损伤力学方法预估构件的疲劳裂纹形成寿命
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构件疲劳失效已经成为工程领域中的重要课题,构件疲劳失效过程可分为裂纹形成与裂纹扩展两个阶段。对于裂纹扩展阶段,目前基本上都是采用断裂力学方法进行分析。就裂纹形成阶段而言,一般采用的分析方法有两种。一种是完全的试验方法,直接通过与实际情况相同或相似的试验来获取所需要的疲劳数据。这种方法虽然可靠但昂贵且费时,故可行性不高。另一种方法是试验与统计经验相结合的方法。这种方法着眼于利用已有的标准试验结果,依照经验性的当量原则或修正办法,对实际情况的疲劳指标进行估算。然而,如果要对千差万别的实际情况进行完备的修正,势必要进行大量的统计试验,这往往是不现实的。疲劳裂纹形成寿命问题的研究,具有较大的理论和实际意义。
     本文致力于应用损伤力学方法研究大范围损伤下工程构件的疲劳裂纹形成寿命的预估。重点讨论建立大范围损伤下工程构件疲劳裂纹形成寿命预估的耦联变分原理及其应用,得到了较为完整的求解该问题的新体系。
     推导了直杆拉压时的疲劳裂纹形成寿命预估的封闭解,给出了直梁纯弯曲时的疲劳裂纹形成寿命预估的封闭解。应用最小二乘法给出了确定损伤演化方程中材料常数的方法。损伤演化方程中材料常数的确定,是损伤力学中最基本和很重要的工作。
     采用直接方法推导了圆轴扭转、矩形截面梁纯弯曲、直梁横力弯曲等的疲劳裂纹形成寿命的封闭解。应用虚功原理推导了平面应力板状构件疲劳裂纹形成寿命的封闭解。给出了上述各种构件疲劳裂纹形成寿命的预估方法和指定疲劳裂纹形成寿命下工作应力的计算方法。
     对大范围损伤条件下平面应力板状构件的疲劳裂纹形成寿命预估问题,采用变分原理进行了分析。定义了该问题的耦联系统,建立了该耦联系统的零差功原理、耦联势能原理和耦联余能原理。应用耦联势能原理导出了平面应力板状构件在大范围损伤条件下的疲劳裂纹形成寿命预估的封闭解。
     定义了大范围损伤条件下疲劳裂纹形成问题三维构件损伤力学求解的耦联系统,建立了该耦联系统的零差功原理、耦联势能原理和耦联余能原理。应用耦联势能原理得到了三维构件在大范围损伤条件下的疲劳裂纹形成寿命预估的封闭解。进一步得到了横力弯曲直梁、纯弯曲直梁、扭转圆轴、拉压直杆的疲劳裂纹形成寿命的封闭解。
     作为本文方法的应用,对冷轧机支承辊疲劳裂纹形成寿命进行了研究,给出了预估其疲劳裂纹形成寿命的方法,并计算了算例。为预估冷轧机支承辊的疲劳裂纹形成寿命提供了新思路和新方法。
Fatigue failure is an important consideration in the design of most of the engineering compenents, a fatigue failure consists of two steps: crack initiation and crack propagation. in general terms, there are two methods in analyzing crack initiation. The methods based on test obtain key fatigue data by carrying out some tests which conditions are the same as practical conditions, or similar to practical conditions. Although the data are creditable derived from the tests, costs are more expensive and hinder its implementation. Based on some empirical equivalent principles and modified methods, another method combines tests with statistics analysis, which evaluates fatigue index of practical conditions by use of existing test data. Unforturnately, numerous statistical tests must be completed in order to gain perfect modifications for various practical conditions. Obviously, the study on crack initiation lives is much important in theoretical exploration and practical application. This dissertation is mainly devoted to evaluate fatigue crack initiation lives of engineering compenents with large range damage by use of damage mechanics. Focal points focus on establishing the variational principles of coupled systems and its applications for evaluating fatigue crack initiation lives of engineering compenents with large range damage, a set of new system is developed for this problem.
     The closed form solutions are derived to evaluate fatigue crack initiation lives for a pole subjected to a stretch or compression loading, and a beam subjected to a pure bending load. Applying least squares technique, the method to determine material constants in damage evolution equations is established. This part of work is fundamental and much important in damage mechanics analysis.
     Applying direct method, the closed form solutions are obtained for evaluating crack initiation lives of a circular shaft subjected to twist loading, a rectangular section beam subjected to pure bending load, and a beam subjected to transverse bending load. Applying virtual work principle, the closed form solution is obtained for evaluating crack initiation lives of a plane compenent under plane stress. The methods of evaluating fatigue crack initiation lives and determining working stress under assigned fatigue crack initiation lives are given for those compenents mentioned above.
     Applying variational principles, fatigue crack initiation lives is evaluated for a plane compenents with large range damage. Coupled system is defined firstly, then zero different work principle, coupled potential energy principle and coupled complementary energy principle are established. Applying coupled potential energy principle, the closed form solution is obtained for evaluating crack initiation lives of a plane compenent under plane stress.
     For three dimensional compenents with large range damage, coupled system is defined for solving the problem of fatigue crack initiation, then zero different work principle, coupled potential energy principle and coupled complementary energy principle are established. Applying coupled potential energy principle, the closed form solution is obtained for evaluating crack initiation lives of three dimensional compenents with large range damage. The closed form solutions are obtained for evaluating crack initiation lives of a circular shaft subjected to a twist loading, a beam subjected to a pure bending load or a transverse bending load, and a pole subjected to a stretch or compression loading.
     As an application, fatigue crack initiation lives of the backup roll of cool rolling mill is evaluated, the method is given for evaluating its fatigue crack initiation lives. An example is presented to demonstrate the application of new method developed by this dissertation in evaluating fatigue crack initiation lives of back-up roll.
引文
1张行,赵军.金属构件应用疲劳损伤力学.北京:国防工业出版社,1998:1-2 188-210 93-101 151-172 198-202 188-210
    2 S.P.铁木辛可著.材料力学史.常振楫译.上海:上海科技出版社,1961:1-3
    3 R.A.Smith. The Versailles Railway Accident of 1842 and the first Research into Metal Fatigue. H Kitagawa, T Tan,a. Fatigue 90. Birmingham, 1990, 2033-2041
    4 N.E.弗罗斯特.金属疲劳.北京:冶金工业出版社, 1984:3-7
    5 J.Bauschinger. Uber das Kritallinischwerden und die Festigkeitsverminderung des Eisens durch den Gebrauch. Dinglers J, 1880, 23(5):169-173
    6 J.Bauschinger. Uber die Veranderung der Elastizitatsgrenze und der Festigkeitdes Eisens und Stahls dusch Strecken und Quetschen, durch Erwarmen und Abkuhlen und durch oftmals wiederholte Beansprunchung, Mitt. Mech, 1886, Tech, Lab. Munch. 13:1-115
    7 H.J. Gough, D. Hanson. The Behavior of Metals Subjected to Repeated stresses. Proc, Roy, Soc.(A)104, 1923:538-565
    8 H.J. Gough. The Fatigue of Metals. London: Scot, Greenwood, 1924:13-89
    9 H.F.Moore, J.B.Kommers. The Fatigue of Metals. New York: MeGraw-Hill, 1927:3-158
    10 E. Orowan. Theory of the Fatigue of Metals. Proc. Royal Society, Ser A, 1939, 171:79-105
    11 A. Palmgren. Die Lebensdauer Von Kugellagern. Zertschrift Des Vereins Deutscher Ingenieure, 1924,i8(339):124-129
    12 M.A.Miner. Cumulative Damage in Fatigue. J. Appl. Mech, Trans, Am. Soc. Mech. Engrs, 1945,67:A-149
    13Л.М.什科利尼克.疲劳试验手册.陈玉坤译.上海:上海科技出版社, 1983:1-12
    14 A.A.Grifith. The Phenomena of Rupture and Flow in Solids. Phil.Trans, Roy.Toe, 1920, 221A:163-178
    15 A.A. Griffith. Stress Concentrations in Design and Practice. Rep, Brit Ass, 1921:316-324
    16 G.R. Irwin. Fracture Mechanics. New York:Pergamon Press, 1960:11-173
    17 P.C. Paris. The Growth of Cracks due to Variations in Load. Dissertation, Lehigh University, 1962:1-237
    18 P.C .Paris. R.E. Gomez and W.E.Andeson, A Rational Analytic Theory of Fatigue. The Trendin Engg, 1961,13:9-14
    19 S.S.Manson. Behavior of Materials under Conditions of Thermal Stress. NACA Report 1170, 1954:634-638
    20 H.Neuber. Theory of Concentration for Shear Strained Prismatical Bodies with Arbitrary Nonlinear Stress-Strain Law. J.of App Mech Trans ASME, 1961,4:235-242
    21 D.C.Drucker, L.Palgen. On the Stress-Strain Relations Suitable for Cyclic and Other Loading. Journal of Applied Mechanics, 1981,48:479-485
    22 C.E.Feltner, C. Laird. Cyclic Stress-Strain Response of F.C.C. metals and Alloys-I. Phenomenological Experiments. Acta Metallurgica, 1967,15:1621-1632
    23 S.S. Manson. Interfaces Between Fatigue Creep and Fracture. Int.J. Fracture, 1966,2:327-363
    24 S.S.Manson Application of A Double linear Damage Rule to Cumulative Fatigue. ASTM STP415, 1967:384-412
    25 R.M.Wetzel. A Method of Fatigue Damage Analysis. Scientific Research Report No. SR. Ford Motor Company,Dearborn,MI,Sept, 1971:71-107
    26 W.Weibull. A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 1951,18:273-297
    27 D.Krajcinovic, J.Lemaitre, eds. Continuum Damage Mechanics Theory and Applications. Wien-New-York: Springer-Verlag, 1970,5:235-254
    28 D.Krajcinovic, G.Silva. Statistical Aspects of the Continuous Damage Theory. Int.J of Solids and Structure, 1982,18(7):551-562
    29徐灏.疲劳强度.北京:高等教育出版社, 1988:2-9
    30 R.Hales. The Role of Cavity Growth Mechanisms in Determining Creep-Fatigue under Multiaxial Stress. Fatigue & Fracture of Engineering Materials & Structures, 1994,17(5):579-591
    31王英玉,姚卫星.材料多轴疲劳破坏准则回顾.机械强度, 2003,25(3):246-250
    32蔡能,尚德广.高温多轴疲劳损伤与寿命预测研究进展.机械强度, 2004, 26(5):576-582
    33尚德广,王大康,孙国芹,蔡能.多轴疲劳裂纹扩展行为研究.机械强度. 2004, 26(4): 423-427
    34石多奇,杨晓光,王延荣.一种考虑拉伸保持效应的多轴疲劳寿命模型.力学学报. 2006, 38(2): 255-261
    35金丹,陈旭.多轴随机载荷下的疲劳寿命估算方法. 2006, 36(1): 65-74
    36付德龙,张莉,程靳.基于塑性应变能的多轴低周疲劳寿命预测模型.工程力学. 2007, 24(3): 54-57
    37邹小俚.随机超载下疲劳裂纹扩展的模拟计算.机械强度, 2004, 26(6): 680-682
    38邹小俚,杨健辉.随机超载对疲劳裂纹扩展迟滞效应的模拟.固体力学学报, 2004, 25(4): 476-478
    39蒋荟,杨晓华.预腐蚀后拉伸超载对LC4CS铝合金疲劳性能的影响.中国工程科学. 2006, 8(2): 44-46
    40范志超,陈学东,蒋家羚. 16MnR钢循环蠕变-疲劳交互作用损伤力学模型.固体力学学报. 2006, 27(1): 65-70
    41陈学东,范志超,陈凌,蒋家羚,杨铁成.三种疲劳蠕变交互作用寿命预测模型的比较及其应用.机械工程学报. 2007,43(1): 62-68
    42蒋家羚,陈凌.疲劳-蠕变交互作用的寿命预测探讨.材料研究学报, 2007, 21(5): 537-541
    43莫涛,赵杰. OCr18Ni9裂纹试样的室温蠕变现象及对裂纹扩展的延滞效应.机械强度, 2007, 29(6):997-1000
    44 K.J.Miller. The Short Crack Problem. Fatigue & Fracture of Engineering Materials & Structures, 1982,5(3):223-231
    45回丽,曹志韬,谢里阳,何雪浤.钛合金焊缝金属表面疲劳短裂纹的分形研究.东北大学学报. 2004, 25(8): 790-792
    46俞树荣,曹睿,严志刚,陈剑虹.钝化的预裂纹尖端产生的短裂纹对解理断裂的影响.机械工程学报. 2005, 41(3): 47-52
    47李晶晶,田常海,汪越胜. U71Mn和U75V钢轨钢疲劳短裂纹的扩展行为.钢铁研究学报. 2006, 18(4): 37-40
    48 L.R.Kaisand, D.F.Mowbrag. A Mathematical Equation Relating Low Cycle Fatigue Data to Fatigue Crack Propagation Rates. Journal Test and Evaluation, 1979, 7(5): 270-280
    49陈立杰,谢里阳.某低压涡轮工作叶片高温低循环疲劳寿命预测.东北大学学报. 2005, 26(7): 673-676
    50陈立杰,江铁强.低循环疲劳寿命预测的幂指函数模型.机械强度, 2006, 28(5): 761-76 5
    51高镇同.疲劳应用统计学.北京:国防工业出版社, 1986:1-187
    52 T.V.Duggan, J. Byrne. Fatigue as a Design Criterion. London: Macmillan Press, 1977:128-211
    53 H.T.Carten, T.J.Dolan. Cumulative Fatigue Damage. Proceedings of an International Conferrence on Fatigue of Metals, London, 1956,1: 235-246
    54吴富民.结构疲劳强度.西安:西北工业大学出版社, 1985: 150-179
    55 N.E.Dowling, W.R.Brose,W.K.Wilson. Notched Member Fatigue Life Prediction by the Local Stress Strain Approach. Fatigue Under Complex Loading, 1977:SAE6:55-84
    56 Tung X Y, Wang D J, Xu H. Inverstingation of Cyclic Hysteresis Energy in Fatigue Failure Problems. International Journal of Fatigue, 1989,11(5):355-359
    57王中,高镇同.疲劳缺口系数和复杂载荷下寿命估算.力学学报, 1986,18(4):335-340
    58 Yao W X. Stress Field Intensity Approach for Prediction Fatigue Life. International Journal of Fatigue, 1993,15(3):243-245
    59 L.M.Kachanov. On Rupture Time under Condition of Crack. Izv. Akad. Nauk SSSR,Otd. Techn. Nauk, 1958,8:26-31(in Russian)
    60 Y.N.Rabotvov. On the Equation of State for Creep. Progress in Applied Mechanics, 1963: 307-315
    61 J.Jason, J.Hult. Fracture Mechanics and Damage Mechanics, a Combined Approach. J.de Mech.Appl.,1977,1(1): 59-64
    62 D.Krajcinovic. Continuum Damage Mechanics. Appl. Mech.Rev., 1984,37:1-6
    63 J.L.Chaboche. Continuum Damage Mechanics,part I and part II. ASME J. Appl. Mech., 1988, 55:59-72
    64 P.J.Rabier. Some Remarkd on Damage Mechanics. Int. J. Engng Sci.,1989,27:29-54
    65 D.Krajcinovic. Damage Mechanics: Accomplishments, Trends and Needs. Int.J. Solids and Structures, 2000,37:267-277
    66 L.M.Kachanov. Introduction to Continuum Damage Mechanics. Dordrecht:Martinus Nijhoff Publishers, 1986:23-59
    67 J.Lemaitre. A Course on Damage Mechanics. Berlin:Springer-Verlag, 1992:1-217
    68 D.Krajcinovic, J.Lemaitre. Continuum Damage Mechanics-Theory and Applications. Wien: Springer-Verlag, 1987:45-87
    69 D.Krajcinovic. Dammage Mechanics. Amsterdam:North-Holland, Elsevier Science Publishers, 1996:36-78
    70徐灏.损伤力学基础.济南:山东科学技术出版社, 1989:1-176
    71谢和平.岩石、混凝土损伤力学.徐州:中国矿业大学出版社, 1990:24-195
    72余寿文,冯西桥.损伤力学.北京:清华大学出版社, 1997:1-327
    73李兆霞.损伤力学及其应用.北京:科学出版社, 2002:1-157
    74 P.Gilormini, C.Licht, P.Suqut. Growth of Voids in a Ductile Matrix: A Review. Arch. Mech., 1988,40(1):43-80
    75 S. Nemat-Nasser, M. Hori. Micromechanics: Overall Properties of Heterogeneous Materials. The Netherland: Elsevier, 1993:27-93
    76 D.Krajcinovic. Damage Mechanics. Mech. Mater., 1998,8:117-197
    77 Yang W.,Lee W.B.. Mesoplasticity and its Applications. Berlin:Springer-Verlag, 1993:11-45
    78黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论.北京:清华大学出版社, 1999:21-67
    79 J.D.Eshelby. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems. Proc. R. Soc. Lond.A, 1957, 240:367-396
    80 J.D.Eshelby. The Elastic Field outside an Ellipsoidal Inclusion. Proc. R. Soc. Lond.A, 1959,252:561-569
    81 R.Hill. A Self-consistent Mechanics of Composite Materials. J. Mech. Phys. Solids, 1965,13:213-222
    82 B.Budiansky. On the Elastic Moduli of Some Heterogeneous Materials. J. Mech. Phys. Solids, 1965,13:223-227
    83 R.M.Christensen, K.H.Lo. Solutions for Effective Properties in Three Phase Sphere and Cylinder Models. J. Mech. Phys. Solids, 1979,27:315-330
    84 R.M.Christensen. A Critical Evaluation for a Class Micro-consistent Mechanics Models. J. Mech. Phys. Solids, 1990,38:379-404
    85 Huang Y, Hu K.X. A Generalized Self-consistent Mechanics Method for Solids Containing Elliptical Inclusions. ASME J. Appl. Mech., 1995,62:566-572
    86 Jiang C.P., Cheung Y.K.. A Fiber/Matrix/Composite Model with a Combined Confocal Elliptical Cylinder Unit Cell for Predicting the Effective Longitudinal Shear Modulus. Int. J. Solids and Structures, 1998,35(30):3977-3987
    87 T. Mori, K.Tanaka. Average Stress in Matrix and Average Energy of Materials with Misfitting Inclusion. Act. Metall, 1973,21:571-574
    88 R.A. Roscoe. The Viscosity of Suspensions of Rigid Spheres. Brit. J. Appl. Phys, 1952,3:267-269
    89 Z.Hashin, S.A.Shtrikman. A Variational Approach to the Theory of the Elastic Behaviour of Polycrystals. J. Mech. Phys. Solids, 1962,10:343-352
    90 Z.Hashin, S.A.Shtrikman. A Variational Approach to the Elastic Behaviour of Multiphase Materials. J. Mech. Phys. Solids, 1963,11:127-140
    91 Z.P.Bazant. Mechanics of Distributed Cracking. Appl. Mech. Review, 1986, 39(11): 675-705
    92 N.Fares. Effective Stiffness of Cracked Elastic Solids. Appl. Mech. Review, 1992, 47(7): 336-345
    93 M.Kachanov. Effective Elastic Properties of Crack Solids, Critical Review of Some Basic Concepts. Appl. Mech. Review, 1992, 45(7): 304-335
    94杜善义,王彪.复合材料细观力学.北京:科学出版社, 1998:14-139
    95黄克智,黄永刚.固体本构关系.北京:清华大学出版社, 1999:23-63
    96秦跃平,张金峰.岩石损伤力学理论模型初探.岩石力学与工程学报. 2003, 22(4): 646-650
    97刘红岩,王根旺,陈福刚.以损伤变量为特征的岩石损伤理论研究进展.爆破. 2004, 21(1): 9-12
    98韦立德,杨春和.压剪应力条件下各向异性岩石损伤本构模型和渗流模型(Ⅰ):理论模型.岩土力学. 2006, 27(3):428-434
    99张嘉翔.韦立德,陈从新,杨春和.压剪应力条件下各向异性岩石损伤本构模型和渗流模型(Ⅱ):三轴压缩应力状态下理论模型及算例.岩土力学. 2007, 28(2):241-246
    100吕培印,李庆斌,张立翔.混凝土拉-压疲劳损伤模型及其验证.工程力学. 2004, 21(3):162-166
    101朱劲松,宋玉普,肖汝诚.混凝土疲劳特性与疲劳损伤后等效单轴本构关系.建筑材料学报. 2005, 8(6): 609-614
    102吴建营,李杰.反映阻尼影响的混凝土弹塑性损伤本构模型.工程力学. 2006年23卷11期: 116-121,132
    103朱劲松,宋玉普,肖汝诚.混凝土疲劳特性与疲劳损伤后等效单轴本构关系.建筑材料学报. 2005, 8(6): 609-614
    104刘宇艳,万志敏.单向帘线/橡胶复合材料的疲劳损伤模型与疲劳寿命预报.材料工程. 2003, 4: 27-29
    105刘相新,张学仁.粉末合金(FGH95)蠕变/疲劳交互作用下寿命预测的损伤力学有限元分析.航空动力学报. 2003, 18(1): 101-108
    106王飞,郭万林.钛合金材料IMI834高温蠕变和蠕变断裂的连续损伤力学分析.机械强度. 2005, 27(4):530-533
    107张国栋,于慧臣.损伤力学方法在材料低周疲劳试验中的应用研究.航空动力学报, 2007,22(9):1544-1549
    108张文姣,王奇志,张行.以成组疲劳试验确定疲劳极限的损伤力学方法.力学与实践, 2007,29(4): 44-46
    109张泰华,孟宪红.推导材料不同Kt中值疲劳曲线的损伤力学方法.力学与实践. 2006, 28(5): 62-64
    110郜峰,王奇志.高周疲劳各向异性损伤问题研究.力学与实践. 2003, 25(3): 28-32
    111沈为,彭立华,邓泽贤.金属薄板成型工艺中的失稳和损伤分析.力学与实践. 2004, 26(4):7-11
    112郑旭东,张行.预估金属构件疲劳全寿命的损伤力学-有限元法.航空学报, 1991, 12(2): B1-B9
    113郜峰,杨继运,张行.各向异性损伤力学在螺纹疲劳寿命预估中的应用.应用力学学报, 2007,24(1): 128-132
    114孟宪红,白曌宇,张行.扭杆刚度衰减加速试验的损伤力学分析.机械工程学报. 2007, 43(7):44-48
    115杨继运,张行,张珉.基于疲劳裂纹形成曲线的裂纹扩展分析数值方法.机械工程学报. 2004, 40(7):55-62
    116白曌宇,孟宪红,张行.含沟槽轴对称杆疲劳寿命的损伤力学闭合解.航空学报. 2007,
    28(3): 579-581
    117付宝连.光测弹性理论的变分原理.东北重型机械学院学报, 1989,13(4):68-72
    118付宝连.光测弹性理论的耦联有限元法.东北重型机械学院学报, 1991,13(4):68-72
    119付宝连.光测弹性理论中的耦联变分原理和广义耦联变分原理.应用数学和力学, 1996, 17(1):39-44
    120付宝连,谭文锋.光弹性力学的分区相似耦联势能原理及有限元法.工程力学, 1998, 15(4):25-33
    121付宝连,聂绍珉.应用耦联变分原理于应变硬化材料塑性变形的物理模拟计算.塑性工程学报, 1999, 6(4):89-93
    122庄茁,蒋持平.工程断裂与损伤.北京:机械工业出版社, 2004:97
    123 D.R.Hayhurst, F.A.Lechie. The Effect of Creep Constitutive ang Damage Relationships upon the Rupture Time of a Siold Circular Torsion Bar. J.Mech. Phys. Solids, 1973,21:431-446
    124 F.A.Lechie. The Constitutive Equations of Continuum Creep Damage Mechanics. Phil. Trans. R. Soc. Lond., 1978,288:27-47
    125 L.A.Resende. A Damage Mechanics Constitutive Theory for the Inelastic Behavior of Concreye. Comp. Methods Appl. Mech. Eng., 1987,60:57-93
    126 J.Lemaitre. Evaluation of Dissipation and Damage in Metals Submitted to Dynamic Loading. In: Proc. ICM-1, Kyto, 1971:1-36
    127张行等.断裂与损伤力学.北京:北京航空航天大学出版社, 2006:347-348
    128 J.Lemaitre, Plumtree. Application of Damage Concepts to Predict Creep-Fatigue Failuers. J.of Eng. Mat. Tech., Tran. ASME, 1979,101:284-292
    129 J.L.Chaboche. Low-Cycle Fatigue and Life Prediction. ASTM-STP-770, 1982: 81-104
    130刘鸿文.材料力学(I).北京:高等教育出版社. 2004: 358-359
    131数学手册编写组.数学手册.北京:高等教育出版社, 2004: 836-841
    132工程材料实用手册编辑委员会.工程材料实用手册(结构钢、不锈钢).北京:中国标准出版社, 1999: 57-74
    133 Iqbal Rasool Memon.三维疲劳问题的损伤力学计算方法.北京航空航天大学博士论文, 2000: 45-46
    134工程材料实用手册编辑委员会.工程材料实用手册(结构钢不锈钢).北京:中国标准出版社, 1999:286-304
    135邹家祥.轧钢机械.北京:冶金工业出版社, 2004: 78-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700