冰冻固结磨料化学机械抛光单晶硅片的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超大规模集成电路(ULSI)的发展,芯片的集成度越来越高,因此,对于其基底材料硅片的加工要求也越来越高,不仅要求获得纳米级面型精度和亚纳米级表面粗糙度,而且还要保证其表面和亚表面无损伤。而单晶硅属于硬脆材料,在加工过程中极易发生脆性破坏,对获得高质量的表面带来很大困难。本文针对单晶硅片超精密加工中的困难,提出一种采用冰冻固结磨料抛光垫对单晶硅片进行抛光的创新工艺,对单晶硅片脆塑转变机理、冰冻固结磨料抛光垫的制备及其抛光机理与工艺开展深入研究,为该工艺的实用化开展积极探索。本文完成的主要工作和取得的成果如下:
     1.研究了不同温度下单晶硅片的脆塑转变机理
     采用维氏硬度计研究了单晶硅片在不同温度下的硬度和裂纹的产生、扩展及特征,分析了温度对单晶硅片脆塑转变机理的影响,研究发现:温度越低,载荷越小,裂纹的形成和扩展越慢;单晶硅片的硬度随载荷的增加而减小,存在“尺寸效应”。
     2.研究了单晶硅片塑性模态加工临界切深问题
     利用纳米压痕仪的LFM附件,在室温下对单晶硅片进行了刻划,分析了动态情况下单晶硅片的脆塑转变过程,测得临界载荷和临界划深分别为138.64 mN和54.63 nm,并对Bifnao提出的脆塑转变临界压深公式进行了修正。
     3.研究了水相体系纳米α-Al2O3、纳米CeO2悬浮液的分散性能
     在保持分散液的pH值一定的情况下,通过合理选用超声时间、分散剂种类和浓度,探讨了配制稳定的纳米α-Al2O3、纳米CeO2抛光液的最佳工艺条件,为开发性能优良的纳米α-Al2O3、纳米CeO2抛光液提供了理论指导。
     4.研究了冰冻纳米磨料抛光垫的制备方法和工艺
     设计制作了冰冻模具,采用梯度降温、分层浇注和分层冷冻法制作了冰冻固结磨料抛光垫,利用热压法加工出了开槽型冰冻固结磨料抛光垫。
     5.对冰冻固结磨料抛光垫抛光运动轨迹进行了理论分析和仿真,探讨了冰冻抛光垫抛光运动轨迹对硅片表面质量的影响
     仿真分析了偏心距、冰冻抛光垫与工件的转速比以及磨粒颗粒数等因素对抛光轨迹的影响,得出了相应的影响趋势,为解释单晶硅片表面粗糙度的变化提供了基础。
     6.对冰冻固结磨料抛光温度场进行了仿真研究
     建立了冰冻固结磨料抛光温度场有限元分析模型,通过实验验证了模型的可靠性;分析了压力、主轴转速、偏心距、抛光时间和环境温度对抛光区域温度的影响规律,得出了温度分布云图以及冰冻固结磨料抛光垫的平均融化速度,为合理选择抛光环境温度和加工工艺参数提供了理论依据。
     7.开展了冰冻固结磨料抛光垫低温抛光单晶硅片的工艺研究
     利用Taguchi法和综合平衡法进行了实验设计,采用自制的冰冻固结磨料抛光垫对单晶硅片进行了抛光实验,分析了各工艺参数(抛光压力、主轴转速、偏心距和抛光时间)对单晶硅片表面粗糙度和去除率的影响,探寻了冰冻固结磨料抛光垫抛光过程的最佳工艺参数,为该工艺的实用化开展了积极探索。
     8.研究了冰冻固结磨料抛光垫低温抛光单晶硅片的机理
     在宏观条件下研究了Al2O3、玛瑙对单晶硅摩擦磨损行为的影响,为单晶硅宏观摩擦学性能评价及其摩擦学和微细精密加工研究提供了实验基础;从微观摩擦学的角度,采用冰冻摩擦偶件,选用面-面接触,在低温下研究了摩擦偶件对单晶硅片摩擦磨损行为的影响,揭示了单晶硅片的低温抛光机理。分析认为,冰冻抛光属固结磨料化学机械抛光,简称IFA-CMP。
With the development of ultra large scale integration (ULSI), the integrated level of chips is becoming exigenter and exigenter, and the diameters of silicon wafer used as substrate materials are becoming larger and larger. The silicon wafers not only need to have very good flatness and low surface roughness but also have no surface damage or scratches. Silicon is a kind of hard material and easy to fail in a way of wear-out-failure because of brittle fracture, so it is difficult to machine it. Based on this background, a novel polishing technology with ice fixed abrasives pad for silicon wafer was proposed. A series of researches were carried on the mechanism of brittle-ductile transition of silicon wafer, the preparation of ice fixed abrasives pad and the polishing mechanism and technology. The work can provide a basis for the development and industrialization of this novel polishing technology. The main work is as follows:
     1. Mechanism of brittle-ductile transition of single silicon wafer at different temperatures. Formation, propagation and length of crack and hardness of single silicon wafer were invested at different temperatures by means of Vickers indentation. The effect of temperature on the mechanism of brittle-ductile transition of single silicon wafer was analyzed.
     2. Critical-depth-of-cut of single silicon wafer manchining at ductile mode. The scratch resistance of single silicon wafer at ambient temperature was measured by nanoscratching using nanoindenter. The mechanism of brittle-ductile transition of single silicon wafer at dynamic state was analyzed. The critical load and scratch depth was estimated from the scratch depth profile after the scratching and the friction profile. Based on the properties of silicon wafer obtained from the experiment, the formula of critical-depth-of-cut described by Bifnao was modified.
     3. Dispersion and stability ofα-Al2O3 and CeO2 nanopowders in water suspension. In the condition of the pH of the suspension was kept to 10~11, the optimal dispersing conditions ofα-Al2O3 and CeO2 nanopowders in water suspension were explored by selecting proper supersonic time and surfactant concentration. The work can guide to prepare polishing solution with high performance.
     4. Techniques for preparing ice fixed abrasives pad.The ice mold was designed and fabricated and then the ice fixed abrasives pad was fabricated by gradient freezing, laminar pouring and iceing. Using heat pressing, the ice fixed abrasives pad with grooves was fabricated.
     5. Simulation on the polishing trajectories of the ice fixed abrasives pad and their effects on the surface quality of silicon wafer. The effects of the eccentricity, ratio of transmission between the polishing pad and the workpiece and the number of grits on the trajectories were simulated, which can give an explanation of the changes of the surface roughness.
     6. Simulation study of the temperature field on polishing with ice fixed abrasives pad. The finite element model of temperature field of ice polishing was established. Effects of different processing parameters on temperature distribution and melting rate of the ice fixed abrasives pad were researched, which is theoretically useful for choosing the ambient temperature and the processing parameters.
     7. Technologic processes of IFA-CMP. Taguchi method and overall balance method were applied for optimization of the polishing conditions. Each processing parameter which affected the surface roughness and material removal rate in polishing silicon wafer was experimentally described in detail. The optimum processing parameter was obtained, which lay a basis for the application of IFA-CMP.
     8. Ice polishing mechanism of silicon wafer. The friction and wear behaviors of silicon wafer sliding against Al2O3 and agate at ambient air and low contact stress under unlubricated condition were studied using a UMT-2MT test rig. The results can provide experimental basis for the evaluation of sliding wear behavior and the study of ultra-precision finishing of silicon wafer. The friction tests of blanket silicon wafers against ice counterparts were carried out to investigate the friction effect and mechanism. The results showed that the removal of material was dominated by the coactions of ductile regime machining and chemical corrosion. A model of material removal of IFA-CMP was built.
引文
[1] Jakubowski A, Lukasial L and Jurczak M. Silicon microelectronics for speed [J]. Phys. of semicon, 2000, 99: 297~302
    [2] Tricard M, Kassir S and Heron P, et al. New abrasive trends in manufacturing of silicon wafers [J]. American Society for Precision Engineering, 1998, 4: 305~310
    [3]翁泰松.半导体设备市场的新动向[J].电子工业专用设备, 2008, 156: 42~45
    [4] Illuzzi F. Silicon wafer requirements for ULSI device processing [M]. Switzerland: Scitee publications, 2002
    [5] Karuppiah L, Swedek B, Thothadri M, etal. Overview of CMP process control strategies [J].电子工业专用设备, 2007, 153: 1~9,13
    [6] Hahn P O. The 300mm silicon wafer: A cost and technology [J]. Microelectronic Engineering, 2001 (56): 3~13
    [7]孙玉利,左敦稳,朱永伟,等.工件旋转式磨削大直径硅片技术的研究进展[J].宇航材料工艺, 2006, 5: 21~26
    [8]郭东明,康仁科,苏建修,等.超大规模集成电路制造中硅片平坦化技术的未来发展[J].机械工程学报, 2003, 39(10): 100~105
    [9] Gehman B L. In the age of 300 mm silicon, tech standards are even more crucial [J]. Solid State Technology, 2001, 44: 127~128
    [10] Luo J F, Dornfield D A. Material removal mechanism in chemical mechanical polishing: theory and modeling [J]. IEEE transactions on Semiconductor Manufacturing, 2001, 14 (2): 112~133
    [11]魏源迁.国外硬脆材料的最新加工技术[J].磨床与磨削, 1998, 2: 15~19
    [12]陈明君,王立松,梁迎春,卢泽生.脆性材料塑性域的超精密加工方法[J].航空精密制造技术, 2001, 37(2): 10~25
    [13]卢泽生,王明海.硬脆光学晶体材料超精密切削理论研究综述[J].机械工程学报, 2003, 39(8): 15~20
    [14] Bifano T G, Fawcett S C. Specific grinding energy as an in-process control variable for ductile-regime grinding [J]. Precision Engineering, 1991, 13 (4): 256~262
    [15] Bifano T G, Dow T A and Scattergood R O. Ductile- regime grinding: A new technology for machining brittle materials [J]. ASME Journal of Engineering for Industry, 1991, 113:184~189
    [16] Puttick K E, Whitmore L C and Zhdan P, et al. Energy scaling transitions in machining of silicon by diamond [J]. Tribology International, 1995, 28(6): 349~355
    [17]赵奕.脆性材料超精密车削脆塑转变及影响表面质量因素的研究[D]. [博士学位论文],哈尔滨:哈尔滨工业大学, 1999
    [18] Myoshino, Aoki T, Chandrasekaran N, et al. Finite element simulation of plane strain plastic-elastic indentation on single-crystal silicon [J]. International Journal of Mechanical Sciences, 2001, 43(2): 313~333
    [19]赵清亮.基于原子力显微镜的纳米加工技术研究[D]. [博士学位论文],哈尔滨:哈尔滨工业大学, 1999
    [20] Shimada S, Ikawa N, Inamura T. Brittle-ductile transition phenomena in microindentation and micromachining [J]. Annals of the CIIP, 1995, 44(1):523~525
    [21]徐清兰,伍凡,吴时彬等.单晶硅镜片超光滑表面工艺技术研究[J].光电工程, 2003, 30(5): 69~72
    [22] Saito T. Needs for super-smooth surfaces [J]. SPIE, 1992, 1720: 2~10
    [23]杨力.先进光学制造技术[M].北京:科学出版社, 2001
    [24] Stowers I. Review of precision surface generating process and their potential application to the fabrication of large optical components [J]. SPIE, 1988, 966 : 62~73
    [25]高宏刚,陈斌,曹健林.超光滑光学表面加工技术[J].光学精密工程, 1995, 3(4): 7~14
    [26]李锡善,戈鹤忠,超光滑表面加工技术[J].激光与光电子进展, 1998, 11: 1~9
    [27] Komanduri R, Lucca D and Tani Y. Technological advances in fine abrasive processes [J]. Annals of the CIRP, 1997, 46(2): 545~596
    [28]张晓光.高精密平面研抛技术研究[D]. [硕士学位论文],大连:大连理工大学, 1999
    [29]宋晓莉,光学零件超光滑加工工艺研究[D]. [硕士学位论文],北京:北京理工大学, 2000
    [30] Diez R, Bennett J. Bowl feed technique for producing supersmooth optical surfaces [J]. Appl. Opt.,1966, 5: 881~882
    [31] Wingerden J, Frankena H and Zwan B. Production and measurement of superpolished surfaces [J]. Opt. Eng., 1992(35): 1086~1092
    [32] Leistner A, Thwaite E, and Lesha F, et al. Polishing study using Teflon and pitch laps to produce flat and supersmooth surfaces [J]. Appl. opt., 1992, 31: 1472~1482
    [33] Leistner A. Teflon polishers: their manufacture and use [J]. Appl. Opt., 1976, 15: 293~298
    [34] Leistner A. Teflon laps: some new developments and results [J]. Appl. opt., 1993, 32(19):3416~3424
    [35] Bennett J, Shaffer J and Shibano Y, et al., Float polishing of optical materials [J]. Appl. Opt., 1987, 26(4): 696~703
    [36]高宏刚,曹建林,陈斌.浮法抛光超光滑表面加工技术[J].光学技术, 1995(3): 40~43
    [37] Soares S, Baselt D and Black J. Float-polishing process and analysis of float-polished quartz [J]. Appl. opt., 1994, 33(1): 89~95
    [38] Miyashita M. The way to nanogrinding technology [J]. SPIE, 1990, 1333: 7~21
    [39] Lim H, Fathima K, and Kumar A S, et al. A fundamental study on the mechanism of electrolytic in-process dressing (ELID) grinding [J]. Int. J. Mach. Tool. Manu., 2002, 42(8): 935~943
    [40] Heo J, Koo Y and Choi S. Grinding characteristics of conventional and ELID methods in difficult-to-cut and hardened brittle materials [J]. J. Mater. Process. Tech., 2004, 155-156: 1196~1200
    [41] Li J. Mechanisms of sawing of BK7 glass by electrolytic in-process dressing [J]. J. Mater. Process. Tech., 2005, 168(3): 377~389
    [42] Liu J, Pei Z and Fisher G. ELID grinding of silicon wafers: A literature review [J]. Int. J. Mach. Tool. Manu., 2007, 47(3-4): 529~536
    [43] Wilson S, Reicher D and McNeil J. Surface figuring using neutral ion beams [J]. SPIE, 1988, 966: 74~81
    [44] Allen L, Romig H. Demonstration of an ion figuring process [J]. SPIE, 1990, 1333: 22~33
    [45] Savvides N. Surface microroughness of ion-beam etched optical surface [J]. J. Appl. Phys., 2005, 97(053517): 1~7
    [46] Bollinger L, Zarowin C. Rapid, nonmechanical, damage-free figuring of optical surfaces using plasma-assisted chemical etching (PACE): part I experimental results [J]. SPIE, 1988, 966: 82~90
    [47] Zarowin C, Bollinger L. Rapid, nonmechanical, damage-free figuring of optical surfaces using plasma-assisted chemical etching (PACE): part II Theory & process control [J]. SPIE, 1988, 966: 91~97
    [48] Bollinger L, Steinberg G and Zarowin C. Rapid optical figuring of aspherical surface with Plasma Assisted Chemical Etching (PACE) [J]. SPIE, 1991, 1618: 14~17
    [49] Zarowin C. A comparison using surface evolution theory of the smoothing and figuring of optics by Plasma Assisted Chemical Etching and ion milling [J]. SPIE, 1991, 1618: 22~27
    [50] Mori Y, Yamauchi K and Endo K. Elastic emission machining [J]. Prec. Eng., 1987, 9(3): 123~128
    [51] Mori Y, Yamauchi K and Endo K. Mechanism of atomic removal in elastic emission machining [J]. Prec. Eng., 1988, 10(1): 24~28
    [52] Su Y, Wang S and Chao P, et al. Investigation of elastic emission machining process: lubrication effects [J]. Prec. Eng., 1995, 17(3): 164~172
    [53] Yamauchi K, Hirose K and Goto H, et al. First-principles simulations of removal process in EEM (Elastic Emission Machining) [J]. Comp. Mater. Sci., 1999, 14(1-4): 232~235
    [54] Kim J D. Motion analysis of powder particles in EEM using cylindrical polyurethane wheel [J]. Int. J. Mach. Tool. Manu., 2002, 42(1): 21~28
    [55] Mori Y, Yamamura K and Endo K, et al. Creation of perfect surfaces [J]. J. Cryst. Growth, 2005, 275(1-2): 39~50
    [56] Jacobs S, Golini D and Hsu Y, et al. Magnetorheological finish: a deterministic process for optics manufacturing [J]. SPIE, 1995, 2576: 372~381
    [57]张峰.磁流变抛光技术的研究[D]. [博士学位论文],北京:中国科学院, 2000
    [58]周杭君.超光滑表面磁流变加工原理与实验研究[D]. [硕士学位论文],长沙:国防科学技术大学, 2002
    [59] Jiang M, Wood N and Komanduri R. On chemo-mechanical polishing (CMP) of silicon nitride (Si3N4) workmaterial with various abrasives [J]. Wear, 1998, 220: 59~71
    [60] Kurobe T, Imanaka O. Magnetic field-assisted fine finishing [J]. Prec. Eng., 1984, 6(3): 119~124
    [61] Laguarta F, Lupon N and Armengol J. Optical glass polishing by controlled laser surface-heattreatment [J]. Appl. opt., 1994, 33(27): 6508~6513
    [62] Jones A, Hull J. Ultrasonic flow polishing [J]. Ultrasonics, 1998, 36: 97~101
    [63] Rajurkar K, Wang Z and Kuppattan A. Micro removal of ceramics material (Al2O3) in the precision ultrasonic machining [J]. Prec. Eng., 1999, 23: 73~79
    [64] Michael A, Furry. The early days of CMP [J]. Solid State Technology, 1997, 40(5): 81~86
    [65] Ali I. Chemical-mechanical polishing of interlayer dielectric: A Review [J]. Solid State Technology, 1994, 34: 63~70
    [66] Saxena A N, Pramanik D. Planarization techniques for multilevel metallization [J]. Solid State Technology, 1986, 29: 95~100
    [67] Ruth Dejule. Optical lithography: 100 nm and beyond [J]. Semiconductor International, 1998,21(13):56~62
    [68]雷红,张鹏珍.化学机械抛光技术的研究进展[J].上海大学学报, 2004, 8: 19~23
    [69] Kim H J, Kim H Y and Jeong H D, et al. Friction and thermal phenomena in chemical mechanical polishing [J]. Journal of Materials Processing Technology, 2002(130-131): 334~338
    [70] Lin X, Yuan J L and Iv B H, et al. Research on ultraprecision polishing technology for functional ceramics. 6th International Conference on Progress of Machining Technology[C], 2002, Xi' an: PANE L236~241
    [71]邢彤,袁巨龙,赵文宏,等.铌酸锂晶片的化学机械抛光质量研究[J].机械工程师,2003: 19~21
    [72] Tsai C J, Charls L and Tsai M H, et al. Experimental investigation on chemical mechanical polishing of wafers with low-conductivity dielectrics[J]. ASME International Mechanical Engineering Congress and Exposition, 2001 (1): 135~141
    [73] Lim D S, Yoon L H and Danyluk S, et al. Effect of electric field on chemical mechanical polishing of langasite[J]. Wear, 2001, 249: 397~400
    [74]腾林,张广良,任敬心. GGG单晶的胶体软磨料抛光液的制备研究[J].航空精密制造技术, 1994, 30(4): 14~16
    [75]王相田,刘伟,金宇尧. Si02化学机械抛光浆料的制备与性能研究[J].华东理工大学学报, 1998, 24(6): 681~685
    [76]徐建忠.抛光膏中磨料的解析[J].电镀与涂饰, 2001, 20(6): 20~21
    [77] Uday M. Fundamental studies on silicon dioxide chemical mechanical polishing [D]. [Doctoral Dissertation], USA: University of Florida, 2000
    [78] Basim G B, Adler J J and Mahajan U, et al. Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects [J]. Journal of The Electrochemical Society, 2000, 147(9): 3523~3528
    [79] Tavernier P R, Margalith T and Coldren L A, et al. Chemical mechanical polishing of gallium nitride [J]. Electrochemical and Solid-State Letters. 2002, 5(8): 61~G64
    [80]邢彤,袁巨龙,赵文宏等.铌酸锂晶片CMP过程的工艺参数研究[J].机械工程师, 2003: 22~24
    [81] Grover G S, Liang H and Ganeshkumar S, et al. Effect of slurry viscosity modification on oxide and tungsten CMP [J]. Wear, 1998, 214: 10~13
    [82] Mullany B, Byrne G. The Effect of slurry viscosity on chemical mechanical polishing ofsilicon wafers. Journal of Materials Processing Technology[J], 2003, 132: 28~39
    [83] Lu H, Fookes B and Obeng Y. Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces [J]. Materials Characterization, 2002, 49: 35~44
    [84] Lu H, Obeng Y and Richardson K A, et al. Applicability of dynamic mechanical analysis for CMP polyurethane pad studies. Materials Characterization, 2002, 49: 177~186
    [85] Hooper B J, Byrne G and Galligan S. Pad conditioning in chemical mechanical polishing [J]. Journal of Materials Processing Technology, 2002, 123: 107~113
    [86] Kuchenmeister F, Schubert U and Wenzel C. SILK dielectric planarization by chemical mechanical polishing [J]. Microelectronic Engineering, 2000, 50: 47~52
    [87] Mcgrath J, Davis C. The effect of thin film stress levels on CMP polish rates for PETEOS wafers. Journal of Materials Processing Technology, 2003, 132: 16~20
    [88] Tseng W T, Liu C W. Effect of mechanical characteristics on the chemical mechanical polishing of dielectric thin films [J]. Thin Solid Films, 1996, 290-291: 458~463
    [89] Seok J, Sukam C P. Multiscale material removal modeling of chemical mechanical polishing [J]. Wear, 2003, 254: 307~320
    [90]陈俊盼.白宝石晶体加工及检测技术[D]. [硕士学位论文],长春:长春光学精密机械学院, 1998
    [91] Zhao Y W, Chang L and Kim S H. A mathematical model for chemical-mechanical polishing based on formation and removal of weakly bonded molecular species [J]. Wear, 2003, 254: 332~339
    [92]韩荣久,孙恒德,徐德全,等.单晶硅片的低温抛光技术[J].光学精密工程, 1998, 6(5): 104~109
    [93]韩荣久,安贵生,张云,等.光学材料的浅低温抛光方法[J].航空精密制造技术, 1999, 35(6): 1~5
    [94]韩荣久,裴舒,王淑荣,等.微晶玻璃及其抛光[J].航空精密制造技术, 2000, 36(1): 7~12
    [95]张飞虎,谢大纲,赵清亮,等.微晶玻璃低温抛光表面形貌的研究[J].机械工程学报, 2002, 38(1): 87~90
    [96]张云.固着磨料低温抛光的研究[D]. [硕士学位论文],长春:吉林工业大学, 1999
    [97]吴校生.超光滑表面无磨料低温抛光的研究[D]. [硕士学位论文],长春:吉林工业大学, 2001
    [98]刘向阳.光学材料超光滑表面抛光的研究[D]. [博士学位论文],长春:吉林大学, 2003
    [99]刘薇娜.冰盘纳米抛光金属材料的研究[D]. [博士学位论文],长春:吉林大学, 2004
    [100] Liu Weina, Wang Lijiang. Study on Eliminating Mechanism of Surface Metal in Nano-Polishing Process [J]. Key Engineering Materials, 2004, 258-259: 476~480
    [101]刘薇娜,丁原. 45号钢低温纳米加工试验研究[J].长春理工大学学报, 2002, 25(2): 60~71
    [102]刘向阳.光学材料无磨料低温抛光的试验研究[J].机械工程学报, 2002, 38(6): 47~50
    [103]刘玉岭,檀柏梅,张楷亮.超大规模集成电路衬底材料性能及加工测试技术工程[M].北京:冶金工业出版社, 2002
    [104] Lindsey K. Tetraform grinding [J]. Proc. SPIE, 1991, 1573: 129~135
    [105] Bifano T G, Hosler J B. Precision grinding of ultral thin quartz wafers [J]. Trans of the ASME. J. of Eng. Foriud, 1993, 115: 258~262
    [106]陈明君,张飞虎,董申,等.光学玻璃塑性域超精密磨削加工的研究[J].中国机械工程, 2001, 12(4): 460-484
    [107]陈明君,董申,李旦,等.脆性材料超精密磨削时脆塑转变临界条件的研究[J].高技术通讯, 2000(2): 64~67
    [108]陈明君,董申,李旦,等.单晶硅脆性材料塑性域超精密磨削加工的研究[J].航空精密制造技术, 2000, 36(2): 9~11
    [109]陈明君,张飞虎,董申.微晶玻璃塑性域超精密磨削加工的研究[J].仪器仪表学报, 2002, 23(1): 71~80
    [110]赵奕,董申,周明,等.脆性材料超精密车削中脆塑性转变的研究[J].工具技术, 1998, 32(11): 6~10
    [111] George J. Microindentation analysis of di-ammonium hydrogen cirate single crystals [J]. Journal of Materials Science, 1985, 20: 3150~3156
    [112]张琼,周海芳,李斗星.室温下单晶硅压痕裂纹的形成与扩展[J].电子显微学报, 2002, 2(1): 56~58
    [113]李东生,杨德仁,阙端麟.杂质对单晶硅材料硬度的作用[J].半导体学报, 2004, 25(7): 799~802
    [114]王景贺,陈明君,董申,等. KDP晶体单点金刚石切削脆塑转变机理的研究[J].光电工程, 2005, 32(9): 67~70
    [115] Blake P N, Scattergood R O. Ductile-regime machining of germanium and silicon [J]. Journal of the American Ceramic Society, 1990, 73(4): 949~957
    [116]徐德胜.半导体制冷与应用技术[M].上海:上海交通大学出版社, 1992
    [117]郑永明,方方,徐建一,等.半导体致冷原理及其应用系统设计研究[J].中国测试技术, 2006, 32(2): 49~51
    [118] Chiao Y H, Clarke D R. Direct observation of dislocation emission from crack tips in silicon at high temperatures. Acta Metallurgica, 1989, 37(1): 203~219
    [119]李东生,杨德仁,朱爱平,等.氮杂质对直拉单晶硅中位错的影响[J].半导体学报, 2001, 22(11): 1402~1405
    [120]周亮,姚英学.直接面积法测量纳米硬度技术的研究[J].中国机械工程, 2005, 16(22): 2052~2055
    [121] Li X, Bhushan B, Taksahimak K, et al. Mechanical characterization of micro/nanoscale structures for mems/nems applications using nanoindentation techniques [J]. Ultramicroscopy, 2003, 97: 481~489
    [122]孙蓉,徐洮,寇冠涛,等.氩离子注入单晶硅表面的微观力学性能研究[J].无机材料学报, 2005, 20(3):759~763.
    [123]周亮,姚英学, Shahjada A P.纳米压痕硬度尺寸效应的残余面积最大压深模型[J].硅酸盐学报, 2005, 33(7): 817~821
    [124]周亮,姚英学, Shahjada A P.基于压痕功法对单晶硅压痕硬度的测量[J].硅酸盐学报, 2007, 35(2):187~191
    [125] Pethica J B, Oliver W C. Tip surface interaction in STM and AFM [J]. Phys Scr, 1987, 19: 61~68
    [126] Pethica J B, Oliver W C. Mechanical properties of nanometer volumes of material: use of the elastic response of small area indentations [J]. Materials Research Society, 1989, 130: 13~23
    [127] Pharr G M, Oliver W C, Brotzen F R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation [J]. J Mater Res, 1992, 7: 613~617
    [128] Oliver W C, Phaarr G M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiment [J]. J Mater Res, 1992, 7: 1564~1583
    [129] Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications [J]. Mater Charac, 2002, 48: 11~36
    [130]张泰华,杨业敏.纳米硬度技术的发展和应用[J].力学进展, 2002, 32(3): 349~364
    [131] Li X, Bhushan B. Development of continuous stiffness measurement technique for composite magnetic tapes [J]. Scr Mater, 2000, 42: 929~935
    [132] Lawn B R, Evans A G, and Marshall D B. Elastic/Plastic indentation damage in ceramics: the median/radial crack system. [J] J. Am. Ceram. Soc., 1980 (63): 574~581
    [133] Venkatesh V C, Inasaki I and Toenshoff H K, et al. Observations on polishing and ultraprecision machining of substrate materials [J]. Annals CIRP, 1995 (44): 611~618
    [134] Tsai T H, Wu Y F. Effects of nonionic surfactants on performance of copper chemical mechanical polishing [J]. Chemical Engineering Communications, 2006, 193(6): 702~714
    [135] Kim D H, Kang H G, Kim S K, et al. Reduction of large particles in ceria slurry by aging and selective sedimentation and its effect on shallow trench isolation chemical mechanical planarization [J]. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2006, 45(9): 6790~6794
    [136] Kang H G, Katoh T, Kim D H, et al. Effect of dispersant addition during ceria abrasive milling process on light point defect (LPD) formation after shallow trench isolation chemical mechanical polishing (STI-CMP) [J]. Japanese Journal of Applied Physics, Part 2: Letters, 2005, 44(1-7): L238~L241
    [137]雷红,褚于良,屠锡富,等.超细氧化铝抛光液的制备及其抛光特性研究[J].功能材料, 2005, 36(9): 1425~1428
    [138]杨振华.纳米氧化铈沉淀合成法及其分散性研究[D]. [硕士学位论文],长沙:中南大学, 2004
    [139]赵承深.界面科学基础[M].台南:复文书局, 1998
    [140]哈恩贝N,爱德华兹M F,尼璐A W.工业中的混合过程[M].北京:中国石化出版社, 1991
    [141]郭丽杰,王京刚,刘家祥.超细粉体在粉碎和分级过程中的分散研究[J].有色金属, 2004, 20 (z1): 26~28
    [142]李昌厚.紫外可见分光光度计[M].北京:化学工业出版社, 2005
    [143]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社, 2005
    [144]宋晓岚,王海波,曲鹏,等.水相体系中γ-Al2O3浆料的分散稳定性能研究[J].材料科学与工艺, 2005, 13(5): 506~512
    [145] Joseph M S, Shyam P M, Ronald J G. Chemical mechanical planarization of microelectronic materials[M]. New York: John Wiley & Sons, 1997
    [146]孙静,高濂,郭景坤.分散剂用量对几种纳米氧化锆颗粒尺寸表征的影响[J].无机材料学报, 1999, 14(3): 466~469
    [147]任俊,卢寿慈,沈健,等.微细颗粒在水、乙醇及煤油中的分散行为特征[J].科学通报, 2000, 45(6): 583~586
    [148] Koopal P L L,顾惕人,卢寿慈.浮选物理化学原理的某些进展[J].化学通报, 1995, 10:19~24
    [149] Hoshino T H, Kurata Y K, Terasaki Y, etal. Mechanism of polishing of SiO2 films by CeO2 particles [J]. J. Non-Cryst. Solids, 2001(283): 129~136
    [150] Cook L M. Polishing mechanism for optical glass [J]. J. Non-Cryst. Solids, 1990(120): 152~157
    [151]宋晓岚,邱冠周,史训达,等.混合表面活性剂分散纳米CeO2颗粒的协同效应[J].湖南大学学报(自然科学版), 2005, 32(5): 95~99
    [152]朱兆武,龙志奇,崔大立,等.超细CeO2粉体的制备及其紫外吸收性能[J].中国有色金属学报, 2005, 15(3): 435~440
    [153]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社, 2003
    [154]刘波.抛光垫表面构造和组织对CMP影响效果的研究[D]. [硕士学位论文],大连:大连理工大学, 2006
    [155]田业冰.硅片超精密磨削表面质量和材料去除率的研究[D]. [硕士学位论文],大连:大连理工大学, 2005
    [156]任敬心,康仁科,史兴宽.难加工材料的磨削[M].北京:国防工业出版社, 1999
    [157]葛世荣.摩擦学导论[M].北京:机械工业出版社, 2006
    [158]钱滨江.简明传热学手册.北京:中国农业出版社, 1986
    [159] Sun Y L, Zuo D W, Zhu Y W, et al. Effect of ice counterparts on the friction behavior of single crystal silicon wafer [J]. Advanced Materials Research, 2008, 53-54: 167~172
    [160]袁巨龙.功能陶瓷的超精密加工技术[M].哈尔滨:哈尔滨工业大学出版社, 2000
    [161]狄卫国.甚大规模集成电路制备中硅衬底精密抛光的研究[D]. [硕士学位论文],天津:河北工业大学, 2002
    [162]沈卫星,徐德衍.测量光学元件表面粗糙度的取样问题[J].光学仪器, 1997, 19(1): 1~7
    [163] Lee M C. Chemical process in glass polishing [J]. Journal of Non-Crystallines Solides, 1990, 120: 152~171
    [164]陈升照.铜晶圆化学机械研磨研磨垫花样对研浆流畅以及研磨效果之理论建立与试验验证[D].[硕士学位论文],台湾:国立成功大学, 2003
    [165]李军.硬脆材料超精密加工关键技术研究[D]. [博士学位论文],北京:中国科学院, 2007
    [166] Spearing S M. Materials issues in microelectromechanical systems (MEMS) [J]. Acta Materialia, 2000, 48(1):179~196
    [167] Sun Y L, Zuo D W and Zhu Y W, et al. Mechanism of brittle-ductile transition of single silicon wafer at different temperatures [J]. Key Engineering Materials, 2008, 359-360: 1~5
    [168]李小成,吕晋军,杨生荣.单晶硅滑动摩擦及其相变研究[J].摩擦学学报, 2004, 24(4): 326~331
    [169]李小成,吕晋军,杨生荣.摩擦偶件对单晶硅宏观摩擦磨损行为的影响[J].摩擦学学报, 2005, 25(3): 193~197
    [170] Gogotsi Y, Baek C and Kirscht. Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon [J]. Semiconductor Science Technology, 1999, 14: 936~944
    [171]李生华,周春红,张瑞军,等.摩擦化学进展-化学的作用和地位[J].摩擦学学报, 2002, 22(1): 74~79
    [172]陈志刚,陈杨,陈爱莲.硅晶片化学机械抛光中的化学作用机理[J].半导体技术, 2006, 31(2): 112~114
    [173] Chen C C A, Shu L S, Lee S R. Mechano-chemical polishing of silicon wafers [J]. Journal of Materials Processing Technology, 2003, 140: 373~378
    [174] Sun Y L, Zuo D W and Zhu Y W, et al. Experimental study on cryogenic polishing single silicon wafer with nano-sized cerium dioxide powders [J]. Advanced Materials Research, 2007, 24-25: 177~182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700