2001,28(3):92-94.
    [71]张筱,林绍文.利用测井进行地层弹性特征及应力场分布[J].测井技术,2001,25(6):467-472.
    [72]黄忠桥,康广逵.应用声发射资料计算地应力的方法[J].特种油气藏,2003,10(4):4-6.
    [73]马凤良,何绍勇,尹向阳.水压致裂法测量地应力[J].西部钻探工程,2009,1:86-88.
    [74]王鸿勋.水力压裂原理[M].北京:石油工业出版社,1987,14-15.
    [75]杨秀夫,刘希圣,陈勉,等.国内外水力压裂技术现状及发展趋势[J].钻采工艺,1998,21(4):21-25.
    [76]任占春,孙慧毅,秦利平.羟丙基瓜尔胶压裂液的研究及应用[J].石油钻采工艺,1996,18(1):82-88.
    [77]陈俊,张劲军.用表观黏度计算幂律流体摩阻的方法及其应用[J].西安石油学院学报, 2003,18(6):58-62.
    [78]Resende, P.R., Escudier, M.P., Presti, F., et al. Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers[J]. International Journal of Heat and Fluid Flow,2006,27:204-219.
    [79]Pandey, V.J. Friction pressure correlation for guar-based hydraulic fracturing fluids[R]. SPE 71074,2001.
    [80]Pandey, V.J. and Robert, J.A. New correlation for predicting frictional pressure drop of proppant-laden slurries using surface pressure data[R], SPE 73753,2002.
    [81]高鹏,张劲军.幂律流体管内紊流摩阻系数计算式评价[J].油气储运,2005,24(9):13-19.
    [82]Pandey, V.J., Naval Goel. Effect of well deviation on slurry friction pressures[R]. SPE 80898,2003.
    [83]McElfresh, P.M., Wood, W.R., Williams, C.F, et al. A study of the friction pressure and proppant transport behavior of surfactant-based gels[R]. SPE 77603,2002.
    [84]秦同洛.关于低渗透油田的开发问题[J].断块油气田,1994,1(3):21-23.
    [85]史成思,潘增耀,赵继勇.特低渗透油田开发的主要做法[J].低渗透油气田,2000,5(3):57-69.
    [86]熊维亮,潘增耀,王斌.特低渗透油田裂缝发育区剩余油分布及调整技术[J].石油勘探与开发,1999,26(5):46-48.
    [87]姚约东,葛家理.石油渗流新的运动形态及其规律[J].重庆大学学报,2000,23(增):150-153.
    [88]Rabaa, W.E. Experimental study of hydraulic fracture geometry initiated from horizontal wells[R]. SPE 19720,1989.
    [89]Nolte, K G. Application of fracture design based on pressure analysis[R]. SPE 13393,1988.
    [90]Aud, W.W., Wright, T.B., Cipolla, C.L. et al. The effect of viscosity on near-wellbore tortuosity and premature screenouts[R]. SPE 28492,1994.
    [91]'Cleary, M.P., Johnson, D.E., Kogsboll, H.H. et al. Field implementation of proppant slugs to avoid premature screen-out of hydraulic fracture with adequate proppant concentration[R]. SPE 25892,1993.
    [92]黄筑平.连续介质力学基础[M].北京:高等教育出版社,2003.
    [93]胡成栋.张量分析与连续介质力学[M].长春:吉林大学出版社,1991.
    [94]Belytschko, T., Liu, W.K., Moran, B. Nonlinear Finite Element for Continua and Structure[M]. New York:John Wiley &. Sons Ltd,2000.
    [95]Wu, T.H. Soil Mechanics[M]. Allyn and Bacon, Boston,1976.
    [96]Benzeggagh, M.L., Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology,1996,56:439-449.
    [97]Camanho, P.P., Davila, C.G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials[J]. NASA/TM-2002-211737,2002,1-37.
    [98]Van der Meer, F.P., Sluys, L.J. A phantom node formulation with mixed mode cohesive law for splitting in laminates[J]. International Journal of Fracture,2009,158:107-124.
    [99]Willingham J D, Tan H C, Norman L R. Perforation friction pressure of fracturing fluid slurries[R].SPE 25891,1993.
    [100]蒋廷学,汪永利,丁云宏,等.由地面压裂施工压力资料反求储层岩石力学参数[J].岩石力学与工程学报,2004,23(4):2424-2429.
    [101]Romero, J., Mack, M.G., Elbel, J.L. Theoretical model and numerical investigation of near-wellbore effects in hydraulic fracturing[R]. SPE 30506,1995.
    [102]Cramer, D. Limited entry extended to massive hydraulic fracturing[J]. Oil and Gas Journal, 1987,85(50):40-47.
    [103]郭建春,杨立君,赵金洲,等.压裂过程中孔眼摩阻计算的改进模型及应用[J].天然气工业,2005,25(5):69-71.
    [104]王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998:30-33.
    [105]陈俊,张劲军.用表观黏度计算幂律流体摩阻的方法及其应用[J].西安石油学院学报,2003,18(6):58-62.
    [106]肖荣鸽,王立洋,邓志安,等.凝析天然气管道分层流动相间水力摩阻系数计算式评价[J].西安石油大学学报,2006,21(3):55-57.
    [107]Lord, D.L., McGowen, J.M. Real-time treating pressure analysis aided by new correlation[R]. SPE 15367,1986.
    [108]杜发勇,张恩仑,张学政,等.压裂施工中管路摩阻计算方法分析与该井意见探讨[J].钻采工艺,2002,25(5):41-43.
    [109]Clark, P., Quadir, J. Proppant transport in hydraulic fractures:a critical review of particle setting velocity equations[R]. SPE 9866,1981.
    [110]Barree, R.D., Conway, M.W. Experimental and numerical modeling of convective proppant transport[R]. SPE 28564,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700