苏云金芽胞杆菌YBT-1532生物合成苏云金素的代谢调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金素是苏云金芽胞杆菌产生的一种热稳定腺嘌呤衍生物,对鳞翅目等昆虫以及线虫和螨类具有良好的杀虫效果,其毒性比化学杀虫剂低的多,作为杀虫剂具有很大的市场潜力。本文对苏云金芽胞杆菌达姆斯塔特亚种YBT-1532菌株(YBT-1532)生物合成苏云金素的代谢调控进行了研究,结果如下:
     1.通过提高高效液相色谱流动相中的磷酸二氢钾浓度和在流动相中加入1.0%乙酸的方法,优化了苏云金素的检测条件;运用离子交换法分离苏云金素,采用0.2mol/L的甲酸冲洗与0.1 mol/L的氯化钠溶液(pH2.0)洗脱相结合的方案,提高了苏云金素分离和纯化效率。
     2.通过半合成培养基添加氨基酸和有机酸的刺激实验,发现腺嘌呤从头合成途径的底物,如天冬氨酸和谷氨酰氨等氨基酸,以及通过代谢对这些氨基酸合成有促进作用的有机酸,可提高苏云金素的发酵水平,证明苏云金素的生物合成与腺嘌呤从头合成途径有关。
     3.在YBT-1532菌株分批培养中,添加2.0g/L的柠檬酸钠降低了丙酮酸激酶活性、丙酮酸含量和合成PHB的能力以及PHB对葡萄糖的得率,却提高了2-酮戊二酸、谷氨酸和腺嘌呤浓度,同时,也提高了6-磷酸葡萄糖脱氢酶活性、细胞合成苏云金素的能力和苏云金素对葡萄糖的得率。证明添加柠檬酸钠引起糖酵解途径减弱,磷酸戊糖途径代谢流量增强,从而使PHB合成底物丙酮酸的供量减少,苏云金素合成前体腺嘌呤的供量增加,实现了抑制PHB合成和促进苏云金素合成的调节。首次报道了苏云金素与聚-3-羟基丁酸(PHB)的代谢关系。
     4.在YBT-1532菌株连续培养中,研究了细胞生长和代谢的动力学特征,并在稀释率为0.12 h~(-1)时,研究了柠檬酸钠对细胞代谢和苏云金素合成的影响,得到:
     碳衡算方程:qs=1.51xμ+2.2xqp+0.049
     菌体生长动力学方程:μ=0.63xS/(0.544+S);
     苏云金素生成动力学方程:dP/dt=0.0943xdX/dt+0.0146xX
     当添加柠檬酸钠时,与对照相比丙酮酸激酶活性降低29.0%,而6-磷酸葡萄糖脱氢酶活性却提高42.1%,导致苏云金素的产量提高14.7%。进一步证实柠檬酸钠对细胞代谢和苏云金素合成的调节机制。
     5.在YBT-1532菌株分批培养中,添加1.00g/L甲酸钠使腺嘌呤和苏云金素的产量提高。在静息培养中,当适量添加甲酸钠时,与对照相比NADH在胞内的含量增加19.6%,而甲酸脱氢酶、丙酮酸激酶和6-磷酸葡萄糖脱氢酶活性分别提高2.0倍、4.25倍和2.5倍,胞内天冬氨酸、丙酮酸、柠檬酸和腺嘌呤分别提高65.0%、75.0%、31.9%和71.4%,而苏云金素产量却提高了90%。结果表明甲酸钠对苏云金素合成的促进作用是通过提高与腺嘌呤合成相关的代谢途径的碳流量(糖酵解途径、三羧酸循环以及磷酸戊糖途径),提高细胞对腺嘌呤与苏云金素的合成能力来实现的;甲酸钠不仅可作为腺嘌呤合成的前体,还可以作为碳源被用于细胞生长和代谢。
     6.在YBT-1532菌株的分批培养中,添加DMSO(10mL/L)、SDS(0.10g/L)、青霉素(300IU/mL,9h加入)以及磷霉素(50U/mL,9h加入)均可显著提高苏云金素的产量。在青霉素作用下,胞内磷酸酯酶活性下降15.3%,胞内脱磷酸苏云金素提高25.0%,胞内苏云金素积累量减少12.0%,其向胞外分泌速率提高71.8%。表明细胞通透性增加后,苏云金素分泌增强,磷酸酯酶活性降低,导致胞内苏云金素积累减少,减少了胞内苏云金素合成的反馈调节,进一步促进了脱磷酸苏云金素合成。这些结果,国内尚未见报道。
Thuringiensin is a kind of adenine derivative produced by some strains of Bacillusthuringiensis. It has showed the broad-spectrum insecticidal activity against nematodes,mites and insects such as squama, and it has been much lower toxicity than that of manyother chemical pesticides. Therefore, thuringiensin has displayed a more attractive andpromising market prospect. The biosynthesis and metabolic regulation of thuringiensinproduction were explored in the thesis, and the main results are as follows:
     1. The quantitative analysis method of HPLC for thuringiensin was optimized byimproving KH_2PO_4 concentration in mobile phase and by adding 1.0% of acetic acid intomobile phase. The ion exchange method used to isolate thuringiensin was optimized as wellby eluting orderly with 0.2 mol/L of formic acid and 0.1 mol/L of NaCl solution (pH2.0).The above technique improvements significantly enhanced the efficiency of thuringiensindetection, separation and purification.
     2. A stimulation test had been carried out by the addition of some amino acids(including asparagines and glutamine, which serve as the precursors of de novo pathwayof adenine) or organic acids (their metabolism could also facilitate the above amino acidsynthesis) into the semisynthetic culture media. The results showed that thuringiensinfermentative level could be increased by the addition of the above compounds, and theseproved thuringiensin synthesis was relative with de novo pathway of adenine synthesis.
     3. In a batch cultivation system of Bacillus thuringiensis YBT-1532, 2.0 g/L citrateaddition significantly decreased pyruvate kinase activity, pyruvate content, the ability tosynthesize PHB and transformation from glucose to PHB as well, whereas obviouslyenhanced the production of 2-ketoglutarate, adenine and glutamate as well asglucose-6-phosphate dehydrigenase activity, cell ability to synthesize thuringiensin andtransformation from glucose to thuringiensin. The results above demonstrated that the citrateaddition attenuated glycolytic flux, and increased the carbon metabolic flux in the pentosephosphate pathway, respectively. The changes were obviously in favor of more substratessupplying for thuringiensin synthesis and less for pyruvate production, which consequentlyincreased the thuringiensin synthesis level and decreased the PHB production, respectively.The metabolic relationships between thuringiensin and PHB were reported for the first timein this work.
     4. The dynamic characteristies of cell growth and metabolite were investigated in acontinuous culture system of B. thuringiensis YBT-1532. The influence of citrateaddition on cell growth and thuringiensin synthesis was also studied at a dilution rate of0.12 h~(-1). The results could be described as following: q_S=1.51×μ+2.2×q_P+0.049;μ=0.63×S/(0.544+S); dP/dt=0.0943×dX/dt+0.0146×XThe activities of pyruvate kinase and glucose-6-phosphate dehydrogenase with citrateaddition at the dilution rate of 0.12 h~(-1) were 29.0% lower and 42.1% higher than thoseof the control, respectively. Thuringiensin synthesis yield increased by 14.7% whencompared with control. The results further verified the regulatory mechanism of citrateaddition on thuringiensin synthesis in continuous culture.
     5. The yields of adenine and thuringiensin were increased significantly with additionof 1.0 g/L formate in batch culture of B. thuringiensis YBT-1532. Resting cell of thestrain was also cultivated with appropriate formate addition. NADH concentrationincreased by 19.6%, intracellular enzymes activities of formate dehydrogenase, pyruvatekinase and glucose-6-phosphate dehydrogenase enhanced by 2-fold, 4.25-fold and2.5-fold when compared with control, respectively. Intracellular production of aspartate,pyruvate, citrate and adenine were 65.0%, 75.0%, 31.9% and 71.4% higher than thoseof the control, respectively, and thuringiensin yield increased by 90% as wall. The resultsdemonstrated that the formate addition could facilitate carbon metabolic flux inglycolysis, tricarboxylic acid cycle and the pentose phosphate pathway, and finallyfavored the syntheses of intracellular adenine and thuringiensin production. The formatenot only could serve as the precursor of adenine biosynthesis, but also might play roles ofcarbon source for cell growth and metabolism.
     6. Appropriate addition of DMSO (10 mL/L), SDS (0.10 g/L), penicillin (300 U/mL,9 h) and fosformycin (50 U/mL, 9 h) facilitated thuringiensin synthesis that was 30.7%,34.1%, 71.4% and 85.2% higher than that of the control, respectively, in the batchculture of B. thuringiensis YBT-1532. At the case of penicillin addition, intracellularthuringiensin and activity of intracellular phosphatase decreased by 12.0% and 15.3%,respectively. Intracellular dephosphorylated thuringiensin and thuringiensin secretionenhanced by 25.0% and 71.8% compared to control. The adding penicillin enhanced cellpermeability, facilitated thuringiensin excrete, and decreased intracellular thuringiensinconcentration and phosphatase avtivity, which decreased the feedback inhibition onthuringiensin synthesis and favored dephosphorylated thuringiensin synthesis.
引文
1.常亚飞,陈守文,喻子牛.苏云金素发酵培养基的优化,武汉大学学报,2004,增刊:63-66
    2.陈坚,李寅.发酵过程优化原理与实践.北京:化学工业出版社,2002
    3.储炬.现代工业发酵调控学,北京:化学工业出版社,2002
    4.李友荣,王莜兰,谢幸珠.中国抗生素杂志,1993,18:429-432
    5.刘瑞芝,张素平,曹竹安.提高麦迪霉素有效组分的工艺研究.中国抗生素杂志,1993,6:425-428
    6.陆文清,章克昌,吴佩琮.核黄素产生菌T30的补料发酵.无锡轻工大学学报,1999,18:1-5
    7.伦世仪.生化工程.北京:中国轻工业出版社,1993
    8.欧阳津,张晓彤.液相色谱检测方法.北京:化学工业出版社,2005
    9.沈萍,微生物学,北京:高等教育出版社(第三版),2000
    10.沈同,王镜岩.生物化学.北京:高等教育出版社,1998
    11.孙万儒,周铁锁,谢浩旭,江宁,任永娥.普鲁兰的底物流加补料发酵研究.生物工程学报,1999,15:183-188
    12.汤厚宽,何佶,刘义,屈松生.细菌变异株生长热谱研究.物理化学学报,1999,15:1112-1114
    13.谢昌礼,廖耀庭.微量热法测定细菌物临界生长温度.物理化学学报,1991,7:471-476
    14.徐孝华,周俊初.普通微生物.北京:中国农业大学出版社,第一版,1992
    15.杨丽,戚漠,钟杰.静息细胞法研究西索米星生物合成因素.中国抗生素杂志,2001,26:29-31
    16.喻子牛.苏云金芽胞杆菌.北京:科学出版社,1990
    17.喻子牛.苏云金芽胞杆菌制剂的生产和应用.北京:农业出版社,1993
    18.张龙兴.生化试验方法和技术.北京:高等教育出版社,1981
    19.张嗣良,储炬.多尺度微生物过程优化.北京:化学工业出版社,2003
    20.曾耀铭,吴文腾,高穗生,王顺成.生物农药—苏力菌素的研究开发.科学发展月刊(台湾),2000,28:350-353
    21.周景文.苏云金素的补料发酵工艺优化与代谢流分析.[硕士论文].武汉:华中农业大学图书馆,2006
    22.邹雯漪.利用苏力菌素防治福寿螺之病理探讨.[硕士论文].台北:朝阳科技大学图书馆,2003
    23. Aronson A. Sporulation and d-endotoxin synthesis by Bacillus thuringiensis. Mol Life Sci, 2002, 59: 417-425
    24. Bailey J E, Toward a science of metabolic engineering. Science, 1991, 252: 1668-1681
    25. Bekheit H K, Lucas A D, Gee S J. Development of an enzymelinked immunosorbent assay for the β-exotoxin of Bacillus thuringiensis. J Agric Food Chem, 1993, 41:1530-1534
    26. Berrios-rivera S J, Bennatt G N, San K Y. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD~+-dependent formate dehydrogenase. Metab Eng, 2002a, 4: 217-229
    27. Berrios-Rivera S J, San K Y, Bennett G N. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD~+ ratio, and the distribution of metabolites in Escherichia coli. Metab Eng, 2002b, 4: 238-247
    28. Brautaset T, Sekurova O N, Sletta H. Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chemistry & Biology, 2000,7:395-403
    29. Caffrey.P, Lynch S, Flood E et al. Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes, Chemistry & Biology 2001, 8: 713-723
    30. Campbell D P, Dieball D E, Brackett J M. Rapid HPLC assay for the beta-exotoxin of Bacillus thuringiensis. J Agric Food Chem, 1987,35:156-158
    31. Caneras C, Frykman S, Ou S. et al. Saccharopolyspora erythraea-catalyzed bioconversion of 6-deoxyeTythronolide B analogs for production of novel erythromycins. J Biotech, 2002, 92: 217-228
    32. Cerdeno A M, Bibb M J, Challis G L. Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes, Chemistry & Biology, 2001, 8: 817-829
    33. Chartain M, Salmon P M, Robinson D K et al. Metabolic engineering and directed evolution for the production of pharmaceuticals. Curr Opinion Biotech, 2000,11: 209-214
    34. Chen C H, Wang C Y, Liu X, Waters B, Davies J. Enhanced production of microbial metabolites in presence of dimethl sulfoxide. J Antibiotics, 2000, 53:1145-1153
    35. Chen P, Qi F-X, Novak J. et al. Effect of amino acid substitutions in conserved residues in the leader peptide on biosynthesis of the lantibiotic mutacin II, FEMS Microbiology Letters, 2001, 195:139-144
    36. Chen S, Hong J Y, Wu W T, Fed-batch culture of Bacillus thuringiensis based on motile intensity. J Industr Micro Biotech, 2003, 30: 677-681
    37. Cruz R, Arias M E, Soliveri J. Nutritional requirements for the production of pyrazoloisoquinolinone antibiotics by Streptomyces griseocarneus NCIMB 40447,Appl Microbiol Biotechnol ,1999, 53: 115-19
    38. Devidas P, Rehberger L A. The effects of exotoxin (thuringiensin) from Bacillus thuringiensis on Meloidogyne incognita and Caenorhabditis elegans. Plant Soil, 1992,145: 115-120
    39. Edwards J S, Palsson B O. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem, 1999, 274:17410-17416
    40. Espinasse S, Gohar M, Lereclus D, Sanchis V. An ABC transporter from Bacillus thuringiensin is essential for G-exotoxin I production. J Bacteriol, 2002,184:5848-5854
    41. Friedebold J and Bowien B. Physiological and biochemical characterization of the soluble formate dehydrogenase, a molybdoenzyme from Alcaligenes eutrophus. J Bacteriol, 1993, 15: 4719-4728
    42. Galkin A, Kulakova L, Yoshimura T, Soda K, Esaki N. Synthesis of optically active amino acids from a-keto acids with Escherichia coli cells expressing heterologous genes. Appl Environ Microbiol, 1997, 63: 4651-4656
    43. Gohar M, Perchat S. Sample preparation for 8-exotoxin determination in Bacillus thuringiensis cultures by reversed-phase high-performance liquid chromatography. Analyti Biochem, 2001, 298:112-117
    44. Granstrom T, Aristidou A A, Leisola M. Metabolic flux analysis of Candida tropicalis growing on xylose in an oxygen-limited chemostat. Metab Eng, 2002, 4: 248-256
    45. Hafner E W, Holley B W, Holdom K S. et al. Branched-chain fatty acids requirement for avermectin production by a mutant of Streptomyces avermitilis lacking branched-chain 2-oxo acid dehydrogenase activity. J Antibiotics.1991, 44(3): 349-355
    46. Han C S, Xie G, Challacombe J F. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol, 2006, 188: 3382-3390
    47. Henderson R A, Jones C W. Poly-3-hydroxybutyrate production by washed cells of Alcaligenes eutrophus; purification, characterization and potential regulatory role of citrate synthase. Arch Microbiol, 1997,168: 486-492
    48. Hernandez C S, Ferre J, Larget-Thiery I. Update on the detection of 8-exotoxin in Bacillus thuringiensis strains by HPLC analysis. J Appli Micro, 2001, 90:643-647
    49. Hernandez C S, Martinez C, Porcar M, Caballero P, Ferre J. Correlation between serovars of Bacillus thuringiensis and type I beta-exotoxin production. J Invertebr Pathol, 2003, 82: 57-62
    50. Holmberg A and Carlbery G. Fermentation of Bacillus thuringiensis for exotoxin production. Biotechnol Bioeng, 1980, 22: 1707-1716
    51. Holzel R, Motzkus C, Lamprechet I. Kinetic investigation of microbial metabolism. Thermochimica Acta, 1994, 239: 17-32
    52. Hopwood D A, Malpartida F, Kieser H M et al. Production of hybrid-antibiotics by genetic engineering. Nature, 1985, 314: 642-644
    53. Hsu T H, Tzeng Y M, Wu M M. Insecticidal activity and HPLC correlation of thuringiensin from fermentation and two-phase aqueous separation processes. Pesti Sci, 1997, 50: 35-41
    54. Hugh G, Philip P, Kelowna. What is Bacillus thuringiensis (Alias Bt)? Tree Fruit Leader, 1992, http://www.gov.bc.ca
    55. Hulya A K, Leman T. Vancomycin antibiotic production and TCA-glyoxalate pathways depending on the glucose concentration in Amycolatopsis orientalis. Enzyme Microb Technol, 2006, 38: 727-734
    56. Hutchinson C R. Combinatorial biosynthesis for new drug discovery. Curr Opinion in Microb, 1998,1:319-329
    57. Izumi Y, Kanzaki H, Morita S, Futazuka H, Yamada H. Characterization of crystalline formate dehydrogenase from Candida methanolica. Eur J Biochem, 1989,182: 333-341
    58. Jeong, J W. A mathematical model for examining growth and sporulation processes of Bacillus subtilis, Biotechnol Bioeng, 1990, 35:160-184
    59. .Johnson D E, Peterson R E. Limitation of HPLC for the detection of β-exotoxin in culture ltrates of Bacillus thuringiensis. Appl Microbio Biotech, 1983: 17, 231-234
    60. Jollie D R and Lipscomb J D. Formate dehydrogenase from Methylosinus trichosporium OB3b.Purification and spectroscopic characterization of the cofactor. J Biol Chem, 1991, 266: 21853-21863
    61. Jong J Z, Hsiun D Y, Wu W T, Tzeng Y M. Fed-batch culture of Bacillus thuringiensis for thuringiensin production in a tower type bioreactor. Biotech Bioeng, 1995, 48: 207- 213
    62. Karzanov V V, Correa Y M, Bogatsky Y G, Netrusov A I. Alternative NAD-dependent formate dehydrogenase in the facultative methylotroph Mycobacterium vaccae 10. FEMS Microbiol Lett, 1991, 81: 95-100
    63. Kim B S, Lee S C, Lee S Y. Production of poly (3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng, 1994, 43: 892-898
    64. Kitsuta Y, Kishimoto M. Fuzzy supervisory control of glutamic acid production. Biotechnol Bioeng, 1994, 44: 87-94
    65. Khaour S, Lebrihi A, Laakel M. Influence of short-chain fatty acids on the production of spiramycin by Streptomyces anbofaciens. J Appl Microbio Biotech, 1992,36:763-267
    66. Leonardo M R, Dailly Y, Clark D P. Role of NAD in regulating the adhE gene of Escherichia coli. J Bacteriol, 1996,178: 6013-6018
    67. Levinson B L, Kasyan K J, Chiu S S, Currier T C, Gonzales J M. Identification of β-exotoxin production, plasmids encoding β-exotoxin, and a new exotoxin in Bacillus thuringiensis by using high-performance liquid chromatography. J Bacteriol, 1990, 172: 3172-3179
    68. Li X, Liu Y, Wu J, Liang H G, Qu S S. Microcaloriemtric study of Staphylococcus aureus growth affected by selenium compounds. Thermochim Acta, 2002a, 387: 57-61
    69. Li X, Liu Y, Wu J, Liang H G, Qu S S. The action of selenomorpholine compounds on Escherichia coli growth by microcalorimetry. J Therm Anal Calorimetry, 2002b, 67: 589-595
    70. Li X, Liu Y, Wu J, Qu S S. The effect of the selenomorpholine derivatives on the growth of Staphylococcus aureus studied by Microcalorimetry, Thermochim Acta, 2001, 375: 109-113
    71. Liu C M, Tzeng Y M. Quantiative analysis of thuringiensin by HPLC using AMP as internal standard. J Chromatogr Sci, 1998a, 36: 340-344
    72. Liu C M, Tzeng Y M. Quantiative analysis of thuringiensin by miccellar electrokinetic capillary chromatography. J Chromatogr A, 1998b, 809: 258-263
    73. Madison, L L, Huisman, G W. Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic, Microbiol Mol Biol Rev, 1999,63: 21-53
    74. Liu Y, Li X, Qu S S, Shen P. Microcalorimetric investigation of the toxic action of Cd~(2+) on Rhizopus nigricans growth. J Biochem Bioph Meth, 2000, 45: 23-239
    75. Liu Y, Yan C N, Qu S S, Shen P. Kinetics of the toxic action of Pb~(2+) on Rhizopus nigricans as studied by microcalorimetry. Thermochim Acta, 1999, 333: 103-108
    76. Mansfield D A, Anderson A J, Naylor L A. Regulation of PHB metabolism in Alcaligenes eutrophus. Can J Microbiol, 1995, 42: 44-49
    77. McDaniel R, Ebert-Khosla S, Hopwood DA, Khosla C. Engineered biosynthesis of novel polyketides. Science, 1993, 262:1546-1550
    78. Mersie W, Megh Singh. Absorption, translocation, and metabolism of ~(14)C-thuringiensin (β-exotoxin) in snapbeans. Fla Entomol, 1988, 71: 105-111
    79. Michel Gohar, Stephane Perchat. Sample preparation for β-exotoxin determination in Bacillus thuringiensis cultures by reversed-phase high-performance liquid chromatography. Analyti Biochem, 2001, 298:112-117
    80. Mignone C F, Avignone-Rossa C. Analysis of glucose carbon fluxes in continuous cultures of Bacillus thuringiensis. Appl Microbiol Biotech, 1996, 46: 78-84
    81. Milan K P, Liu W M, Eugene L I, Rakesh K B. A mathematical model for vegetative growth of Bacillus thuringiensis. Eng Life Sci, 2001, 2: 85-90
    82. Murat E and Ferda M. A kinetic model for actinorhodin production by Streptomyces coelicolor A3 (2). Process Biochem, 1999, 34: 625-631
    83. Muriel C B, Armel G, Lindley N D. Growth rate-dependent modulation of carbon flux through central metabolism and the kinetic consequences for glucose-limited chemostat cultures of Corynebacterium glutamicum. Appl Environ Microbiol, 1996, 62: 429-436
    84. Miiller R H, Loffhagen N, Babel W. Rapid extraction of (di)nucleotides from bacterial cells and determination by ion-pair reversed-phase HPLC. J. Microbiol. Methods, 1996, 25: 29-35
    85. Navarro A K, Farrera R R, Lopez R, Perez-Guevara F. Relationship between poly-β-hydroxybutyrate production and d-endotoxin for Bacillus thuringiensis var. kurstaki, Biotechnol Lett 2006, 28: 641-644
    86. Nissen T L, Schulze U. Nielsen J. Villadsen J. Flux distributions in anaerobic, glucose limited continuous cultures of Saccharomyces cerevisiae. Microbiology, 1997,143:203-218.
    87. Owen O E, Kalhan S C, Hanson R W. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem, 2002, 277: 30409-30412
    88. Ozawa K, Iwahana H. Involvement of a transmissible plasmid in heat-stable exotoxin and delta-endotoxin in Bacillus thuringiensis subspecies darmstadiensis. Curr Microbiol, 1986, 13: 337-340
    89. Paige M R, Cooper R D. Scale-up of beta-exotoxin production in fed-batch Bacillus thuringiensis fermentations. Eur Congr Biotechnol, 1990, 5: 146-149 .
    90. Park C H and Martinez B C. Enhanced releasr of rosmarinic acid from Coleus blumei permeabilized by dimethyl sulfoxide (DMSO) while preserving cell viability and growth. Biotech Bioeng, 1992, 40: 459-564
    91. Park D H, Zeikus J G. Utilization of electrically reduced neutral red by actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol, 1999,181: 2403-2410
    92. Pedersen H, Beyer M, Nielsen J, Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger. Appl Microbiol Biotechnol, 2000, 53:272-277
    93. Pramajk J, Keasling J D. Stoichiometric model of Escherichia coli metabolism incorporation of growth-rate-dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng, 1997, 56:398-421
    94. Pronk J T, Steensma H Y, van Dijken J P. Pyruvate metabolism in Saccaromyces cerevisia. Yeast,1996.1:1607-1633
    95. Robin A H, Colin W J. Poly-3-hydroxybutyrate production by washed cells of Alcaligenes eutrophus; purification, characterization and potential regulatory role of citrate synthase. Arch Microbiol, 1997,168: 486-492
    96. Robinson V, Bruce C, David R, Penman. Factors influencing the responses of Tetranychus urticae Koch (acarina: tetranychidae) to thuringiensin. Agricultura Tecnica, 2002, 62: 3-14
    97. Rodriguez E, McDaniel R. Combinatorial biosynthesis of antimicrobials and other natural products. Current Opinion in Microbiol, 2001, 4: 526-534
    98. Rodriguezpadilla C A, Galanwong L, Barjac H, Romancalderon E, Tamezgueeram R, Dulmage H. Bacillus thuringiensis neoleonesis serotype H-24, a new subsp. Which produce a triangular crytal. J invertbr Pathol, 1990, 56: 280-282
    99. Royalty R N, Hall F R, Taylor R A J. Effects of thuringiensin on Tetranychus urticae (Acari: Tetranychidae) mortality, fecundity, and feeding. J Econ Entomol, 1990, 83: 792-798
    100. Royalty R N, Hall F R, Lucius B A. Effects of thuringiensin on European red mite (Acarina: Tetranychidae) mortality, oviposition rate and feeding. Pestic Sci, 1991, 33: 383-391
    101. Rowe G E, Margaritis A. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. CRC Cri Rev Biotech, 1987, 6: 87-127
    102. San K Y, Bennett G N, Berrios-Rivera S J et al., Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng, 2002, 4:182-192
    103. Sauer U, Cameron D C, Bailey J E. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnol Bioeng, 1998, 59:227-238
    104. Schuster S, Fell D A, Dankekar T. A general definition of metabolic pathway useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol, 2000, 18:326-332
    105. Sezonov G, Blanc V, Bamas-Jacques N et al. Complete conversion of antibiotic precursor to pristinamycin II A by overexpression of Streptomyces pristinaespiralis biosynthesis genes. Nat Biotechnol, 1997,15: 349-353
    106. Speedie M K, Hartley D L. Demonstration of a metabolic grid at an early step in the streptonigrin biosynthetic pathway in S. flocculus. J Antibiotics, 1984, 37: 159-166
    107. Stachelhaus T, Schneider A, Marahiel M A. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science, 1995, 269: 69-72
    108. Stafford D E, Stephanopoulos G. Metabolic Engineering as an integrating platform for strain development. Current opinion in Microbiol, 2001, 4: 336-340
    109. Steinbuchel A, Wiese S. Bacterial and other biological systems for polyester production. Trends Biotechnol, 1998, 16: 419-427
    110. Stephanopoulos G N, Aristidou A A, Nielsen J. Metabolic Engineering: Principles and Methodologies, Academic Press, San Diego. 1998
    111. Stephanopoulos G N, Sinskey A J. Metabolic engineering-methodologies and future prospects, Trends Biotechnol, 1993, 11:392-396
    112. Sylvain E, Michel G, Josette C. Correspondence of high levels of beta-exotoxin I and the presence of cryIB in Bacillus thuringiensis. Appl Environ. Microbiol, 2002, 68: 4182-4186
    113. Tang L, Shah S, Chung L et al. Cloning and heterologous expression of the epothilone gene cluster. Science, 2000, 287: 640-642
    114. Tanigoshi L K, Mayer D F, Babcock H M. Effficacy of the β-exotoxin of Bacillus thuringiensis to Lygus hesperus. J Econ Entomol, 1990, 83: 2200-2206
    115. Trilli A, Crossly M V, Kontakou M. Relation between growth and erythromycin production in Streptomyces erythraeus. Biotechnol Lett, 1987, 9: 765-770
    116. Tsai S F, Liu B L, Liao J W. Pulmonary toxicity of thuringiensin administered intratracheally in sprague-dawley rats. Toxicology. 2003,186: 205-216
    117. Tsun H Y, Liu C M, Tzeng Y M. Recovery and purification of thuringiensin from the fermentation broth of Bacillus thuringiensis. Bioseparation, 1999, 7: 309-316
    118. Tzeng Y M, Young Y H. Penicillin-G enhanced production of thuringiensin by Bacillus thuringiensis subsp, darmstadiensis. Biotechnol Prog, 1995,11: 231-234
    119. Tzeng Y M, Young Y H. Production of thuringiensin from Bacillus thuringiensis using a net-draft-tube modified airlift reactor. W J Microbio Biotech, 1996,12: 32-37
    120. Tzeng Y M. Method of purifying thuringiensin. US Patent, 6268183. 2001
    121. Vogel K, Hinnen A. Lipids and their metabolism. Mol Microbiol, 1990, 4: 2013-2019
    122. Wadso I. On the currency of results from microcalorimetric measurements on cellular systems. Thermochimica Acta, 1993,219:1-15
    123. Weitnauer G, Muhlenweg A, Trefzer A. et al. Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tu57 and production of new antibiotics, Chemistry Biol, 2001, 8: 569-581
    124. Wu W T, Chen S. An index for determining the culture time of inoculum in cultivation of Bacillus thuringiensis. Biotech Lett, 2001, 23:1201-1204
    125. Wu W T, Hsu Y L, Ko Y F, Yao L L. Effect of shear stress on cultivation of Bacillus thuringiensis for thuringiensin production. Appl Microbiol Biotechnol, 2002, 58: 175-177
    126. Yao J, Liu Y, Gao Z T, Liu P, Sun M, Qu S S, Yu Z N. Microcalorimetric study of the biological effects of Zn~(2+) on Bacillus thuringiensis growth. Chinese J Chem, 2002a, 20: 746-752
    127. Yao J, Liu Y, Gao Z T, Liu P, Sun M, Qu S S, Yu Z N. A microcalorimetric study of the biologic effect of Mn (II) on Bacillus thuringiensis growth. J Therm Anal Calorimetry, 2002b, 70: 415-421
    128. Yao J, Liu Y, Liu P, Liang H G, Sun M, Qu S S, Yu Z N. Study of the Thermokinetic properties of copperese (II) on Eescherichia coli growth by microcalorimetry. Biol Trace Element Res, 2003a, 92: 60-70
    129. Yao J, Liu Y, Liu P, G Z T, Sun M, Qu S S, Yu Z N, Shen Y F. Microcalorimetric investigation of the effect of manganous (II) on the growth of Tetrahymena shanghaiensis S_199. Biol Trace Element Res, 2003b, 92: 71-82
    130. Yoch D C, Chen Y P, Hardin M G. Formate dehydrogenase from the methane oxidizer Methylosinus trichosporium OB3b. J Bacteriol, 1990, 172: 4456-4463
    131. Zhao J, Shimizu K. Metabolic flux analysis of Escherichia coli K12 grown on ~(13)C labeled acetate and glucose using GC-MS and powerful flux calculation method. J Biotechnol, 2003, 101: 101-117
    132. Zhao R M, Liu Y, Shen P, Qu S S. A microcalorimetric method to study biological effects of La~(3+) on Escherichia coli. Journal of Biochemical and Biophysical Methods, 2000, 46: 1-9
    133. Zhong J J, Meng X D, Zhang Y H. Effective release of ginseng saponin from suspension cells of panax notoginseng. Biotechnol Tech, 1997,11: 241-243
    134. Zhou J W, Chang Y F, Xu Z H, Yu Z N, Chen S W. Production of thuringiensin by fed-batch culture of Bacillus thuringiensis subsp, darmstadiensis 032 with an improved pH-control glucose feeding strategy. Process Biochem, 2007, 42: 52-56
    135. Zhu J F, Kazuyuki S. Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab Eng 2005, 7: 104-115
    136. Zuo K, Wu W T. Semi-realtime optimization and control of a fed-batch fermentation system. Comp Chem Eng, 2000, 24:1105-1109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700