超临界条件下环状碳酸酯的催化合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从CO_2的催化活化着手,研究在超临界状态下CO_2和环氧烷烃的环加成反应。探索超临界化学反应中,CO_2既作反应溶剂又作反应底物的优势。
     为了解超临界状态下均相催化CO_2和环氧乙烷生成碳酸乙烯酯反应过程中的相变化,研究了恒定组成的CO_2/环氧乙烷二元体系在不同温度下和CO_2/环氧乙烷/碳酸乙烯酯三元体系在反应温度下的相平衡,发现了CO_2/环氧乙烷二元体系的混合临界性质,推测出超临界状态下CO_2和环氧烷烃的环加成反应过程中必将发生相分离。
     实现了超临界条件下均相催化CO_2和环氧乙烷生成碳酸乙烯酯,探讨了反应过程中的相变及其对环加成反应速率的影响。
     设计合成了一系列四齿席夫碱铝配合物,它们可以溶解在超临界CO_2/环氧乙烷混合物中,是CO_2和环氧烷烃环加成反应的有效催化剂。席夫碱铝配合物轴向基团、苯环上的取代基团以及助催化剂等对其催化性能有很大影响。其中,SalenAl-OCH_2CH_2(OCH_2CH_2)_2Cl/n-Bu_4NBr双组分催化剂在110℃时的催化活性高达2340转化数╱小时,是迄今报道活性最高的环加成反应催化剂。同样的催化体系和反应温度下,超临界条件下CO_2与环氧乙烷的环加成反应速率约是4.0MPa-CO_2恒压下的2倍。
     用NMR光谱方法,证实了环氧乙烷对四齿席夫碱铝配合物(SalenAlX)中心金属离子的配位作用,提出了环氧乙烷是按碱式催化机理开环并插入SalenAlX的Al-X键。用FTIR光谱方法,研究了CO_2的活化及对铝配合物Al-O键的插入反应,提出了碳酸乙烯酯是由形成的线形碳酸酯中间体经分子内环消除而产生的。阐明了碱性配体对铝配合物催化性能的促进作用机理,以及四齿席夫碱金属配合物/季铵盐或季膦盐双功能催化剂对环氧烷烃和CO_2环加成反应的协同作用。
    
     大连理工大学博士学位论文
     将可溶性氯铝酞菩和席夫碱铝、钻等配合物化学负载在一维有序8。型介
    孔材料上,并用FT-IR、XRD、UV-VIS、TGA等光谱仪器表征了它们的性质。
    负载后的这些配合物仍呈现较高的催化活性。
     用负载化的席夫碱钻配合物作为主催化剂填充在固定床反应器中,将助催
    化剂季铰盐溶解在环氧乙烷中,实现了超临界条件下由CO。和环氧乙烷反应高
    效率得到碳酸乙烯酯,环氧乙烷的转化率高达85.6%。这是迄今第一例超临界
    CO。兼具溶剂和反应物双重功能用于连续化反应的成功报道。
     甲醇/二氯甲烷混合物改性的超临界 CO。是 MCM* 介孔材料模板剂的良
    好荤取剂,革取率超过92%;且革取出的模板剂仍保持其基本结构,可以重复
    用于 MCM-41的合成。较之高温烧结方法,用超临界流体革取方法获得 MCM-41
    材料的介孔未发生收缩,且孔径分布均匀、材料骨架结晶性亦更高。
     在以上工作的基础上,以乙二胺基硅烷偶联剂与无水CUO。形成的铜-乙二
    胺配合物【叮PED)厂。】作为模式配合物,利用其硅氧烷基团与 MCM* 材料
    表面的自由羟基(St-OH)之间醇解缩合反应,将铜配合物化学键合到MCM-41
    材料的表面,初步实现了 MCM-41 介孔材料中模板剂的移走和材料表面的同
    时改性,所获得材料仍然保持 MCM* 基本性质,且孔径分布较均匀。
The present thesis originates from catalytic activation of CO2, and studies the cycloaddition of CO2 with epoxides to produce corresponding cyclic carbonates under supercritical conditions. Some advantages for the utilization of supercritical CO2 as both a solvent and a reactant will be discussed in catalytic synthesizes of some organic compounds.
    For understanding the phase behavior during homogeneous catalytic reaction of CO2 and ethylene oxide to form ethylene carbonate under supercritical conditions, vapour-liquid equilibria in the system CO2/ethylene oxide at various temperatures and in the system CO2/ethylene oxide/ethylene carbonate at 110'Chave been studied in detail. It can be confirmed that the binary system of CO2 and ethylene oxide has a continuous critical locus between both critical points of the pure components. The results also indicate that phase change must occur during the cycloaddition reaction of CO2 and ethylene oxide under supercritical conditions.
    Homogeneous catalytic formation of ethylene carbonate from supercritical CO2/ethylene oxide mixture was realized by using tetradentate Schiff-base aluminum complexes as catalysts. The effect of phase change during the reaction on the rate was also explored.
    Various tetradentate Schiff-base aluminum complexes, which can be dissolved in supercritical CO2/ethylene oxide mixture, are effective catalysts for the cycloadditions of CO2 and epoxides. Axial group, substitution on the aromatic rings of SalenAlX, and co-catalyst all affect catalytic properties of these aluminum complexes. Among them, the binary catalyst consisted of SalenAl-(OCH2CH2)3Cl and n-Bu4NBr was found to be most effective and exhibited a catalytic activity of up
    
    
    
    to 2340 turnovers/h at 110"C, which was one of the highest for the cycloaddition of CO2 to epoxides amongst the reported catalysts. With the same binary catalyst, the formation rate of ethylene carbonate under supercritical condition was about 2 times of that under 4.0MPa CO2 pressure at same temperature.
    The interactions between ethylene oxide and tetradentate Schiff-base aluminum complexes (SalenAlX) were confirmed by means of NMR method. It was proposed that ethylene oxide was ring-opened according to base-catalyzed cleavage, and then inserted the Al-X bond of SalenAlX. Activation of CO2 and its insertion towards Al-O bond of aluminum complexes to form intermediate條inear carbonates, which formed cyclic carbonate by intermolecular substitution, were studied by using FTIR methods. The plausible mechanisms for cycloaddition of CO2 and ethylene oxide are proposed with aluminum complex alone, or combined with a Lewis base as co-catalyst. The synergistic effect of SalenAlX/n-Bu4NBr bifunctional catalyst for the cycloaddition reaction was discussed in detail.
    Soluble aluminum phthalocyanine and Schiff-base aluminum, cobalt complexes were covalently bonded to the silica surface of ordered mesoporous MCM-41 molecular sieve. The anchoring resulted complexes were characterized by means of FTIR, XRD, UV-VIS and TGA methods, and all exhibited high catalytic activities towards the cycloaddition of CO2 and ethylene oxide, when a quaternary ammonium salt was used as co-catalyst.
    In the presence of n-Bu4NBr, the cobalt complex anchored onto MCM-41 was used as catalyst for the cycloaddition of CO2 and ethylene oxide to continuous produce ethylene carbonate in a fixed bed reactor. The conversion of ethylene oxide is up to 85.6%. This is first successful example that supercritical CO2 was used as both a solvent and a reactant for continuous catalytic syntheses of organic compound.
    IV
    
    
    
    The removal of up to 92% of the template from mesopores has been successfully achieved by treating as-synthesized pure siliceous MCM-41 with supercritical CO2 modified with CH2Cl2/MeOH mixture. The extracted template retained its structure and property, and thus could be reused for preparation of MCM-41 material. Compared to high temperature calcination, the proposed method can avoid structure shrinkage, and retain highly uniform
引文
1. Anastas P.T.,and Williamson T.C..Green chemistry-designing chemistry for the environment,ACS Symoposium Series 626th,Washington D.C.: American Chemical Society,1996
    2. Jessop P.G.,Ikariya T.,Noyori R..Homogeneous Catalysis in Supercritical Fluids.Chem.Rev.,1999,99: 475-493
    3. Tucker S.C..Solvent density inhomogeneities in supercritical fluids.Chem.Rev.1999,99,391-418
    4. Johnston,K.P.; Haynes,C..Extreme solvent effects on reaction rate constants at supercritical fluid conditions.AICHE J.1987,33,2017
    5. Brennecke,J.R; Chateauneuf,J.E..Homogeneous Organic Reactions as Mechanistic Probes in Supercritical Fluids.Chem.Rev.1999,99,433-452
    6. Jessop P.G.,Hsiao Y.,Noyori R..Catalytic production of dimethylformamide from supercritical carbon dioxide.J.Am.Chem.Soc.1994,116,8851-8852
    7. Guaz Z.,Combes J.R.,Desimone J.M.Homogeneous free radical polymerization in supercritical carbon dioxide: 2. Thermal decomposition of 2,2'-azobis(isobutyronitrile).Macromolecules,1993,26,2663-2669
    8. Subramaniam B.,Mccoy B.J..Catalyst activity maintenance or decay: a model for formation and desorption of coke.Ind.Eng.Chem.Res.1994,33,504-508
    9. Baiker A..Supercritical Fluids in Heterogeneous Catalysis.Chem.Rev.1999,99,453-473
    10. 胡英著,近代化工热力学,上海:上海科技文献出版社,1994,p.133
    11. Tamaru K.,in Catalytic Ammonia Synthesis,Jennings J.R.(Ed.),Plenum Press,New York,1991,p.1-18
    12. English A.,Rovner J.,Davies S.,in Kirk-Othmer Encyclopedia of Chemical Teechnology,Vol.16,Howe-Grant M.(Ed.),John Wiley&Sons,New York,1995,p.537-556
    13. Fawcett E.W.,Gibson R.O.,Perrin M.W..Brit.Patent 471590,1937 Jessop P.G.,
    
    Leitner W..Chemical synthesis using supercritical fluids,Wiley-VCH,Weinheim,1999,p27
    14. Coenen,H.; Hagen,R.; Kriegel,E..Supercritical extraction and simultaneous catalytic hydrogenation of coal.U.S.Patent 4485003,1984 .
    15. Jessop,P.G.; Ikariya,T.; Noyori,R..Selectivity for hydrogenation or hydroformylation of olefins by hydridopentacarbonylmanganese(I) in supercritical CO2. Organometallics 1995,14,1510-1513
    16. Jessop,P.G.; Ikariya,T.; Noyori,R..Homogeneous catalytic hydrogenation of supercritical carbon dioxide.Nature 1994,368,231-233
    17. Jessop,P.G.; Ikariya,T.; Noyori,R..Homogeneous catalysis in supercritical fluids: hydrogenation of supercritical carbon dioxide to formic acid,alkyl formates and formamides.J.Am.Chem.Soc.1996,118,344-355
    18. Xiao J.L.,Jessop,P.G.; Noyori,R..Asymmetric hydrogenation of a ,B-unsaturated carboxylic acids in supercritical carbon dioxide.Tetrahedron Lett.1996,37,2813-2816
    19. Burk M.J.,Feng S.G.,Tumas W..Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide.J.Am.Chem.Soc.1995,117,8277-8288
    20. Kainz S.,Brinkmann A.,Leitner W..Iridium-catalyzed enantioselective hydrogenation of imines in supercritical CO2. J.Am.Chem.Soc.1999,121,6421-6429
    21. Noyori R..Asymmetric catalysis in organic synthesis,John wiley&Sons,New York,1994
    22. Parshall G.N.,Ittel S.D..Homogeneous Catalysis,second edition,John wiley&Sons,New York,1992
    23. Dathke J.W.,Klingler R.J.,Krause T.R..Propylene hydroformylation in supercritical carbon dioxide.Organometallics,1991,10,1350-1355
    24. Kainz S.,Koch D.,Baumann W..Perfluoroalkyl-substituted arylphosphanes as ligands for homogeneous catalysis in supercritical carbon dioxide.Angew.Chem.Int.Ed.Engl.1997,36,1628-1630
    
    
    25. Dooley K.M.,Knopf F.C..Oxidation catalysis in a supercritical fluid medium.Ind.Eng.Chem.Res.1987,26,1910-1916
    26. Fan L.,Nakayama Y.,Fujimoto K..Air oxidation of supercritical phase isobutane totert-butyl alcohol.J.C.S.: Chem.Commun.1997,1179-1180
    27. Wu X.W.,Oshima Y.,Koda S..Aerobic oxidation of cyclohexane catalyzed by Fe(III)(5,10,15,20-tetrakis(pentafluorophenyl)Cl in sub-and super-critical carbon dioxide.Chem.Lett.1997,1045-1046
    28. Jessop P.G..Homogeneously catalyzed syntheses in supercritical fluids.Top.Catal.1998,5,95-103
    29. Pesiri D.R.,Morita D.K.,Tumas W..Selective oxidation in dense phase carbon dioxide.J.C.S.: Chem.Commun.1998,1015-1016
    30. Kreher U.,Schebesta S.,Walther D.Z..Organometallics of transition metals in supercritical carbon dioxide: solubilities,reactions,catalysis. Anorg.Allg.Chem.1998,624,602-612
    31. Modell M..Processing methods for the oxidation of organics in supercritical water.U.S.Patent 4338199,1982
    32. Mistele C.D.,Desimone J.M.,Thorp H.H..Ring-opening Metathesis Polymerizations in Supercritical Carbon Dioxide.J.Macromol.Sci.,Pure Appl.Chem.1996,A33,953-960
    33. Grubbs R.H..The development of functional group tolerant ROMP catalysts.J.Macromol.Sci.,Pure Appl.Chem.1994,A31,1829-1833
    34. Furstner A.,Koch D.,Leitner W..Olefin metathesis in compressed carbon dioxide.Angew.Chem.Int.Ed.Engl.1997,36,2466-2469
    35. Kramer G.M.,Leder F..Hydrocarbon isomerization.U.S.Patent 3880945,1975
    36. Reetz M.T-,Konen W.,Strack T..Supercritical carbon dioxide as a reaction medium and reaction partner.Chimia 1993,47,493
    37. Jeong N.,Hwang S.H.,Lee Y.W..Catalytic Pauson-Khand reaction in supercritical fluids.
    
    J.Am.Chem.Soc.1997,119,10549-10550
    38. Jerome K.S.,Parsons E.J..Metal-catalyzed alkyne cyclotrimerizations in supercritical water.Organometallics 1993,12,2991-2993
    39. Reardon P.,Metts S.,Parsons E.J..Palladium-catalyzed coupling reactions in supercritical water.Organometallics 1995,14,3810-3816
    40. Carroll M.A.,Holmes A.B..Palladium-catalyzed carbon-carbon bond formation in supercritical carbon dioxide.J.C.S.: Chem.Commun.1998,1395-1396
    41. Tsuji J..Palladium reagents and catalysts.Innovation in organic synthesis,John wiley&Sons,Chichester,1995
    42. Bhise V.S..Process for preparing ethylene glycol.U.S.Patent 4400559,1983
    43. Morgenstern D.A.,Lelacheur R.M.,Tumas W..in Green Chemistry: Designing chemistry for the environment,Anastas P.T.,Williamson T.C..(Ed.),ACS,Washington,DC,1996,Vol 626,p.132-151
    44. Hitzler M.G.,Poliakoff M..Continuous hydrogenation of organic compounds in supercritical fluids.J.C.S.: Chem.Commun.1997,1667-1668
    45. Gao Y.,Liu H.Z.,Shi Y.F..The 4th International Symposium on Supercritical Fluids,Sendai,Japan,1997,p.531-534
    46. Fan L.,Nakayama Y.,Fujimoto K.Et al..Supercritical-phase alkylation reaction on solid acid catalysis: mechanistic study and catalyst development.Ind.Eng.Chem.Res.1997,36,1458-1463
    47. Albright L.F..Comments on "Supercritical-phase alkylation reaction on solid acid catalysis: mechanistic study and catalyst development".Ind.Eng.Chem.Res.1998,37,296-297
    48. Fan L.,Nakayama Y.,Fujimoto K..Rebuttal to the comments of Lyle F.Albright on "Supercritical-phase alkylation reaction on solid acid catalysis: mechanistic study and catalyst development".Ind.Eng.Chem.Res.1998,37,298-299
    
    
    49. Clark M.C.,Subramaniam B..Extended alkylate production activity during fixed-bed supercritical 1-butene/isobutane alkylation on solid acid catalysts using CO2 as a diluent.Ind.Eng.Chem.Res.1998,37,1243-1250
    50. Hitzler M.G.,Small F.R.,Poliakoff M..Friedel Crafts alkylation in supercritical fluids: continuous,selective and clean.J.C.S.: Chem.Commun.1998,359-360
    51. Dardas Z.,Siier M.G.,Ma Y.H..High-temperature,high-pressure in situ reaction monitoring of heterogeneous catalytic processes under supercritical conditions by CIR-FTIR.J.Catal.1996,159,204-211
    52. Collins N.A.,Debenedetti O.G.,Sundaresan S..Disproportionation of toluene over ZSM-5 under near-critical conditions.AICHE J.1988,34,1211-1214
    53. Niu F.,Hofmann H..Investigation of coke extraction from zeolite-HY under supercritical and near-critical conditions.Canadian J.Chem.Eng.1997,75,346-352
    54. Tiltscher H.,Schelchshorn J.,Westphal F..Non-steady state reaction control with change of gaseous/supercritical fluid state in heterogeneously catalyzed reactions.Chem.Ing.Technol.1984,56,42-44
    55. Saim S.,Subramaniam B..Isomerization of 1-hexene over Pt/r-Al2O3 catalyst: reaction mixture density and temperature effects on catalyst effectiveness factor,coke laydown,and catalyst micromerities.J.Catal.1991,131,445-456
    56. Baptist N.S.,Subramaniam B..Coking and activity of porous catalysts in supercritical reaction media.AICHE J.1992,38,1027-1037
    57. McCoy B.J.,Subramaniam B..Continuous-mixture kinetics of coke formation from olefinic oligomers.AICHE J.1995,41,317-323
    58. Ginosar D.M.,Subramaniam B..Olefinic oligomer and cosolvent effects on the coking and activity of a reforming catalyst in supercritical reaction mixtures.J.Catal.1995,152,31-41
    59. Amelse J.A.,Kutz N.A..Catalyzed xylene isomerization under supercritical temperature
    
    and pressure conditions.U.S.Patent 5030788,1991
    60. Dooley K.M.,Knopf F.C..Oxidation catalysis in a supercritical fluid medium.Ind.Eng.Chem.Res.1987,26,1910-1916
    61. Gaffney A.M.,Sofranko J.A..Catalytic Selective Oxidation,Washington,DC,1992,p.1273-1279
    62. Fan L.,Nakayama Y.,Fujimoto K..Air oxidation of supercritical phase isobutane to tert-butyl alcohol. J.C.S.: Chem.Commun.1997,1179-1180
    63. Fan L.,Watanabe T.,Fujimoto K..Reaction phase effect on tertiary butyl alcohol synthesis by air oxidation of isobutane. Appl.Catal.A.1997,158,L41-L46
    64. Yokota K.,Fujimoto K..Supercritical-phase Fischer-Tropsch synthesis reaction: 2. the effective diffusion of reactant and products in the supercritical-phase reaction.Ind.Eng.Chem.Res.1991,30,95-100
    65. Fan L.,Yokota K.,Fujimoto K..Supercritical phase Fischer-Tropsch synthesis: catalyst pore-size effect.A1CHE J.1992,38,1639-1648
    66. Fan L.,Yan S.,Fujimoto K..Selective synthesis of wax from syngas by supercritical phase process: mass transfer effect of co-fed olefin.J.Chem.Eng.Jpn.1997,30,557-562
    67. Fan L.,Yan S.,Fujimoto K..Selective synthesis of wax from syngas by supercritical phase process.Catal.Today 1997,36,295-304
    68. Buker D.B.,Lang X.,Akgerman A..Effect of process conditions on olefin selectivity during conventional and supercritical Fischer-Tropsch synthesis.Ind.Eng.Chem.Res.1997,36,2580-2587
    69. Snavely K.,Subramaniam B..On-line gas chromatographic analysis of Fischer-Tropsch synthesis products formed in a supercritical reaction medium.Ind.Eng.Chem.Res.1997,36,4413-4420
    70. Harrod M.,Macher M.B.,Hogberg J..The 4th Italian Conference on supercritical fluids and
    
    their applications,Capri(Napbli),Italy,1997,p.319-326
    71. Tacke T.,Wieland S.,Panster P..The 3rd International Symposium on high pressure chemical engineering,Zurich,Switzerland,1996,p.17-21
    72. Hitzler M.G.,Poliakoff M..Continuous hydrogenation of organic compounds in supercritical fluids.J.C.S.: Chem.Commun.1997,1667-1668
    73. Hitzler M.G.,Smail F.R.,Poliakoff M..Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process.Org.Process Res.Dev.1998,2,137-146
    74. Bertucco A.,Canu P..Catalytic hydrogenation in supercritical CO2: kinetic measurements in gradientless internal-recycle reactor.Ind.Eng.Chem.Res.1997,36,2626-2633
    75. Nakamura K.,Min C.Y.,Yamada Y..Lipase activity and stability in supercritical carbon dioxide.Chem.Eng.Commun.1986,45,207-212
    76. Dumont T.,Barm D.,Corbier C..Enzymatic reaction kinetic: comparison in an organic solvent and n supercritical carbon dioxide.Biotech.Bioeng.1992,39(2) ,329-333
    77. Msrty A.,Chulalaksananukul W.,Willemot R.M..Kinetics of lipase-catalyzed esterification in supercritical carbon dioxide.Biotech.Bioeng.1992,39(3) ,273-280
    78. Aaltonen O.,Rantakyl M..Biocatalysis in supercritical CO2. Chemtech.April 1991,21,240-248
    79. Dumont T.,Barth D.,Perrut M..Continuous synthesis of ethyl myristate by enzymatic reaction in supercritical CO2. J.Supercrit.Fluids 1993,6(2) ,85-89
    80. Hammond D.A.,Karel M.,Klibanov A.M.,et al.Enzymatic reactions in supercritical gases.Appl.Biochem.Biotechnol.1985,11(5) ,393-400
    81. Nakamura K..Supercritical fluid processing of food and biomaterials,Rizvi S.S.H.(Ed.),Blackie Academic And Professional: Glasgow,UK,1994,p.54-61
    82. Yoon S.H.,Nakaya H.,Miyawaki O..The 4th International Symposium on Supercritical
    
    Fluids,Sendai,Japan,1997
    83. Ikushima Y.,Saito N.,Yokoyama T..Solvent effects on an enzymatic ester synthesis in supercritical carbon dioxide.Chem.Lett.1993,109,109-110
    84. Randolph T.W.,Blanch H.W.,Prausnitz J.M..Enzymatic catalysis in a supercritical fluid.Biotech.Lett.1985,7(5) ,325-328
    85. Aaltonen O.,Rantakyla M..Lipase catalyzed reactions of chiral esters in supercritical carbon dioxide,Proc.Int.Symp.Supercritical Fluids.McHugh M.C.(Ed.),p.146
    86. Kamat S.,Barrera J.,Beckman E.J..Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids.Biotechnol.Bioeng.1992,40,158-166
    87. Hagiwara M.,Mitsui H.,Machi S..Liquid carbon dioxide as a solvent for the radiation polymerization of ethylene.J.Polym.Sci.,Part A,1968,6(3) ,603-608
    88. Sertage W.G.,Davis P.Jr.,Schenck H.U..Acrylic acid polymerization.Canada patent 1274942,1986
    89. Desimone J.M.,Guan Z.,Elsbernd C.S..Synthesis of Fluoropolymers in Supercritical Carbon Dioxide.Science 1992,257,945-947
    90. Desimone J.M.,Maury E.E.,Menceloglu Y.Z.,McClain J.B.,Romack T.R.,Combes J.R.Dispersion Polymerizations in Supercritical Carbon Dioxide.Science 1994,265,356-359
    91. Romack T.J.,Desimone J.M..Synthesis of Tetrafluoroethylene-based,Non-aqueous Fluoropolymers in Supercritical Carbon Dioxide.Macromolecules 1995,28,8429-8431
    92. Romack T.J.,Kipp B.E.,Desimone J.M..Polymerization of Tetrafluoroethylene in a Hybrid Carbon Dioxide/Aqueous Medium.Macromolecules 1995,28,8432-8434
    93. Charpentier P.A.,DeSimone J.M.,Roberts G.W..Continuous precipitation polymerization of vinylidene fluoride in supercritical carbon dioxide: modeling th rate of polymerization.Ind.Eng.Chem.Res.2000,39(12) ,4588-4596
    94. Cooper A.I.,Hems W.P.,Holmes A.B..Synthesis of crosslinked polymer microspheres in
    
    supercritical carbon dioxide.Macromol.Rapid Commun.1998,19,353-357
    95. Desimone J.M..Dispersion Polymerization of Acrylonitrile in Supercritical Carbon Dioxide.Macromolecules 2000,33(5) ,1565-1569
    96. Canelas D.A.,Betts D.E.,Desimone J.M..Poly(vinyl acetate) and Poly(vinyl acetate-co-ethylene) Latexes via Dispersion Polymerization in CO2. Macromolecules 1998,31,6794-6805
    97. Carson T.,Lizotte J.,Desimone J.M..Dispersion polymerization of l-vinyl-2-pyrrolidone in supercritical carbon dioxide.Macromolecules 2000,33,1917-1920
    98. Adamsky F.A.,Beckman E.J..Inverse emulsion polymerization of acrylamide in Supercritical Carbon Dioxide. Macromolecules 1994,27,312-314
    99. Pernecker T.,Kennedy J.P..Carbocationic polymerizations in supercritical carbon dioxide: exporatory experiments with isobutylene.Polym.Bull.1994,32,537-543
    100. DeSimone J.M.; Clark,M.R..Cationic Polymerizations in Carbon Dioxide.Macromolecules 1995,28,3002-3004
    101. Clark M.R.,Desimone J.M..Cationic polymerization in supercritical carbon dioxide.Polym.Prepr.1994,35,482-483
    102. Mistele C.D.,Thorp H.H.,Desimone J.M..The ring-opening metathesis polymerization of norbornene in supercritical carbon dioxide.Polym.Prepr.1995,36,507-508
    103. Mistele C.D.,Thorp H.H.,Desimone J.M..Ring-opening Metathesis Polymerizations in Supercritical Carbon Dioxide.J.Macromol.Sci.A 1996,33,953-960
    104. Christian P.,Howdle S.M.,Gugel A..Thermal ring opening polymerization of a silicon-bridged [1] ferrocenophane in supercritical CO2. Polym.Prepr.1997,38,434-435
    105. Odell P.G.,Hamer G.K...Polycarbonates via melt transesterification in supercritical carbon dioxide.Polym.Prepr.1997,38,470-471
    106. Burke A.L.C.,Givens R.D.,Desimone J.M..Use of CO2 in step-growth polymerizations:
    
    from plasticized polymer melts to solid state polymerization.Polym.Prepr.1997,38,387-388
    107. Givens R.D.,Jikei M.,Desimone J.M..Synthesis of polyamides and polycarbonates using supercritical CO2. Polym.Prepr.1997,38,468-469
    108. Loy D.A.,Russick E.M.,Yamanaka S.A..Direct formation of aerogels by sol-gel polymerization of alkyloxysilanes in supercritical CO2. Chem.Mater.1997,9,2264-2268
    109. Blanchard L.A.,Hancu D.,Beckman E.J.,et al..Green processing using ionic liquid and CO2. Nature 1999,399,28-29
    110. Bosmann A.,Francio G.,Jansswn E.,Solinas M.,Leitner W.,Wasserscheid P.. Activation,tuning,and immobilization of homogeneous catalysts in an ionic liquid/compressed CO2 continuous-flow system. Angew.Chem.Int.Ed.2001,40(14) ,2697-2699
    111. Sellin M.R,Webb P.B.,Cole-Hamilton D..Continuous flow homogeneous catalysis: hydroformylation of alkenes in supercritical fluid ionic liquid biphasic mixtures.J.C.S.Chem.Commun.2001,781-782
    112. Krocher O.,Koppl R.A.,Baiker A..Highly active ruthenium complexes with bidentate phosphine ligands for the solvent-free catalytic synthesis of N,N'-dimethylformamide and methyl formate.J.C.S.Chem.Commun.1997,453-454
    113. Bhanage B.M.,Ikushima Y.,Arai M..Multiphase catalysis using water-soluble metal complexes in supercritical carbon dioxide.J.C.S.Chem.Commun.1999, 1277-1278
    114. Bonilla R.J.,James B.R.,Jessop P.G..Colloid-catalyzed arene hydrogenation in aqueous/supercritical fluid biphasic media.J.C.S.Chem.Commun.2000,941-942
    115. Sakakura T.,Saito Y.,Okano M..Selective conversion of carbon dioxide to dimethyl carbonate by molecular catalysis.J.Org.Chem.,1998,63,7095-7096
    116. Zhao T.S.,Han Y.Z.,Sun Y.H..Novel reaction route for dimethyl carbonate synthesis from CO2 and methanol.Fuel Processing Tech.,2000,62,187-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700