锌浸出针铁矿法沉铁过程的建模研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1在常压富氧直接浸出过程中,硫化锌精矿含铁量达到5%~15%,浸出液中过量的铁元素会降低净化工段的除杂效率,甚至会导致后续生产的不稳定。针铁矿法沉铁通过在五个串联连续搅拌反应器中分别通入氧气和添加焙砂,使溶液中的铁离子以针铁矿的形式沉淀。它是一个氧化、水解及中和反应共同进行的多相化学反应过程,具有极强的非线性和耦合性。由于多相反应的复杂性和沉铁长流程的时滞性,使得过程控制难度大,低铁离子氧化速率和溶液pH值波动剧烈,导致生产过程稳定性差,能耗高,有价金属回收率低。因此,沉铁过程的建模和铁离子浓度预测,实现沉铁过程的优化控制,企业节能降耗优质高产的生产目标,具有重要意义。
     针对上述现象,本文在工业数据预处理和过程参数相关性分析的基础上,建立针铁矿法沉铁过程的机理模型、铁离子浓度的混合智能预测模型以及基于机理模型和智能模型的集成预测模型,并成功应用于针铁矿法沉铁过程的优化控制系统中。论文主要工作和创新性成果体现在以下几个方面:
     (1)针铁矿法沉铁过程的数据预处理以及相关性分析
     针对沉铁反应器出口pH检测值的过失误差所导致的建模精度低的问题,提出了基于多元回归的反应器出口pH值过失误差校正方法。针对串联反应器铁离子浓度缺失问题,提出了基于一阶动力学与平均插值的铁离子浓度插值方法。在针铁矿法沉铁机理研究的基础上,对操作变量,状态变量和生产指标进行相关性分析,为预测建模提供依据。实验结果表明,所提的数据预处理和分析方法能提高工业数据在建模过程中的适用性,改善了模型的精度。
     (2)建立了不同工况下的有效溶解氧浓度模型
     针对低铁离子氧化反应过程中有效溶解氧浓度欠缺所导致的机理建模困难的问题,提出了一种基于氧浓度差异的反应器分类方法。首先根据铁离子浓度在各沉铁反应器中的分布与变化,将沉铁反应器分成三类;然后根据氧气在溶液中溶解的影响因素,基于双膜理论渗透理论和表面更新理论,建立了不同工况下溶液中的有效溶解氧浓、度模型。该模型能客观准确地反映针铁矿法沉铁过程中沉铁反应器内的溶解氧浓度。
     (3)建立了沉铁过程的串联加权耦合机理模型
     针对针铁矿法沉铁过程反应机理的复杂性,首先基于化学反应动力学原理,分别建立了低铁离子的氧化反应、高铁离子的水解反应和氢离子的中和反应的动力学模型;然后根据质量守恒原理并结合动力学模型,建立了描述针铁矿法沉铁过程串联反应器的常规机理模型;在此基础上,提出了一种加权耦合机理模型,以补偿主反应间的耦合效应引起的常规机理模型计算误差。
     (4)提出了一种沉铁过程机理模型的参数辨识方法
     针对机理模型的强非线性,以及待辨识参数之间的耦合性,提出了一种基于分段进化PSO算法的模型参数辨识算法。同时,针对加权耦合机理模型中的权系数,提出了一种基于补偿特性的权系数确定方法,并分析了权系数随反应器的变化趋势。通过典型工况的数据仿真实验表明,该参数辨识方法能够有效地提高机理模型的精度。
     (5)生产指标铁离子浓度的集成预测模型
     针对机理模型预测精度低和沉铁后液铁离子浓度检测滞后的问题,建立了基于改进支持向量机和过程神经网络的信息熵集成预测模型,有效地解决了预测模型建模过程中样本点少和输入数据动态变化的问题。在实际生产过程中,针对该预测模型的精度在时变情况下的不稳定性,提出了基于改进欧式距离选择样本的OLS局部建模方法,以及基于信息熵集成预测模型性能的动态加权集成预测模型。另外,从提高沉铁后液铁离子浓度预测模型在不工况下预测精度的角度出发,建立了一种基于沉铁过程多工序多元过程能力指数的机理模型和智能模型的铁离子浓度集成预测模型,最后通过现场数据的仿真结果验证了该集成预测模型的有效性。
     (6)开发了针铁矿法沉铁过程的优化控制系统
     该系统通过OPC客户端实现现场数据采集,在此基础上,实现了针铁矿法沉铁过程的关键工艺参数的协调优化设定、沉铁后液离子浓度的在线预估以及操作变量的优化调节等功能。另外,还实现了针铁矿法沉铁过程的流程监视、数据查询和分析等功能。实际工业运行结果表明该系统有效地提高了企业的生产效率和资源利用率。
In the directly leaching process under atmospheric pressure with rich oxygen, zinc sulfide concentrate often contains significant iron irons (5%~15%), which decreases efficiency of impurity removing in the next stage (purification), and could even lead a unstable production station. In iron precipitation process, iron ions are deposited as goethite in five continuous stirred tank reactors (CSTR) in series using zinc calcine and oxygen. In this process, multi-phase chemical reactions, including oxidation, hydrolysis and neutralization, display at the same time with serious coupling and nonlinearity. For the complexity of multi-phase reactions in the process, it is not easy to control iron precipitation process, and the oxidation rate of ferrous ion and the pH value fluctuate seriously, leading low stability of production process, high energy consuming and low valuable metal recovery. Hence, the modeling of iron precipitation process and prediction of iron concentration are significant to the optimization control of the process, and benefit to energy saving, high production of the company.
     To solve the above problems, the optimization calculation in iron precipitation by goethite process, series weighted coupling CSTR model, hybrid prediction model for iron ion concentration and integrated prediction model for iron content have been built, in the basis of pre-processing and relevance analysis of industrial data. The major work and the innovative achievements in this paper are reflected in the following areas:
     (1) Data preprocessing and relevance analysis of iron precipitation by goethite process
     To solve the problem of low modeling accuracy caused by gross error in detected value of pH meter, the gross error correction method of outlet pH value based on a multiple regression and first order kinetic was presented. And aimed at the undetection of iron concentration of the central reactor in CSTR, the interpolation method for iron concentration combined first order kinetics with average interpolation algorithm was proposed. On the basis of mechanisms study of iron precipitation as goethite, the relevance among the operating variables, state variables and production targets were analyzed. The experimental results showed that the proposed data pre-processing and analysis method promoted the efficiency of industrial data in modeling and increased the accuracy of the models
     (2) Effective dissolved oxygen concentration model under different working conditions
     In the view of the modeling problems caused by lack of effective dissolved oxygen concentration, the iron precipitation reactors classification method according to oxygen dissolving differences was proposed. In the method, iron precipitation reactors were classified into three groups after analysis of iron ion concentration distribution and changes in each reactor. Then according to the influences of oxygen dissolving in the solution, the effective dissolved oxygen concentration model under different working conditions on the basis of the two-film theory, penetration theory and surface renewal theory, has been analyzed and built. The proposed model could describe the dissolved oxygen concentrations objectively in each iron precipitation reactors.
     (3) Series Weighted coupled CSTR modeling in iron precipitation by goethite process
     For the complexity of reaction mechanism in iron precipitation as goethite, kinetic models of oxidation, hydrolysis and neutralization were established, respectively, according to the principles of chemical dynamics. Combined with the kinetic models, the regular series of continuous stirred tank reactor model (n-CSTR) was built based on mass conservation. On the basis of those work, the weighted coupling CSTR model was proposed to compensate calculation errors of regular mechanism model caused by the coupling effect among the three reactions.
     (4) An iron precipitation mechanism model parameters identifica-tion method is put forward
     According to the strong nonlinear of mechanism model and the coupling between the identified parameters, this paper proposes a model parameter identification algorithm based on the piecewise evolution PSO algorithm. Aiming at the weight coefficient of weighted coupling mechanism model, a method to determine the weight coefficient has been proposed in this paper, and the change tendency of the weight coefficient along with the reactor has been analyzed. The data simulation experiment of typical working conditions show that the parameter identification method can effectively improve the accuracy of the mechanism model.
     (5) Integrated prediction model for iron ion concentration in production target
     For the mechanism model prediction accuracy and real-time difference, as well as the time lag of low iron and ferric ion detection, an intelligent forecasting model based on improved support vector machine and process neural network ensemble has been built to efficiently solve the problem that the sample point was too little and input data dynamically changed during the iron precipitation by goethite.According to the prediction accuracy of the forecast model in the production process time-varying situation, this paper has proposed a Euclidean distance sample selection method based on the relevance analysis and weighing, in addition, a correction method for prediction model based on the capability of prediction model and local regression.In addition, aiming at raising the precision of prediction model under different work conditions, a integrated model including mechanism and intelligent model is presented based on the mulstitgae process multivariate quality process capability index size. The scene data simulation results verified the validity of the integrated prediction model.
     (6) Developing the optimization control system of iron precipita-tion by goethite process
     Through the OPC client this system can collect scene data and realize the function of the key process parameters coordination optimization setting in the iron precipitation by goethite process, ion concentration online estimate after precipitation process and operating variable optimization control. In addition, it also can achieving process monitoring, data query and analysis function in the iron precipitation process. The actual industrial operation results confirmed that this system efficiently improved the enterprise's production efficiency and the resources utilization.
引文
[1]株洲冶炼厂.锌的湿法冶炼[M].长沙:湖南人民出版社,1973.
    [2]李若贵.常压富氧直接浸出炼锌[J].中国有色冶金,2009,3(A):12-21.
    [3]郎家重.国外锌冶炼工艺发展状况[J].有色矿冶,1999,4:30-32.
    [4]徐采栋.锌冶金物理化学[M].上海:上海科学技术出版社,1979.
    [5]陈家墉,于淑秋,伍志春.湿法冶金中铁的分离与利用[M].北京:冶金工业出版社,1991.
    [6]桂卫华.复杂有色冶金生产过程智能建模、控制与优化[M].北京:科学出版社,2010.
    [7]Zhang Y. W., Chai T. Y, Li ZH. M., et al. Modeling and Monitoring of Dynamic Processes [J]. Neural Networks and Learning Systems,2012,23(2): 277-284.
    [8]Sarkar P., GuPta S. K.. Steady state simulation of continuous-flow stirred-tank slurry propylene polymerization reactors [J]. Engineering and Seienee,1992, 32(11):732-742.
    [9]Mattos A. G, Pinto J. C. Steady-state modeling of slurry and bulk propylene polymerizations [J]. Chemical Engineering Scienee,2001,56(13):4043-4057.
    [10]Soare J. B. P., Hamielee A. E.. Effect of hydrogen and eatalyst prepolymeriza-tion with propylene on the polymerization kineties of ethylene with a non-supported heterogeneous Ziegler-Natta catalyst [J]. Polymer Reaction Engineering,1996,37(20):4599-4605.
    [11]范顺杰,徐用懋.本体法聚丙烯CSTR建模研究[J].清华大学学报(自然科学版),2000,40(1):112-115.
    [12]唐国锋.聚丙烯生产过程建模及优化控制研究[D].杭州:浙江工业大学,2008.
    [13]张占军.基于机理法的丙烯腈聚合反应装置建模与仿真研究[D].哈尔滨:哈尔滨工业大学,2007.
    [14]王平,田华阁,田学民.Spheripol-Ⅱ双环管聚丙烯装置动态建模[J].计算机与应用化学,2008,25(7):827-831.
    [15]谢刚,王丽军,王勤波,等.对二甲苯氧化反应器连续全混流模型[J].化学反应工程与工艺,2003,19(4):323-329.
    [16]史工昌,廖明义,王玉荣,等.多级连续搅拌反应器中丁二烯-苯乙烯负离子溶液聚合动力学[J].合成橡胶工业,2007,30(2):97-101.
    [17]P. N. Jonesa, N. G. Ocan-Taskin, M. Yianneskis. The use of momentum ratio to evaluate the performance of CSTRs [J]. Chemical Engineering Research and Design,2009,12 (87):485-491.
    [18]Juraj Slava, Zuzana Svandova, Jozef Marko. Modelling of reactive separations including fast chemical reactions in CSTR [J]. Chemical Engineering Journal,2008,139(10):517-522.
    [19]Sun G. ZH., Antony Ladson. Kinetic Modelling of the Removal of Seven Common Pollutants in Subsurface Flow Constructed Wetlands [J]. Wetland Science,2010,8(4):320-327.
    [20]Z. Svandova, M. Kotora, J. Markos, et al. Dynamic behaviour of a CSTR with reactive distillation [J]. Chemical Engineering Journal,2006,32(3):113-120.
    [21]Y. Kansha, M. S. Chiu. Adaptive generalized predictive control based on JITL technique. Journal of Process Control,2009,19(7):1067-1072.
    [22]王凌云.湿法炼锌净化过程建模及基于控制参数化的优化方法[D].长沙:中南大学,2009.
    [23]Du J. J., Song CH. Y., Li P.. Modeling and Control of a Continuous Stirred Tank Reactor Based on a Mixed Logical Dynamical Model [J]. Chinese Journal of Chemical Engineering,2007,15(4):533-538.
    [24]王永骥,徐桂英.连续搅拌反应釜(CSTR)的神经网络动态建模[J].控制与决策,2000,15(3):375-377.
    [25]Dauda Olurotimi Araromi, Tinuade Jolaade Afolabi, Duncan Aloko. Neural Network Control of CSTR for Reversible Reaction Using Reverence Model Approach [J]. Leonardo Journal of Sciences,2007,10(1-6):25-40.
    [26]Attaran S. M., Abdullah S. S. B.. Modeling of non isothermal CSTR with the method of RBF NN [C].2011 International Conference on Modeling, Simulation and Applied Optimization (ICMSAO),2011:1-6.
    [27]张颖,邵惠鹤.模糊聚类学习算法在连续搅拌反应釜(CSTR)系统动态建模中的应用[J].上海交通大学学报,1999,33(5):588-591.
    [28]U. Sabura Banu, G. Uma. Modelling of CSTR by Fuzzy Clustering [C]. Proceedings of India International Conference on Power Electronics 2006, 2006:371-376.
    [29]董清生,张连凯.基于支持向量机的CSTR系统建模[J].科技信息,2009,22(8):63-64.
    [30]王清培,刘瑞兰.基于最小二乘支持向量机的软测量方法在精对苯二甲酸 生产中的应用[J].化工自动化及仪表,2010,37(7):32-34.
    [31]王莎,桂卫华,李勇刚,等.针铁矿法沉铁过程二价铁离子浓度预测模型研究[J/OL]. http://www.paper.edu.cn,2011-07-20.
    [32]陈莹.聚丙烯动态机理建模与生产过程优化[D].大连:大连理工大学,2009.
    [33]田华阁,车荣杰,田学民.聚丙烯双环管反应器熔融指数机理建模[J].控制工程,2010,17(2):193-196.
    [34]李小斌,陈滨,周秋生,等.铝酸钠溶液碳酸化分解过程动力学[J].中国有色金属学报,2004,14(5):848-853.
    [35]邓燕妮,桂卫华,阳春华,等.氧化铝连续碳酸化分解过程建模与仿真[J].系统仿真学报,2009,21(12):3499-3503.
    [36]聂晓凯,阳春华,柴琴琴,等.氧化铝蒸发的动态过程建模与仿真[J].化工自动化及仪表,2011,38(3):279-283.
    [37]阳春华,谢明,桂卫华,等.铜闪速熔炼过程冰铜品位预测模型的研究与应用[J].信息与控制,2008,37(1):28-33.
    [38]T. Maffei, S. Sommariva, T. Faravelli, et al. A predictive kinetic model of sulfur release from coal[C]. Processes and Technologies for a Sustainable Energy,2010,6:1-10.
    [39]祝雪妹,张亮,刘如成.精馏过程动态机理模型建立[J].计算机与应用化学,2008,25(7):854-858.
    [40]于丰.烟气制酸转化器入口温度建模与优化设定[D].沈阳:东北大学,2009.
    [41]焦胜,曾光明,王敏.垃圾填埋场渗滤液有机物质量浓度的预测[J].中南大学学报(自然科学版),2004,35(2):206-210.
    [42]徐怡,王芳,王靖岱,等.三组分共聚高性能聚乙烯的质量预测模型[J].石油化工,2008,37(3):247-251.
    [43]Xu J. X., Hou Z. S.. Notes on data-driven system approaches [J]. Acta Automatica Sinica,2009,35(6):668-675.
    [44]N. Prakash, S. A. Manikandan, L. Govindarajan, et al. Prediction of biosorp-tion efficiency for the removal of copper (Ⅱ) using artificial neural networks [J]. Journal of Hazardous Materials,2008,152:1268-1275.
    [45]Erkan Sahinkaya. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR:Performance and artificial neural network (ANN) modelling studies [J]. Journal of Hazardous Materials,2009,164:105-113.
    [46]B. Ozkaya, E. Sahinkaya, P. Nurmi, A.H. Kaksonen, et al. Biologically Fe2+ oxidizing fluidized bed reactor performance and controlling of Fe3+ recycle during heap bioleaching:an artificial neural network-based model [J]. Bioproc, Biosyst,Eng.2008,31:111-117.
    [47]谌晓文,邬捷鹏.基于BP神经网络的烧结终点预测模型[J].烧结球团,2006,31(4):21-26.
    [48]王伟,吴敏,雷琪,等.炼焦生产过程综合生产指标的改进神经网络预测方法[J].控制理论与应用,2009,26(12):1419-1424.
    [49]范俊杰.湿法炼锌净液钴离子浓度在线检测及预测模型的研究与实现[D].长沙:中南大学,2008.
    [50]黄俊梅,汤伟,戴庆瑜,等.基于RBF神经网络的制浆蒸煮终点预测模型[J].化工自动化及仪表,2011,38(2):153-156.
    [51]吴良海.基于粒子群优化RBF神经网络原油含水率预测[J].计算机仿真,2010,27(5):261-263.
    [52]袁红霞,杨英杰.基于RBF网络的胶磷矿浮选精矿指标预测模型[J].化工矿物与加工,2011,2:1-4.
    [53]Chen Y. W., Chai T. Y.. A Model for Steel Billet Temperature of Prediction of Heating Furnace [C]. Proceedings of the 29th Chinese Control Conference, 2009:1299-1302.
    [54]Zhao L. J., Yuan D. C, Chai T. Y, et al. KPCA and ELM ensemble modeling of waste water effluent quality indices [J]. Procedia Engineering,2011, 15:5558-5562.
    [55]Mohtada Sadrzadeha, Toraj Mohammadia, Javad Ivakpourb, et al. Neural network modeling of Pb2+ removal from wastewater using electrodialysis [J]. Chemical Engineering and Processing,2009,48:1371-1381.
    [56]Wang X. F., Du ZH. Y., Chen J. D., et al. Dynamic Modeling of Biotechnical Process Based on Online Support Vector Machine [J]. Journal of Computers, 2009,4(3):251-258.
    [57]Zhang W. M., Wang G. R., Shi Y. H., et al. LSSVM model for penetration depth detection in underwater arc welding process [J]. Journal of Information and Computing Science,2010,5(4):271-278.
    [58]Guo X. P., Fan L. P.. COD Prediction for SBR Batch Processes Based on MKPCA and LSSVM Method [C]. Proceedings of the 8th International Conference on Advances in Neural Networks,2011,2:130-135.
    [59]Pan M. Q., Zeng D. H, Xu G., et al. KPCA and LS-SVM prediction model for hydrogen gas concentration[C].2010,56(2):190-197.
    [60]Li L. J., Yu H., Liu J.. Local weighted LS-SVM online modeling and the application in continuous processes[C]. Proceedings of the 2010 International Conference on Artificial Intelligence and Computational Intelligence,2010, 6320(2):209-217.
    [61]Li L. J., Su H. Y., Chu J.. Modeling of Isomerization of C8 Aromatics by Online Least Squares Support Vector Machine [J]. Chinese Journal of Chemical Engineering,2009,17(3):437-444.
    [62]张斌.一种改进的约简支持向量机及其在锌净化过程软测量中的应用[D].长沙:中南大学,2010.
    [63]朱红求,阳春华,桂卫华.基于模糊聚类和模糊支持向量机的湿法炼锌净化除钴过程建模[J].高技术通讯,2010,20(10):1068-1071.
    [64]朱红求,阳春华,桂卫华.基于KPLS和LS-SVM的过程参数预测及其应用[J].控制工程,2010,17(2):11-15.
    [65]朱红求,阳春华,桂卫华.基于模糊LS-SVM的净化过程钴离子浓度软测量[J].仪器仪表学报,2009,30(6):1224-1227.
    [66]任会峰,阳春华,周璇,等.基于最小二乘支持向量回归机的矿浆酸碱度鲁棒软测量[J].上海交通大学学报,2011,45(8):1136-1145.
    [67]Liu J. J., J. F. MacGregor. On the extraction of spectral and spatial information from images [J]. Chemometrics and Intelligent Laboratory Systems,2007, 85(1):119-130.
    [68]周开军,阳春华,牟学民,等.基于泡沫特征与LS-SVM的浮选回收率预测[J].仪器仪表学报,2009,30(6):1295-1300.
    [69]唐春霞,阳春华,桂卫华,等.基于KPCA-LSSVM的硅锰合金熔炼过程炉渣碱度预测研究[J].仪器仪表学报,2010,31(3):689-693.
    [70]Duan Q., N. K. Ajami, Gao X., et al. Multi-model ensemble hydrologic prediction using Bayesian model averaging [J]. Advances in Water Resources, 2007,30(5):1371-1386.
    [71]Hunt K. J., Sbarbaro D., Zbikowski R., et al. Neural networks for control systems-a survey [J]. Automatica,1992,28(6):1083-1112.
    [72]Ahmad Z., Noor R. A. M., Zhang J.. Multiple neural networks modeling techniques in process control:A review [J]. Asia-Pacific Journal of Chemical Engineering,2009,4(4):403-419.
    [73]王雅琳,桂卫华,阳春华,等.基于有限信息的铜吹炼动态过程智能集成建模[J].控制理论与应用,2009,26(8):860-866.
    [74]何小阳,李健,闵力.精馏塔的机理-神经网络混合建模[J].控制工程,2009,16(2):211-213.
    [75]罗娜,李南,钱锋.支持向量机与机理模型相结合的混合建模方法及其在聚酯生产过程的应用[J].聚酯工业,2007,20(2):12-1 5.
    [76]张淑宁,王福利,尤富强.湿法冶金草酸钴粒度分布混合建模方法[J].东北大学学报(自然科学版),2010,31(1):8-11.
    [77]王雅琳,桂卫华,阳春华,等.基于综合建模方法的铅锌烧结块成分预测[J].中南大学学报(自然科学版),2005,36(1):113-118.
    [78]颜青君,桂卫华,彭晓波.基于智能集成策略的铜闪速炉冰铜温度预测模型[J].计算机测量与控制,2007,1 5(9):1157-1160.
    [79]王凌云,桂卫华,彭晓波.基于智能融合策略的冰铜品位预测模型[J].化工自动化及仪表,2007,34(4):26-29.
    [80]晏密英,桂卫华,阳春华.基于灰色关联和改进SVM的钴离子浓度预测研究[J].仪器仪表学报,2011,32(5):961-967.
    [81]晏密英,桂卫华,阳春华.基于智能融合策略的钻离子浓度预测模型[J].控制与决策,2011,26(5):707-711.
    [82]王春生,吴敏,曹卫华.基于IGS和SVM的烧结返矿量智能集成预测模型[J].控制与决策,2008,23(4):450-454.
    [83]毕庆华.氧化铝生产四效逆流降膜式蒸发过程出口浓度预测模型研究[D].长沙:中南大学,2008.
    [84]铁鸣,柴天佑,岳恒,等.冷连轧动态过程混合智能建模方法[J].自动化学报,2007,33(1):104-108.
    [85]马荣骏.湿法炼锌中的除铁问题[J].湖南有色金属,1993,9(3):161-164.
    [86]李仕雄.硫酸锌溶液中针铁矿法沉铁的氧化过程[J].中国有色冶金,1982,2:40-43.
    [87]陈耐生,赵经贵,张滨秋.对针铁矿法除铁过程中亚铁离子氧化速度的研究[J].黑龙江大学自然科学学报,1984,3:76-80.
    [88]Claassena J. O., Meyer E. H. O., Rennie J.. Iron precipitation from zinc-rich solutions:defining the Zincor process [J]. Hydrometallurgy,2002,67:87-108.
    [89]邓永贵,陈启元,尹周澜,等.锌浸出液针铁矿法除铁[J].有色金属,2010,62(3):80-84.
    [90]邓日章,钟竹前,梅光贵.含锌溶液中阴离子对除铁过程影响的热力学规 律[J].湖南有色金属,1991,7(5):284-288.
    [91]B. K. Pinar. Removal of cobalt from zinc sulfate solution by cementation prior to zinc electrowinning [R]. Master's thesis, The Middle East Technical University,2003.
    [92]Scott F. H.,李术元,朱建华.化学反应工程[M].北京:化学工业出版社,2005.
    [93]Fogg P. G. T., Gerrard W.. Solubility of gases in liquids:a critical evaluation of gas/liquid systems in theory and practice [M]. New York:Wiley,1991.
    [94]Ueyama K., Hatanaka J.. Mass transfer limitations in Fischer-Tropsch slurry reactions [J]. Chemical Engineering Science,1982,57:790-791
    [95]A. W. Breed, G. S. Hansford. Effect of pH on ferrous-ion oxidation kinetics of Leptosirillum ferrooxidans in continuous culture [J]. Biochemical Engineering Journal,1999,3:192-201.
    [96]邓永贵,陈启元,尹周澜,等.湿法炼锌浸出液针铁矿法除铁晶种的制备[J].中国有色金属学报,2008,18(1):27-31.
    [97]胡国荣,李国,邓新荣,等.针铁矿法从铬铁合金硫酸浸出液中除铁[J].湿法冶金,2006,25(4):198-201.
    [98]赵永,蒋开喜,王德全,等.用针铁矿法从锌焙烧烟尘的热酸浸出液中除铁[J].有色金属(冶炼部分),2005,5(1):13-15.
    [99]关亚君.湿法炼锌常规工艺铁的浸出及沉铁pH值的研究[J].稀有金属,2006,30(3):419-422.
    [100]彭建蓉,王吉坤,杨大锦,等.富铟高铁硫化锌精矿加压浸出液沉铟后溶液净化除铁研究[J].湿法冶金,2007,26(2):88-91.
    [101]Chang Y. F., Zhai X. J., Li B. CH., et al. Removal of iron from acidic leach liquor of lateritic nickel ore by goethite precipitates [J]. Hydrometallurgy,2010, 10(1):84-87.
    [102]马莹,何静,马荣骏.三价铁离子在酸性水溶液中的行为[J].湖南有色金属,2005,21(1):36-39.
    [103]M. R. Ronnholm, J. Warna, T. Salmi, et al. Kinetics of oxidation of ferrous sulfate with molecular oxygen [J]. Chemical Engineering Science,1999, 54:4223-4232.
    [104]Heidi Markus, Sigmund Fugleberg, Daniel Valtakari, et al. Reduction of ferric to ferrous with sphalerite concentrate, kinetic modeling [J]. Hydrometallurgy, 2004,73:269-282.
    [105]Heidi Markus, Sigmund Fugleberg, Daniel Valtakari, et al. Kinetic modeling of a solid-liquid reaction:reduction of ferric iron to ferrous iron with zinc sulphide [J]. Chemical Engineering Science,2004,59:919-930.
    [106]S. Krehula, S. Popovic, S. Music. Synthesis of acicular α-FeOOH particles at a very high pH [J]. Materials Letters,54(5):108-113.
    [107]Soumya Das, M. Jim Hendry. Changes of crystal morphology of aged goethite over a range of pH (2-13) at 100℃ [J]. Applied Clay Science,2011,5(1):192-197.
    [108]王录锋,张杰,刘志红.硫酸分解织金含稀土磷矿化学反应过程实验研究[J].应用化工,2009,38(12):1785-1790.
    [109]邓燕妮,桂卫华,阳春华,等.氧化铝碳酸化分解动态过程建模及非线性分析[J].中国有色金属学报,2008,18(9):1736-1741.
    [110]Kanokwan Boe, Irini Angelidaki. Serial CSTR digester configuration for improving biogas production from manure [J]. Water research,2009, 4(3):166-172.
    [111]Eberhart R., Kennedy J.. A new optimizer using particle swarm theory[C]. Proceedings of the Sixth International Symposium on Micro Machineand Human Science, Nagoya, Japan,1995:39-43.
    [112]李勇刚,桂卫华,阳春华.一种弹性粒子群优化算法[J].控制与决策,2008,23(1):95-98.
    [113]Pian J. X., Chai T. Y., Tan M. H.. Hybrid Intelligent Parameter identification of the Laminar Cooling Process for Hot Strip [C]. Proceedings of the 7thWorld Congress on Intelligent Control and Automation,2008:669-674.
    [114]Cheng W. J., Ding J. L., Kong W. J., et al. An Adaptive Chaotic PSO for Parameter Optimization and Feature Extraction of LS-SVM Based Modelling [C].2011 American Control Conference,2011:3263-3268.
    [115]王建辉,徐林,闫勇亮,等.改进粒子群算法及其对热连轧机负荷分配优化的研究[J].控制与决策,2005,20(12):1379-1383.
    [116]王柏竹,邢光龙.粒子带质量的粒子群算法[J].计算机工程与应用,2011,47(17):31-33.
    [117]赵志刚,常成.自适应混沌粒子群优化算法[J].计算机工程与应用,2011,47(17):42-44.
    [118]徐青鹤,刘士荣,吕强.一种改进的粒子群算法[J].杭州电子科技大学学报,2008,28(6):103-106.
    [119]Peram T., Veeramachaneni K., Mohan C. K.. Fitness distance-ratio based particle swarm optimization [C]. Proceedings of Swarm Intelligence Sympo-sium,2003:174-181.
    [120]孙晓娇,侯旭东,刘长良.基于改进粒子群算法的水轮机调速器参数优化[J].自动化与仪表,2010,25(5):26-30.
    [121]刘衍民,赵庆祯,牛奔.基于自适应动态邻居和广义学习的改进粒子群算法[J].计算机应用,2010,30(10):2578-2581.
    [122]王柏竹,李叶华,金涛.快速收敛的粒子群改进算法[J].电子技术,2010,47(4):18-20.
    [123]胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868.
    [124]Van den Bergh F.. An analysis of particle swarm optimizers [Ph.D. Thesis]. South Africa:University of Pretoria,2002.
    [125]赵志刚,常成.简化的自适应粒子群优化算法[J].广西大学学报:自然科学版,2010,35(5):793-798.
    [126]Toliyat H. A., Wlas. M., Krzemiriski Z.. Neural-Network-based parameter estimations of induction motors [J]. IEEE Transactions on Industrial Electronics,2008,55(4):1783-1794.
    [127]Erwie Zahara, Liu An. Solving parameter identification problem by hybrid particle swarm optimization [C]. Proceedings of the International Multiconference of Engineers and Computer Scientists,2010,11 (3):17-19.
    [128]He X., Liu J. J.. Aquifer Parameter Identification with Ant Colony Optimization Algorithm[C]. Intelligent Systems and Applications,2009,5:1-4.
    [129]Sanjoy Dasgupta. The hardness of k-means clustering [R]. San Diego:Univers-ity of California,2008.
    [130]熊富强,桂卫华,阳春华,等.基于针铁矿法的沉铁过程动态建模[J].中南大学学报(自然科学版),2012,43(2):541-547.
    [131]何新贵,梁久祯.过程神经网络的若干理论问题[J].中国工程科学,2000,2(12):40-44.
    [132]许少华,何新贵.基干函数正交基展开的讨程神经网络学习算法[J].计算机学报,2004,27(5):645-650
    [133]何新贵,梁久祯,许少华.过程神经元网络的训练与应用[J].中国工程科学,2001,3(4):31-35.
    [134]钟诗胜,朴树学,丁刚.改进BP算法在过程神经网络中的应用[J].哈尔滨 工业大学学报,2006,38(6):840-842.
    [135]Geem Z. W., Kim J. H., Loganathan G. V.. A new heuristic optimization algo-rithm:harmony search [J]. Simulation,2001,76(2):60-68.
    [136]Mahdavi M., Fesanghary M., Damangir E.. An improved harmony search algorithm for solving optimization problem [J]. Applied Mathematics and Computation,2007,188(2):1567-1579.
    [137]Mahamed G. H. Omran, Mehrdad Mahdavi. Global-best harmony search [J]. Applied Mathematics and Computation,2008,198(2):643-656.
    [138]M. Fesanghary, M. Mahdavi, M. Minary Jolandan, et al. Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems [J]. Computer Methods in Applied Mechanics and Engineering,2008,197(32-40):3080-3091.
    [139]高立群,葛延峰,孔芝,等.自适应和声粒子群搜索算法[J].控制与决策,2010,25(7):1101-1104.
    [140]J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers [J]. Neural Processing Letters 9,1999:293-300.
    [141]周开军,阳春华,牟学民,等.基于泡沫特征与LSSVM的浮选回收率预测[J].仪器仪表学报,2009,30(6):1295-1300.
    [142]R. Storn, K. Price. Differential evolution:a simple and efficient adaptive scheme for global optimization over continuous spaces, tr-95-012[R]. Berkeley: International Computer Science Institute,1995.
    [143]张航,王伟,郑玲,等.一种基于密度聚类的小生境差分进化算法[J].计算机工程与应用,2008,44(23):42-45.
    [144]Riget J., Vesterstr J. S.. A Diversity-guided Particle Swarm Optimizer the ARPSO [EB/OL]. http://www.evalife.dk.2008-12-23.
    [145]Fu X. P., Zou M.. Application of combination weighting method in contract risk's evaluation of third party logistics [J]. Journal of Southeast University, 2007,23(S1):128-132.
    [146]Zhi Q. G., Zhi H. S.. Online monitoring of nonlinear multiple mode processesbased on adaptive local model approach [J]. Control Engineering Practice,2008,16(12):1427-1437.
    [147]Orabona F., Castellini C., Caputo B., et al. On-line independent support vector machines [J]. Pattern Recognitioin,2010,43(4):1402-1412.
    [148]张炎欣,张航,王伟.基于即时学习策略的火电厂烟气含氧量软测量[J]. 装备制造技术,2010,4:47-51.
    [149]Bertolissi E., Birattari M., Bontempi G., et al. Data-driven techniques for direct adaptive control:the lazy and the fuzzy approaches [J]. Fuzzy Sets and System-s,2002,128(1):3-14.
    [150]Liu Y., Wang H. Q., Li P.. Local least squares support vector regression withapplication to online modeling for batch processes [J]. Journal of Chemical Industry and Engneering,2007,58(11):2846-2851.
    [151]Fujiwara K., Kano M, Hasebe S. K., et al. Soft-Sensor development using correlation-based just-in-time modeling [J]. AICHE Journal,2009,55(7): 1754-1765.
    [152]Zhang L., Salvador Garcia-Munoz. A comparison of different methods to estimate prediction uncertainty using Partial Least Squares (PLS):A practitioner's perspective [J]. Chemometrics and Intelligent Laboratory Systems,2009,97(2):152-158.
    [153]Stephanie Schmitt-Grohe, Martin Uribe. An OLS approach to computing Ramsey equilibria in medium-scale macroeconomic models [J]. Economics Letters,2011,115(1):128-129.
    [154]曾东海,米红,刘力丰.一种基于网格密度与空间划分树的聚类算法[J].系统工程理论与实践,2008,28(7):125-131.
    [155]湛腾西,郭观七.电厂烟气含氧量的智能混合预测方法[J].仪器仪表学报,2010,31(8):1826-1832.
    [156]孔祥芬.非正态过程能力分析与控制方法研究[D].天津:天津大学,2007.
    [157]马义中.减小和控制多元质量特性波动的理论和方法[D].西安:西北工业大学,2002.
    [158]王立言,唐家福,宫俊.多元过程能力指数的研究综述[J].控制理论与应用,2009,26(10):1118-1125.
    [159]戴敏.多工序制造过程质量分析方法与信息集成技术研究[D].南京:东南大学,2006.
    [160]Efron B., Tibshirani R.. Booststrap methods for standard errors, confidence intervals, and other measures of statistical accuracy [J]. Statistical Science, 1986,1(1):54-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700