球墨铸铁高温塑性变形行为研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球墨铸铁作为一种廉价的结构材料,因其良好的耐磨性、减震性、低缺口敏感性以及优良的切削加工性能和铸造性能,已广泛用于汽车、农业机械、机床、冶金机械等多个领域,具有重要的应用价值和广阔的应用前景。目前,几乎所有的球墨铸铁件都是直接铸造成型或经机加工后使用,为了达到强度的特殊要求,常规的处理方法是在球墨铸铁冶炼过程中添加一些合金元素或者增加后续热处理工艺。但是,前者大大增加了球墨铸铁的生产成本,后者耗时、耗能,且对环境污染严重。而塑性加工由于具有较高的生产效率和材料利用率,并使得铸坯结构致密、粗晶破碎细化和均匀,从而显著提高机械性能。因此,通过塑性加工使球墨铸铁获得近(净)终成形是提高球墨铸铁性能,扩展其应用领域的有效途径。
     本文以工业中最常用的QT450-10球墨铸铁为实验材料,利用物理模拟实验系统地研究了球墨铸铁的塑性变形行为,分析了高温压缩过程中金属基体以及第二相石墨颗粒的变化规律,进而探讨不同变形参数下微观组织的演变机制,利用优化的最佳变形温度确定了QT450-10高温锻造和高温轧制工艺,并尝试了锻造余热淬火在球墨铸铁磨球上的应用。主要研究结果如下:
     利用物理模拟实验系统地研究了不同变形参数下QT450-10的高温塑性变形行为。通过真应力-应变曲线分析可知,球墨铸铁热变形过程中出现明显的加工硬化和加工软化现象;曲线上峰值应力在不同应变速率下均随温度的增加而下降,而峰值应变随温度的增加呈先增加后下降的趋势。QT450-10在650-950℃温度区间,应变速率为0.01-10s~(-1)时的热压缩变形激活能Q=391.52 kJ/mol,流变应力σ与Z参数表述的流变应力方程为
     其中Z参数可表述为:
     发生动态再结晶的临界应变为
     对球墨铸铁变形试样的基体组织观察分析表明:球墨铸铁在变形过程中存在形变诱导相变现象。球墨铸铁中形变诱导铁素体转变温度比常规先共析铁素体转变温度提高150℃,且诱导相主要在变形的石墨颗粒周围以碎布块状形态存在;形变诱导珠光体转变开始温度较未变形试样提高43℃,经奥氏体形变诱导珠光体转变后,珠光体发生球化,即碳化物相为均匀分布于铁素体基底的极细的球状颗粒沉淀,其平均尺寸仅为338nm,而铁素体基底分割为许多等轴的亚晶粒,其平均直径仅为1.16μm。
     研究了变形参数影响石墨颗粒演变的规律,结果表明:随温度的升高,石墨体积百分含量和石墨颗粒形状因子β(石墨短轴/长轴)呈明显下降趋势,而相邻石墨间距则逐渐增加;当应变速率增加时,石墨间距略有下降,而石墨体积百分含量和石墨颗粒形状因子β均无明显变化;随着应变量的增加,相邻石墨间距和石墨颗粒形状因子β呈明显下降趋势,而石墨体积百分含量基本不变。
     计算表明,石墨由球形演变为椭球状后,当外界拉应力方向与椭球长轴平行时,石墨形状改变可缓和石墨对基体的应力集中效应。球铁热变形过程中,石墨发生塑性变形是因受到基体的摩擦力,导致石墨沿主流变应力方向伸长,即最终的石墨破碎是拉伸断裂而非脆性断裂,当变形量大于石墨颗粒破断的最小变形量(ε>ε_(min))时石墨随即发生破裂。
     采用逐步逼近法得出QT450-10最佳压力加工温度区间。在该温度区间设计了球墨铸铁的高温锻造和高温轧制工艺。锻造过程中,球墨铸铁发生奥氏体变形后的相变,得到了间距小于0.319μm的细珠光体,较常规正火珠光体片层间距(0.46μm)小30.6%。尽管锻件较铸态试样的伸长率降低了14%,但是抗拉强度却由原来的560 MPa增加到905 MPa,提高了61.6%,抗弯强度增加了61.2%。当球墨铸铁轧坯的压缩比达到8.83(压缩量89%)时仍保持良好板型,并未出现破碎现象,说明球墨铸铁具有良好的高温可塑性。轧坯中心部位珠光体含量低于边缘部分,石墨由球形演变为片层状。优化轧制参数后,轧坯抗拉强度较铸态球铁提高了26.5%,尤其在平行轧制方向取样的冲击功达到34 J。轧板出现各向异性,板坯平行轧制方向(纵向)的抗拉强度比垂直轧制方向(横向)高18.9%,延伸率高13.3%。
     最后,本文进行了球墨铸铁磨球的锻造余热淬火实验,与常规淬火球墨铸铁磨球以及含铬铸铁磨球相比,锻造余热淬火球墨铸铁磨球的马氏体组织由于继承了形变奥氏体中的位错结构而得到充分细化,磨球边缘硬度值比常规淬火磨球的高5.3%。并且锻造余热淬火磨球冲击韧性是常规淬火磨球和高铬铸铁磨球的3倍。锻造余热淬火的磨球磨损率比常规淬火球墨铸铁磨球的磨损率低53.1%,比含铬铸铁磨球的磨损率低51.1%。摩擦系数比常规淬火球墨铸铁磨球的低7.4%,比含铬铸铁磨球的低9.6%。
Nodular cast iron is widely used as a structural material in various fields, such as automotive industry, agricultural machinery, machine tools and metallurgy and so on, because of its several advantages over steel including wear resistance, shock absorption, machining, casting abilities, especially from the economical point of view. At present, almost all of the nodular cast iron is used directly as cast or after simply machining. Although its mechanical properties can be improved via alloying and heat treatments usully, alloying increases the opration costs and heat treatments leads to inefficient production, energy dissipation and environmental pollution. Compared with these two former processes, plastic deformaiton method is a more efficient processing technology which leads to a product with optimal properties, not only for dimensional precision and appearance, but also with respect to the mechanical and physical properties. So the applications of nodular cast iron will be extended significantly when the plastic deformation method is employed.
     In the present paper, the hot deformation behaviors of nodular cast iron were studied systematically by physical simulation. According to the analysis of the graphite particles morphology evolution and phase transition during the plastic deformation process, it can be seen that the final microstructure had a close relationship with deformation parameters, such as deformation temperature, strain rate and strain. In addition, the die forging and hot rolling processes parameters were optimized. A new quenching process for nodular cast iron (QT450-10) named forge-quenching heat treatment was developed, and preliminary process specification was proposed. Main research details and results are as follows:
     In order to study the hot deformation behaviors of nodular cast iron (QT450-10), isothermal compression tests were carried out with a Gleeble 1500 over a range of temperature from 650 to 950℃and constant strain rates from 10~(-2) to 10 s~(-1). The flow curves are marked by a peak stress and softening which decline as temperature rises. The peak stress diminishes with the increase of temperature and the decrease of strain rate while the peak strain presents a maximum with rise in temperature. The activation energy is 391.52 kJ/mol for nodular cast iron in peak stress. The flow stress (σ) of nodular cast iron was described well by the Zener-Hollomon parameter (Z)
     Where, Z =εexp(?)
     The relationship of critical strain for dynamic recrystallization (DRX) initiation and peak strain was described byε_c=0.61ε_p
     Microstructure analysis showed that the phase transition occurs during the compression process of nodular cast iron. The transformation start temperature of ferrite and pearlite are raised 150℃and 43℃, respectively. In addition, the polygonal type ferrite emerges, and the pearlite spheroidizes, that is to say, the microstructure consists of ferrite and partially spheroidized cementite. The average size of ferrite grain is about 1.16μm and the granular cementite distributed at the ferrite grain boundaries is only 338 nm.
     The graphite particles morphology evolution is investigated. The results show that both of the volume fraction of graphite and shape ratio (major axis/minor axis) decrease while the space between two graphite particles increase as the temperature increases; when the strain rate increases the space between two adjacent graphite particles becomes smaller slightly, and the volume fraction of graphite and shape ratio are invariant; the space and the volume fraction of graphite decreases significantly while the volume fraction of graphite is constant with the increase of the strain.
     The results of mechanical calculation show that the stress concentration of nodular cast iron caused by graphite particles can be weakened when the direction of applied stress is parallel to the major axis of elliptic graphite compared with the nodular graphite particles. Because of the friction between the matrix and the graphite, the graphite becomes elongated on the direction of stress until the graphite occurs fracture when the strain is higher than the minimum strain (ε>ε_(min)).
     The optimized hot working temperatures of QT450-10 are determined by successive approximation method. In comparison with the interlamellar spacing (0.46μm) of pearlite in nodular cast iron after common normalizing, the finer pearlite whose interlamellar spacing is < 0.319μm is obtained during the die forging process. Although the elongation of forged nodular cast iron decreases 14%, the tensile strength and the bending strength are increased 61.6% and 61.2%, respectively. Nodular cast iron also showed good workability since the rolled nodular cast iron still kept plate without any shatter with the reduction of 89% on the compression direction. Besides, the nodular cast iron paltes show anisotropic mechanical properties. For example, the tensile strength and the elongation of samples parallel to the rolling direction are higher 18.9% and 13.3% than these values of samples perpendicular to the rolling direction, respectively, as compared with the samples perpendicular to the rolling direction.
     At last, the forge-quenching treatment test of nodular cast iron was designed. The results show that an existence of finer acicular martensitic structure and prolate ellipsoids graphite particles. The hardness and impact tests results show that the forge-quenched nodular cast iron displays superior mechanical properties to conventional quenched nodular cast iron. The wear rates of forge-quenched nodular cast iron are lower 53.1% and 51.1% than conventional quenched nodular cast iron and white cast iron, respectively. Meanwhile, the friction coefficients are also lower 7.4% and 9.6% than conventional quenched nodular cast iron and white cast iron, respectively.
引文
[1] Gangnebin A P. Ductile Cast Iron-A new engineering material [J]. Iron Age. 1949, (2):77-87.
    [2] Morrogh H, Williams W J. The Production of Nodular Structure in Cast Iron [J]. Journal of the Iron and Steel Instilute. 1948, (3):308.
    [3] Muszka K, Hodgson P D, Majta J. Study of the effect of grain size on the dynamic mechanical properties of microalloyed steels [J]. Materials Science and Engineering A. 2009,500(1-2):25-33.
    [4] Pozuelo M, Carreno F, Cepeda-Jimenez C M, et al. Effect of Hot Rolling on Bonding Characteristics and Impact Behavior of a Laminated Composite Material Based on UHCS-1.35 Pct C [J]. Metallurgical and MaterialsTransactions A. 2008,39(3):666-671.
    [5] Jiang L, Perez-Prado M T, Gruber P A, et al. Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding [J]. Acta Materialia. 2008,56(6): 1228-1242.
    [6] Zmik J, Kvackaj T, Sripinproach D, et al. Influence of plastic deformation conditions on structure evolution in Nb-Ti microalloyed steel [J]. Journal of Materials Processing Technology. 2003, 133(1-2):236-242.
    [7] Tsuji N, Ueji R, Minamino Y, et al. A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property [J]. Scripta Materialia. 2002,46(4):305-310.
    [8] Dzubinsky M, Kovac F, Petercakova A. New form of equation for deformation resistance prediction under hot rolling industrial conditions [J]. Scripta Materialia. 2002,47(2):119-124.
    [9] 郝石坚.现代铸铁学[M].中国:冶金工业出版社,2004.
    [10] 中国机械工程学会铸造分会.铸造手册(铸铁)[M].北京:机械工业出版社2002.
    [11] Gilbert G N J. Engineering data on nodular cast irons. [M]. B. C. I. R. A, 1968.
    [12] Walton, Charles F. Iron Casting Handbook [M]. Ohio: Iron Castings Society Inc. ,1981.
    [13] Angus H T. Cast Iron Phsical and Engineering Properties [M]. London: Btterworths, 1976.
    [14] 李克锐,曾艺成,张忠仇.我国球铁生产应用的进展[C].2008年中国铸造活动周,2008:12-21.
    [15] 徐俊洪.铁素体球墨铸铁的生产应用实践[J].四川工程职业技术学院学报.2008,(3):66-68.
    [16] 赵书城.球墨铸铁在东风汽车公司的发展回顾[J].中国铸造装备与技术.2006,(3):21-25.
    [17] 刘光华,张永秀,尹晓舜,等.球墨铸铁曲轴应用前景的评估[J].现代铸铁.2005,(1):1-7.
    [18] 王成刚.球墨铸铁曲轴的铸造与发展[J].汽车工艺与材料.2006,(3):1-3.
    [19] 盛达.球墨铸铁工业生产60年的发展[J].现代铸铁.2009,(2):56-60.
    [20] 李润生,陈永成.广东铸铁工业的现状与发展趋势[J].机电工程技术.2009,(4):13-16.
    [21] 田永生.铸态铁素体球铁薄壁件的试生产[J].铸造技术.1998,(6):41-42.
    [22] 陈其善.Si、Mn对厚断面铁素体球铁组织及机械性能的影响[J].铸造技术.1995,(2):10-13.
    [23] 任善之.大型后壁球铁铸件生产现状及展望[C].1998:12.
    [24] 陈子华.厚大球墨铸铁件的生产技术[C].2008:35-48.
    [25] Imasogie B I, Afonja A A, Ali J A. Properties of as-cast and heat-treated nodular graphite cast irons, melts treated with CaSi-CaF_2 alloy [J]. Scandinavian Journal of Metallurgy. 2001, 30(2):91.
    [26] 郝保红.,陈方方.,李艳.球墨铸铁的球化机理及其性能研究[J].北京石油化工学院学报.2008,15(3):52-55.
    [27] Lewensky J A. Conference examinet the future of ductile iron production [J]. Modern Casting. 1999, (1):54-56.
    [28] Fras E, Gorny M, Kapturkiewicz W, et al. Chilling Tendency and Chill of Cast Iron [J]. Tsinghua Science & Technology. 2008,13(2):177-183.
    [29] Ghobeity A, Deakin A S, Dryden J R. Thermal field around a partially debonded spherical particle [J]. International Journal of Heat and Mass Transfer. 2007, 50(3-4):680-686.
    [30] Baranov A A, Baranov D A. Heat Treatment of a Deformed High-Strength Cast Iron [J]. The Physics of Metals and Metallography. 2005,100(1):91-98.
    [31] Yang J, Putatunda S K. Improvement in strength and toughness of austempered ductile cast iron by a novel two-step austempering process [J]. Materials & Design. 2004,25(3):219-230.
    [32] Umemoto M, Ohtsuka H, Tamura I. Transformation to Pearlite from Work-hardened Austenite [J]. Transactions ISIJ. 1983,23:775-784.
    [33] Krauss G. Heat treatment and processing principles [M]. Ohio: Materials Park, 1989.
    [34] Wallace D H. Foundry developments [J]. Foundry. 1966,94(10): 194-196.
    [35] Janowak J F, Gundlach R B. Development of a dutile iron for commercial austempering [J]. Transaction of AFS. 1983, (97):377-388.
    [36] Chang L C. An Analysis of Retained Austenite in Austempered Ductile Iron [J]. Metallurgical and Materials Transactions A. 2003, 34A(2):211-217.
    [37] Yescas M A, Bhadeshia H K D H. Model for the maximum fraction of retained austenite in austempered ductile cast iron [J]. Materials Science and Engineering A. 2002, 333(1-2):60-66.
    [38] Shah S M, Verhoeven J D, Bahadur S. Erosion behavior of high silicon bainitic structures: Ⅰ: Austempered ductile cast iron [J]. Wear. 1986,113(2):267-278.
    [39] Yescas M A, Bhadeshia H K D H, MacKay D J. Estimation of the amount of retained austenite in austempered ductile irons using neural networks [J]. Materials Science and Engineering A. 2001, 311(1-2):162-173.
    [40] Wu C Z, Chen Y J, Shih T S. Phase transformation in austempered ductile iron by microjet impact [J]. Materials Characterization. 2002,48(1):43-54.
    [41] Zrnik J, Stejskal O, Nov Z, et al. Structure dependence of the TRIP phenomenon in Si-Mn bulk steel [J]. Materials Science and Engineering A. 2007, 462(1-2):253-258.
    [42] Saiki H, Marumo Y, Minami A, et al. Effect of the surface structure on the resistance to plastic deformation of a hot forging tool [J]. Journal of Materials Processing Technology. 2001, 113(1-3):22-27.
    [43] 汪大年.金属塑性成型原理[M].机械工业出版社,1985.
    [44] McQueen H J. Elevated-temperature deformation at forming rates of 10~(-2) to 10~2 s~(-1). [J]. Metallurgical and Materials Transactions A. 2003, (33):345-361.
    [45] Luton M J, Sellars C M. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation [J]. Acta Metallurgica et Materialia. 1969, (17):1033-1043.
    [46] Jonas J J, McQueen H J. Recovery and recrystallization during high temperature deformation [J]. Plastic Deformation of Materials. 1975:393-493.
    [47] Jonas J J. Dynamic recrvstallization, metdynamic recrystallization in dustry as a tool [J]. Materials Science and Engineering A. 1994, (184):130-155.
    [48] Derby B. Modeling microstnicture in dynamic recrystallization [J]. Scripta Mater. 1992, (58):27-34.
    [49] Pecza D. A monte Carlo study of influence of deformation temperature on dynamic recrystallization [J]. Acta Metallurgica et Materialia. 1995, (43): 1279-1291.
    [50] Sellars. Hot working and forming process [M]. London: The metals science, 1980.
    [51] Belyakov A, Sakai T, Miura H, et al. Continuous recrystallization in austenitic stainless steel after large strain deformation [J]. Acta Materialia. 2002,50(6):1547-1557.
    [52] Jafari M, Najafizadeh A. Correlation between Zener-Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel [J]. Materials Science and Engineering A. 2009,501(1-2):16-25.
    [53] Verlinden B, Driver J, Samajdar I, et al. Thermo-Mechanical Processing of Metallic Materials [M]. Amsterdam: Elsevier, 2007.
    [54] Angella G, Wynne B P, Rainforth W M, et al. Strength of AlSI 316L in torsion at high temperature [J]. Materials Science and Engineering A. 2008,472(1-2):257-267.
    [55] Bengochea R. Microstructural evolution during the austenite to ferrite transformation from deformed austenite [J]. Metallurgical Transactions A. 1998,29(2):417-426.
    [56] Beladi H, Kelly G L, Hodgson P D. Ultrafine grained structure formation in steels using dynamic strain induced transformation processing [J]. 2007, 52:14.
    [57] Hodgson P D, Hickson M R, Gibbs R K. Ultrafine ferrite in low carbon steel [J]. Scripta Materialia. 1999, 40(10): 1179-1184.
    [58] Beladi H, Kelly G L, Hodgson P D. Microstructural evolution of ultrafine grained structure in plain carbon steels through single pass rolling [J]. Materials Science and Technology. 2004,20:1538-1544.
    [59] Hurley P J, Hodgson P D. Effect of process variables on formation of dynamic strain induced ultrafine ferrite during hot torsion testing [J]. Materials Science and Technology. 2001,17:1360-1368.
    [60] 张红梅,刘相华,王国栋.低碳贝氏体钢形变奥氏体的连续冷却相变研究[J].金属热处理学报.2000,21(4):35-40.
    [61] Yao C K, Xu Z. Influence of flow stress of ausformed austenite on strength of ausformed martensite [J]. Materials Chemistry and Physics. 1986,15(11):75-87.
    [62] Tsuzakai K, Fukasaku S, Tomota Y, et al. Effect of prior of austenite on the gamma-epsilon martensitic transformation in Fe-Mn alloys [J]. Materials Transactions, JIM 1991,32(3):222-228.
    [63] Hayzelden C, Cantor B. The martensite transformation in Fe-Ni-C Alloys [J]. Acta Metallurgica. 1986, 4(22):233-242.
    [64] Yada H. Collected Abstracts of the 1983 Autumn Meeting of Japan Inst. Metals [C]. 1983 Autumn Meeting of Japan Inst. Metals, Sendai, 1983:190.
    [65] Hodgson P D, Hickson M R, Gibbs R K. [J]. Scripta Mater. 1999, (40): 1179.
    [66] 翁宇庆.超细晶刚——钢的组织细化理论与控制技术[M].北京:冶金工业出版社,2003.
    [67] Mintz B, Abu-Shosha R, Shaker M. Influence of deformation induced ferrite, grain boundary sliding and dynamic recyrstallisation on hot ductility of 0.1-0.75%carbon steels [J]. Materials Science and Technology. 1993,9(10):907-914.
    [68] Mintz B, Yue S, Jonas J J. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting [J]. International Materials Reviews. 1991, 36(5): 187-217.
    [69] Wittridge N J, Jonas J J. The austenite-to-martensite transformation in Fe-30%Ni after deformation by simple shear [J]. Acta Materialia. 2000,48(10):2737-2749.
    [70] 徐祖耀.全国相变与凝固学术会议特邀报告[J].热处理.2002,17(1):1-13.
    [71] 徐祖耀.材料热处理的进展和展望[J].材料热处理学报.2003,24(1):1-13.
    [72] #12
    [73] 张青来.高强铸铁毛坯锻造工艺制度的研究[J].上海钢研.1996,(6):61-62.
    [74] 张青来.新型高强铝铸铁的研究[J].上海金属.1997,19(1):21-28.
    [75] Baranov D A, Leirikh I V, Myznikova E S. Corrosion Resistance of Strained, High-Strength Cast Iron in Aqueous Media [J]. Protection of Metals. 2004,40(3):254-256.
    [76] Baranov A, Baranov D. On the modification of graphitized cast iron [J]. The Physics of Metals and Metallography. 2006,102(4):384-390.
    [77] Dubinskii V, Leushin I, Korovin V, et al. Hot deformation of cast iron with globular graphite [J]. Steel in Translation. 2007,37(1):11-13.
    [78] Shi J, Ghoreshy M, Smith R W, et al. The use of spheroidal graphite cast irons to develope foreability criteria based on local strain measurements [J]. Journal of Engineering Materials and Technology. 1989,111:26-31.
    [79] Shi J, Savas M A, Smith R W. Plastic deformation of a model material containing soft spheroidal inclusions: spheroidal graphite cast iron [J]. Journal of Materials Processing Technology. 2003, 133(3):297-303.
    [80] Balos S, Sidjanin L. Microdeformation of soft particles in metal matrix composites [J]. Journal of Materials Processing Technology. 2008, 209(1):482-487.
    [81] Balos S, Sidjanin L, Kovac P. Soft particles deformation in metal matrix composites [C]. Serbia and Montenegro, 1995:62-67.
    [82] Balos S, Kovac P, Knezevic M, et al. Deformation of soft particles in metal matrix composites [C]. Proceedings of CO-MAT-TECH Slovak Republic, 2004:70-75.
    [83] El-Bitar T, El-Banna E. Contribution of forming parameters on the properties of hot rolled ductile cast iron alloys [J]. Materials Letters. 1997,31 (1-2): 145-150.
    [84] 张作梅,黎俊结.“横锻及横轧时金属的变形与破裂的研究”一文的讨论[J].金属学报.1965,8(4):541-545.
    [85] 张作梅,徐有容.在不同温度下球墨铸铁的冲击性能[J].物理学报.1954,10(4):333-345.
    [86] 张作梅,徐有容,高予明,等.球墨铸铁的可塑性的研究[J].金属学报.1956,1(2):165-188.
    [87] 孙爱学.球墨铸铁的热锻与精锻球铁齿轮(阶段总结)[J].河南科技大学学报(自然科学版).1980,(1):161-176.
    [88] 孙爱学,周伯楚,刘春辉,等.球铁塑性变形中石墨球变形行为的观察与分析[J].热加工工艺.1993,(3):13-15.
    [89] 孙爱学,周伯楚,苏娟华.球铁齿轮精锻工艺的应用[J].热加工工艺.1993,(4):30-31.
    [90] 李超荣,梁吉.水平连续铸造球墨铸铁塑性变形的研究[J].机械工程学报.1989,25(3):66-71.
    [91] 夏昭晖,张青来.球墨铸铁热应力测试相变中的双颈和双鼓现象[J].上海钢研.1998,(2):37-39.
    [92] 张青来,王粒粒,胡永学,等.球墨铸铁的塑性变形及奥贝组织研究[J].金属热处理.2006,31(12):25-28.
    [93] 季诚昌,朱世根,吴海德.可轧制新型贝氏体球墨铸铁的研究[J].2004中国铸造活动周论文集.2004:134-139.
    [94] Ji C, Zhu S. Study of a new type ductile iron for rolling: Composition design (1) [J]. Materials Science and Engineering A. 2006,419(1-2):318-325.
    [95] Ji C, Zhu S. Study of a new type ductile iron for rolling: Deformation tests (2) [J]. Materials Science and Engineering A. 2006,419(1-2):326-330.
    [96] 杜晋峰,梁伟,赵兴国,等.多次多向等温变形对球墨铸铁石墨形态的影响[J].材料科学与工艺.2008,16(2):271-273.
    [97] 杜晋峰,梁伟,赵兴国,等.温度及变形量对球墨铸铁中石墨颗粒形态和分布的影响[J].金属热处理.2006,31(3):45-47.
    [98] Zhao X, Jing T F, Gao Y W, et al. Morphology of graphite in hot-compressed nodular iron [J]. Journal of Materials Science. 2004,39(19):6093-6096.
    [99] Zhao X, Jing T F, Gao Y W, et al. A new SPD process for spheroidal cast iron [J]. Materials Letters. 2004, 58(19):2335-2339.
    [100] Wang W, Jing T, Gao Y, et al. Properties of a gray cast iron with oriented graphite flakes [J]. Journal of Materials Processing Technology. 2007,182(1-3):593-597.
    [101] Zhao X, Wang J F, Jing T F. Gray Cast Iron With Directional Graphite Flakes Produced by Cylinder Covered Compression Process [J]. Journal of Iron and Steel Research (International). 2007, 14(5):52-55.
    [102] 姜振雄,陈立夏,丁家盈,等.锻造强韧白口铸铁的研究[J].水利电力机械.1982:17-25.
    [103] 孙爱学,郭择辰,邱铜,等.白口铸铁热塑性加工工艺及应用[J].热加工工艺(热处理版).1988,(3):22-25.
    [104] 孙爱学,王汝耀,赵明久.低合金白口铸铁磨球锻造工艺的研究[J].河南科技大学学报(自然科学版).1983,(1):1-12.
    [105] 孙爱学,周惠华,吴逸贵.白口铸铁塑性加工及微观机理分析[J].钢铁.1994,29(3):53-57.
    [106] 孙爱学,刘春辉.白口铸铁磨球铸锻联合生产工艺[J].锻压技术.1993,(3):2-4.
    [107] 张田成,冯小明.中锰白口铸铁热塑性变形规律的探讨[J].陕西工学院学报.1996,12(2):19-23.
    [108] 张会,冯小明,郭从盛,等.塑性变形对az31镁合金组织性能的影响研究[J].锻压技术.2009,34(1):146-148.
    [109] 冯小明,张田成.亚共晶白口铸铁热塑性变形的试验研究[J].陕西工学院学报.1995,11(2):24-29.
    [110] 冯小明,王贻青.中锰白口铸铁激冷组织及热塑性变形规律的试验研究[J].陕西工学院学报.1996,12(2):13-18.
    [111] 冯小明,王贻青.锰白口铸铁塑性变形的试验研究[J].铸造技术.1992,(5):45-49.
    [112] 冯小明.亚共晶白口铸铁组织性能及热塑性变形的试验研究[J].现代铸铁.2001,(2):17-21.
    [113] 艾桃桃,冯小明,张会.AZ31镁合金压缩过程中的变形性能及组织演变[J].特种铸造及有色合金.2009,29(4):372-375.
    [114] 宋克兴,张彦敏,郜建新,等.锻造白口铸铁的强韧化机理[J].钢铁研究学报.1999,11(3):53-56.
    [115] 宋克兴,郜建新,张彦敏,等.白口铸铁锻造强韧化的微观分析[J].热加工工艺.1999,(2):30-32.
    [116] 邢书明,刘建华,李云江,等.白口铁热变形时碳化物破碎行为的研究[J].钢铁.1995,30(2):58-62.
    [117] 刘建华,张瑞军,杨庆详,等.热变形白口铸铁碳化物的等温球化行为研究[J].上海金属.2000,22(4):29-33.
    [118] 刘建华,邵光杰,王海燕,等.热变形低铬白口铸铁碳化物形成的探讨[J].上海金属.2001,23(5):17-21.
    [119] 于功利,王丹群,郑贤淑,等.铸铁在高温下的弹塑性变形行为[J].鞍钢技术.1994,(1):25-30.
    [120] Guillemer-Neel C, Bobet V, Clavel M. Cyclic deformation behaviour and Bauschinger effect in ductile cast iron [J]. Materials Science and Engineering A. 1999,272(2):431-442.
    [121] Guillemer-Neel C, Feaugas X, Clavel M. Mechanical behavior and damage kinetics in nodular cast iron: Part Ⅱ. Hardening and damage [J]. Metallurgical and Materials Transactions A. 2000,31(12):3075-3085.
    [122] Rabold F, Kuna M. Cell model simulation of void growth in nodular cast iron under cyclic loading [J]. Computational Materials Science. 2005, 32(3-4):489-497.
    [123] 商全义,弓金霞.球墨铸铁高温弹塑性力学性能的实验研究[J].热加工工艺(热处理版).2000,(19):19-20.
    [124] Bonora N, Ruggiero A. Micromechanical modeling of ductile cast iron incorporating damage. Part Ⅰ:Ferritic ductile cast iron [J]. International Journal of Solids and Structures. 2005,42(5-6): 1401-1424.
    [125] Bonora N, Ruggiero A. Micromechanical modeling of composites with mechanical interface - Part Ⅱ: Damage mechanics assessment [J]. Composites Science and Technology. 2006,66(2):323-332.
    [126] Bonora N, Newaz G M. Low cycle fatigue life estimation for ductile metals using a nonlinear continuum damage mechanics model [J]. International Journal of Solids and Structures. 1998,35(16):1881-1894.
    [127] Bonora N, Ruggiero A, Esposito L, et al. CDM modeling of ductile failure in ferritic steels: Assessment of the geometry transferability of model parameters [J]. International Journal of Plasticity. 2006, 22(11):2015-2047.
    [128] Lin R C, Steglich D, Brocks W, et al. Performing RVE calculations under constant stress triaxiality for monotonous and cyclic loading [J]. International Journal for Numerical Methods in Engineering. 2006, 66(8): 1331-1360.
    [129] Hug E, Keller C, Favergeon J, et al. Application of the Monkman-Grant law to the creep fracture of nodular cast irons with various matrix compositions and structures [J]. Materials Science and Engineering A. 2009, 518(1-2):65-75.
    [130] 戴品强,何则荣.球墨铸铁强韧化的组织设计及其热处理工艺[J].热处理.2007,22(4):32-36.
    [131] He Z R, Lin G X, Ji S. A new understanding on the relation among microstructure micro interfacial mechanical behaviours and macro mechanical properties in cast iron [J]. Materials Science and Engineering A. 1997, 234-236:161-164.
    [132] Wang L, Zhang J, Zeng Z. Fabrication of a nanocrystalline Ni-Co/CoO functionally graded layer with excellent electrochemical corrosion and tribological performance [J]. Nanotechnology. 2006,17(18):4614-4623.
    [133] Jun L. The microstructure and wear resistance characteristics of electroformed nickel and partially stabilized zirconia composite coatings [J]. Journal of Materials Science. 2000,35:1751-1758.
    [134] 普瓦里埃 J P,关德林(译).晶体的高温塑性变形[M].大连:大连理工大学出版社,1989.
    [135] 邱春林,吴香菊,齐克敏,等.82B高碳钢热变形奥氏体再结晶行为研究[J].热加工工艺(热处理版).2006,(10):29-31.
    [136] Lin Y C, Chen M-S, Zhong J. Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel [J]. Journal of Materials Processing Technology. 2008,205(1-3):308-315.
    [137] Sheng Z Q, Shivpuri R. Modeling flow stress of magnesium alloys at elevated temperature [J]. Materials Science and Engineering A. 2006,419(1-2):202-208.
    [138] 日本钢铁协会.板带轧制理论与实践[M].北京:中国铁道出版社,1990.
    [139] 郑玉林,陈文敬,任文达,等.5052铝合金热压缩变形流变应力[J].铝加工.2007,(2):17-24.
    [140] Zhan M Y, Chen Z H, Zhang H, et al. Flow stress behaior of porous FVS0812 aluminum alloy during hot-compression [J]. Mechanical Research Communication. 2006,33:508-514.
    [141] Lee W S, Lin M T. The effects of strain rate and temperature on the compressive deformation behaviour of Ti-6Al-4V alloy [J]. Journal of Materials Processing Technology. 1997,71:235-246.
    [142] Shi H, Mclaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys [J]. Materials Science and Technology. 1997,13:210-216.
    [143] McQueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state [J]. Journal of Materials Processing Technology. 1995, 53(1-2):293-310.
    [144] McQueen H J, Ryan N D. Constitutive analysis in hot working [J]. Materials Science and Engineering A.2002,322(1-2):43-63.
    [145] Imbert C, Ryan N, McQueen H. Hot workability of three grades of tool steel [J]. Metallurgical and Materials Transactions A. 1984,15(10): 1855-1864.
    [146] Carsi M, Allende R, P enalba F, et al. Simulation of the forming behaviour of a boron modified P91 ferritic steel [J]. Journal of Iron and Steel Research (International). 2004,75(1):26-32.
    [147] 曹金荣,刘正东,程世长,等.一种求解双曲线本构方程中材料常数的方法[J].塑性工程学报.2007,14(6):148-153.
    [148] 曹金荣,刘正东,程世长,等.应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响[J].金属学报.2007,43(1):35-40.
    [149] Zener C, Hollomon J H. Effect of strain rateipon the plastic flow of steel [J]. Apply Physics. 1944,15(1):22.
    [150] Imbert C, Ryan N D, McQueen H J. Hot workability of three grades of tool steel [J]. Metallurgical and Materials Transactions A. 1984,15(10):1855-1864.
    [151] Zhang B, Zhang H-b, Ruan X-y. Dynamic recrystallization behavior of 35CrMo structural steel [J]. Journal of Central South University of Technology. 2003,10(1):13-19.
    [152] 张斌,张鸿冰.20CrMnTi结构钢热变形行为及其数学模型[J].上海交通大学学报.2003,37(12):1826-1830.
    [153] 王占学.控制轧制与控制冷却[M].北京:冶金工业出版社,1987.
    [154] Zhang S L, Sun X J, Dong H. Mechanism of Austenite Evolution During Deformation of Ultra-High Carbon Steel [J]. Journal of Iron and Steel Research (International). 2008,15(3):42-46.
    [155] Zrnik J, Stejskal O, Novy Z, et al. Relationship of microstructure and mechanical properties of TRIP-aided steel processed by press forging [J]. Journal of Materials Processing Technology. 2007,192-193:367-372.
    [156] 李龙,丁桦,杨春征,等.控轧控冷工艺对低碳铌微合金钢组织和性能的影响[J].钢铁研究学报.2006,18(7):46-51.
    [157] 李炯明.球墨铸铁显微研究[M].上海:上海科学技术出版社,1977.
    [158] 许天已钢铁热处理实用技术[M].北京:化学工业出版社,2005.
    [159] 潘牧,徐祖耀.Fe-Mn-C合金奥氏体强化对马氏体相变的影响,[J].金属学报.1989,25(6):389-393.
    [160] Xu Z, Huang J. Martensitic transformation behavior of hot-deformed Fe-32%Ni alloy, [J]. Materials Science and Engineering A. 2006, 438-440(1-2):258-261.
    [161] 雷廷全,姚忠凯,杨德庄,等.钢的形变热处理[M].北京:机械工业出版社,1979.
    [162] 吴红艳,杜林秀,薛文颖,等.变形工艺对V、Ti微合金钢连续冷却相变的影响[J].钢铁钒钛.2006,27(1):6-11.
    [163] 刘朝霞,佟铭明,黄成江,等.低碳钢形变诱导铁素体相变过程中碳的扩散行为[J].金属学报.2004,40(9):930-934.
    [164] 臧传宝.热变形工艺对S355钢板相变行为的影响[J].物理测试.2005,23(3):38-40.
    [165] Weng Y Q. Microstructure refinement of structural steel in China [J]. ISIJ International. 2003, 43(11):1675.
    [166] Peczak P, Luton M J. A monte carlo study of the influence of dynamic recovey on dynamic recrystallization [J]. Acta Metall Mater. 1993,41:59-71.
    [167] Straffelini G. Ductility of materials with ferritic matrix [J]. Materials Science and Engineering A. 2003, 342(1-2):251-257.
    [168] Era H, Kishitake K, Nagai K, et al. Elastic modulus and continuous yielding behaviour of ferritic spheroidal graphite cast iron [J]. Materials Science and Technology. 1992, 8(3):257-261.
    [169] 西田正孝.应力集中[M].北京:机械工业出版社,1986.
    [170] 著 R E P,译杨叶.应力集中系数[M].北京:国防工业出版社,1988.
    [171] 曹乃光.金属塑性加工原理[M].北京:冶金工业出版社,1982.
    [172] Ghaderi A R, Nili Ahmadabadi M, Ghasemi H M. Effect of graphite morphologies on the tribological behavior of austempered cast iron [J]. Wear. 2003, 255(1-6):410-416.
    [173] Hatate M, Shiota T, Takahashi N, et al. Influences of graphite shapes on wear characteristics of austempered cast iron [J]. Wear. 2001, 251 (1-12):885-889.
    [174] Hirasata K, Hayashi K, Inamoto Y. Friction and wear of several kinds of cast irons under severe sliding conditions [J]. Wear. 2007, 263(1-6):790-800.
    [175] Zimba J, Samandi M, Yu D, et al. Un-lubricated sliding wear performance of unalloyed austempered ductile iron under high contact stresses [J]. Materials & Design. 2004,25(5):431-438.
    [176] Iacoviello F, Di Bartolomeo O, Di Cocco V, et al. Damaging micromechanisms in ferritic-pearlitic ductile cast irons [J]. Materials Science and Engineering A. 2008,478(1-2): 181-186.
    
    [177] Davenport S B, Silk N J, Sparks C N, et al. Development of constitutive equations for modelling of hot rolling [J]. Materials Science and Technology. 2000,16(5):539-546(538).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700