麦芽糖月桂酸单酯的酶法选择性合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为酶法选择性合成化学结构特定的麦芽糖酯,本文以麦芽糖和月桂酸为主要材料,在分离鉴定了酯化产物为麦芽糖月桂酸单酯和二酯的基础上,探讨了脂肪酶催化选择性合成麦芽糖月桂酸单酯的方法,确定了间歇式和连续化合成麦芽糖月桂酸单酯的工艺参数,系统研究了麦芽糖月桂酸单酯的热特性、水溶性、表面性质、乳状液的热特性和流变学特性、抗老化特性以及抑菌性,并和商品糖酯P1570作了对比分析。论文的主要结论如下:
     运用硅胶柱层析分离麦芽糖月桂酸酯,流动相为氯仿/甲醇(4:1, v/v),流速为18 mL/h。经MS、IR和NMR分析确定,Nov 435脂肪酶催化合成的麦芽糖月桂酸酯化产物中存在6’-O-麦芽糖月桂酸单酯和6,6’-O-麦芽糖月桂酸二酯。
     在间歇式反应器中脂肪酶催化合成麦芽糖月桂酸单酯的工艺条件为:20 g/L脂肪酶、25 mmol/L麦芽糖、75 mmol/L月桂酸和60 g/L的3A分子筛于5 mL丙酮中50℃反应72 h,麦芽糖月桂酸单酯的转化率和浓度分别可达92.7 %和23.35 mmol/L。反应温度对麦芽糖月桂酸单酯浓度的影响最大,麦芽糖浓度对麦芽糖月桂酸单酯转化率的影响最大。相同反应条件下,麦芽糖月桂酸单酯的转化率明显高于蔗糖月桂酸单酯的;麦芽糖单酯的转化率随脂肪酸碳链长度的延长而降低。
     连续搅拌反应器可实现麦芽糖月桂酸单酯的酶法选择性合成,优化后的工艺条件为:麦芽糖的初始浓度为50 mmol/L、月桂酸浓度为200 mmol/L、脂肪酶用量为40 g/L、不添加分子筛,每24 h补充16 g/L麦芽糖,反应器流速为0.15 mL/min,生产周期为10 d时麦芽糖月桂酸单酯的平均产量可以达到10.12 g/L·d。采用多次正己烷萃取-离心分离的方法分离纯化单酯产品,分离步骤为:25 mL反应液脱除丙酮后,沉淀用12.5 mL的正己烷一次萃取-离心分离,再用2.5 mL的正己烷二次萃取-离心分离和三次萃取-离心分离,产品中麦芽糖月桂酸单酯的含量为94.2 %(w/w)、回收率达到76.1 %。
     麦芽糖的月桂酸单酯、豆蔻酸单酯、棕榈酸单酯、硬脂酸单酯和蔗糖月桂酸单酯、豆蔻酸单酯、棕榈酸单酯可产生重结晶,重结晶体与新鲜糖酯的不同,是一种多晶体或结晶体和无定形体的混和物。
     月桂酸、豆蔻酸、棕榈酸和硬脂酸制备的麦芽糖单酯和蔗糖单酯的HLB值为16.1~18.2,可作O/W乳化剂。DSC分析发现,麦芽糖月桂酸单酯与n-癸烷和正丁醇(1.5:1:1, w/w/w)形成的模型乳状液体系可亲和16 %~20 %的水。
     麦芽糖月桂酸单酯和蔗糖月桂酸单酯水溶液为假塑性流体,豆蔻酸、棕榈酸和硬脂酸的麦芽糖单酯和蔗糖单酯溶液为牛顿流体。麦芽糖单酯和蔗糖单酯乳状液(石蜡油:水=8:2, v/v)为假塑性流体。
     0.09 %的麦芽糖单酯和蔗糖单酯可提高淀粉悬浮液的热稳定性、延缓淀粉糊贮藏过程中的老化;0.09 %的麦芽糖月桂酸单酯和蔗糖月桂酸单酯可有效抑制蜡状芽孢杆菌、凝结芽孢杆菌、枯草芽孢杆菌、嗜热芽孢杆菌、大肠杆菌和金黄色葡萄球菌的生长,两种糖酯的抑菌效果无明显差异。
     月桂酸单酯的表面性质和抑菌性整体上优于豆蔻酸单酯、棕榈酸单酯和硬脂酸单酯的,硬脂酸单酯的抗老化效果优于月桂酸单酯、豆蔻酸单酯和棕榈酸单酯的,麦芽糖单酯的表面性质、抑菌性和抗老化性略优于蔗糖单酯的。
Sugar fatty acid esters have been widely used in foods, medicines and cosmetics by taking advantage of their particular properties, including nontoxic, biodegradable and great interficial properties. Sugar mono- and di- esters have obviously different physicochemical characterization and functional properties, so how to control the reaction condition to synthesize the production needed was a focus, difficulty and common problem. After the products focusing on maltose and lauric acid were purified and identified as monolauroyl maltose and dilauroyl maltose, the way to selective synthesis monolauroyl maltose was discussed, and the main parameters that need to be considered were ascertained. Water solubility, interficial properties, the thermal behaviour, rheology properties, anti-aging property and antimicrobial activity of monolauroyl maltose were studied and compared with other sugar esters. The main conclusion of this study included:
     Silica gel column chromatography with mobile phase of chloroform-methanol (4:1, v/v) for maltose ester at 18 ml/h was applied. The condensed products catalyzed by Nov 435 were analyzed by IR, MS ,1H NMR and 13C NMR, and then identified to be 6'-O-lauroylmaltose and 6,6’-di-O-lauroylmaltose.
     For monolauroyl maltose, the highest conversion of 93 % and concentration of 23.35 mmol/l were obtained in acetone when the condensation was carried out at 50℃for 72 hours with 20 g/l of lipase, 25 mmol/l of maltose, 75 mmol/l lauric acid and 60 g/l of 3 A molecular sieves in a batch reactor. Temperature was the major factor affecting the concentration of monolauroyl maltose, while maltose concentration was the major factor affecting the conversion of monolauroyl maltose. The conversion of monolauroyl maltose was obviously higher compared with monolauroyl sucrose at condition discribed above. The conversion of maltose monoesters was decreased when the fatty acid chain length increased. The activation energy of monolauroyl maltose enzymatic synthesis by Nov 435 was 23.07 kJ/mol.
     Monolauroyl maltose could be selectively synthesized in a continuous stirred tank reactor (CSTR). The highest concentration of monolauroyl maltose at 28 mmol/l in acetone was obtained when maltose was added at 4 g/d and the molar ratio of lauric acid to maltose was fixed at 4:1 at a flow rate of 0.15 ml/min effluent without supplement of fresh molecular sieve. The average yield of monolauroyl maltose was 10.12 g/l·d during 10 days operation. Several extraction-centrifuging were used to purify the product and recover the lauric acid unreacted, and which made it possible to prepare monolauroyl maltose in large scale. The separating process was as followed: after 25 ml effluent was concentrated, 12.5 ml hexane was added to the precipitation for the first extraction-centrifuging, then 2.5 ml hexane was added for the second and third extraction-centrifuging, the final product was purified to be 94% of monolauroyl maltose with 76 % of retention.
     HLB values of maltose monoesters and sucrose monoesters, were from 16.1 to 18.2, and could be used for the preparation of nonionic O/W microemulsions.The DSC revealed that the tested sugar esters could be recrystalized, except for monostearoyl sucrose. The recrystallization was a mixture of crystaline and amorphous state, and differred from the initial state. A model nonionic water-in-oil microemulsion system based on sugar monoester/1-butanol/n-hexandecane (1.5:1:1) could bound 16% to 20% with water.
     Emulsions (paraffin-water) produced by maltose monoesters and sucrose monoesters, water solution of monolauroyl maltose and monolauroyl sucrose were pseudoplastic fluid, while water solution of monomyristroyl maltose, monomyristroyl sucrose monopalmitroyl maltose, monopalmitroyl sucrose, monostearoyl maltose and monostearoyl sucrose were newtonian flow.
     The RVA and DSC showed that maltose monoesters and sucrose monoesters at 0.09% bulk concentration could improve the hot stability of starch suspension and prolong the starch paste aging during storage. Monolauroyl maltose and monolauroyl sucrose inhibited the growth of Bacillus cereus, B. coagulans, B. subtili, Geobacillus stearothermophilus, Escherichia coli and Staphylococcus aureus at 0.09% bulk concentration.
     Among the tested maltose monoesters and sucrose monoesters, monolauroyl maltose led to greatest interficial properties and antimicrobial activity, while monostearoyl maltose and monostearoyl sucrose had the greatest anti-aging property.
引文
1. Tchinda A T, Tane P, Ayafor J F, et al. Stigmastane derivatives and isovaleryl sucrose esters from Vernonia guineensis (Asteraceae) [J]. Phytochemistry, 2003, 63: 841-846
    2. Yun Y S, Satake M, Katsuki S, et al. Phenylpropanoid derivatives from edible canna, Canna edulis [J]. Phytochemistry, 2004, 65: 2167-2171
    3. Garti N, Aserin A, Slavin Y. Competitive adsorption in O/W emulsions stabilized by the new Portulaca oleracea hydrocolloid and nonionic emulsifiers [J]. Food Hydrocoll, 1999, 13: 139-144
    4.彭立凤,杨国营.脂肪酶催化合成生物表面活性剂[J].日用化学工业,2000,(2):35-38
    5.李建成,袁长贵.淀粉糖酯-新型的食品乳化剂[J].中国食品添加剂,2001,(3):26-29
    6. Yan Y. Enzymatic production of sugar fatty acid esters [D].博士论文,2001
    7.陈志刚,宗敏华,娄文勇.非水介质中酶促糖酯合成研究进展[J].分子催化,2007,21 (1): 90-95
    8. Ganske F, Bornscheuer U T. Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing inoic liqiuds and t-BuOH [J]. J. Mol. Catal. B: Enzym., 2005, 36 (1): 40-42
    9. Garofalakis G, Murray B S, Samey D. Surface and critical aggregation concentration of pure sugar esters with different sugar head groups [J]. Food Sci., 2000, 229: 391-398
    10. Goloub T, Pugh R J. The role of the surfactant head group in the emulsification process: single surfactant systems [J]. J. Colloid Interf. Sci., 2003, 257: 337-343
    11. Chen J, Kimura Y, Adachi S. Synthesis of linoleoyl disaccharides through lipase-catalyzed condensation and their surface activities [J]. J. Biosci. Bioeng., 2005, 100: 274-279
    12. Chen J, Kimura Y, Adachi S. Surface activities of monoacyl trehaloses in aqueous solution [J]. LWT, 2007, 40: 412-417
    13. Soultani S, Ognier S, Engasser J M, et al. Comparative study of some surface active properties of fructoseesters and commercial sucrose esters [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 227: 35-44
    14. Tan S N, Fornasier D, Sedev R, et al. The role of surfactant structure on foam behaviour [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 263: 233-238
    15. Vlahovl H, Vlahova P, Linhardt R J. Regioselective synthesis of sucrose monoesters as surfactants [J]. J Carbohydr Chem., 1997, 16 (1): 1-10
    16. Pes M A, Aramaki K, Nakamura N Y, et al. Temperature-insensitive microemulsions in a sucrose monoalkanoate system [J]. J. Colloid Interf. Sci., 1996, 178: 666-672
    17. Tedajo G M, Seiller M, Prognon P, et al. pH compartmented w/o/w multiple emulsion: a diffusion study [J]. J. Control Release, 2001, 75: 45-53
    18. Fanun M, Leser M, Aserin A, et al. Sucrose ester microemulsions as microreactors for model Maillard reaction [J]. Colloids Surf. A: Physicochem Eng. Asp., 2001, 194: 175-187
    19. Devulapalle K S, Gomez de Segura A, Ferre M, et al. Effect of carbohydrate fatty acid esters on Streptococcus sobrinus and glucosyltransferase activity [J]. Carbohydr. Res., 2004, 339: 1029-1034
    20.张灏,严梅荣,彭冬梅.麦芽糖脂肪酸酯的制备研究[J].食品科学,2006,27 (11):257-259
    21.张晓鸣,周健,刘巧瑜,等.有机相脂肪酶催化合成技术在食品及相关领域的应用[J].食品与生物技术学报,2006,25 (1):120-125
    22. Kelkar D S, Kumar A R, Zinjarde S S. Hydrocarbon emulsification and enhanced crude oil degradation by lauroyl glucose ester [J]. Bioresource Technol., 2007, 98: 1505-1508
    23. Gallarate M, Carlotti M E, Trotta M, et al. On the stability of ascorbic acid in emulsified systems for topical and cosmetic use [J]. Int. J. Pharm., 1999, 188: 233-241
    24. Prevot A B, Pramauro E, Gallarate M, et al. Determination of micelle/water partition coefficients of cosmetic preservatives: Optimisation of the capillary electrophoretic method [J]. Analytica Chimica Acta, 2000, 412: 141-148
    25. Philippe M. Method for the preparation of D-maltose monoesters with a high 6’-O-ester content and their use in the cosmetic, dental-care, pharmaceuticals and food stuff fields [P]. France, Patent EP0566438, 1993
    26. Husband F A, Sarney D B, Barnard M J, et al. Comparison of foaming and interfacial properties of pure sucrose monolaurates, dilaurate and commercial preparations [J]. Food Hydrocoll., 1995, (12): 237-244
    27. Okabe O, Suganuma S, Tada M, et al. Disaccharide esters screened for inhibition of tumor necrosis factors—a release are new anti-cancer agents[J]. Jpn.. J. Cancer Res.,1999, 90: 669-676
    28. Watanabe Y, Katayama S, Matsubara M, et al. Antibacteria carbohydrate monoesters suppressing cell growth of Streptococcus mutants in presence of sucrose [J]. Curr Microbiol. 2000, 41: 210-213
    29. Niraula B, King T C, Misran M. Evaluation of rheology property of dodecyl maltoside, sucrose dodecanoate, Brij 35p and SDS stabilized O/W emulsion: effect of head group structure on rheology property and emulsion stability [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 251: 59-74
    30.赵瑾,刘蕾,宋金勇,等. N-茄呢基胺类糖酯化合物的合成及生理活性[J].有机化学,2004,24 (12):1601-1605
    31. Ferrer M, Soliveri J, Plou J F, et al. Synthesis of sugar esters in solvent mixtures by lipase from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties [J]. Enzyme Microb. Technol., 2005, 36: 391-398
    32. Holmberg K. Natural surfactants [J]. Curr Opin Colloid Interface Sci., 2001, (6): 148-159
    33.陈美玲,王正武,张革新,等. QSPR方法预测阴离子表面活性剂亲水亲油平衡值[J].化学学报,2007,65 (13):1265-1272
    34.周家华,崔英德.表面活性剂HLB值的分析测定与计算[J].精细石油化工,2001,2:11-14
    35. Greenwald H L, Brown G L, Fineman M N. Determination of the hydrophile-lipophile character of surface active agents and oils by a water titration [J]. Anal. Chem., 1976, (7): 1693-1696
    36.徐学兵,张根旺,华玉萍.食品乳化剂的HLB值测定方法的研究[J].中国粮油学报,1993,8 (4):26-30
    37.麻建国,陈玉霞,许时婴.温度、NaCl及乙醇对Tw80水溶液的临界胶束浓度的影响[J].无锡轻工大学学报,2001,20 (4):424-426
    38.陈宗淇,戴闽光.胶体化学[M].北京:高等教育出版社,1984
    39.周如金,农兰平,彭燕,等.反丁烯二酸蔗糖甲酯的功能特性研究[J].食品科学,2005,26 (5):144-148
    40.贺媛,符爱云,魏西莲,等.电导法研究N-脂肪酰基谷氨酸钠及其复配体系的cmc.表面活性剂工业,1999,(2):18-20
    41. Soultani S, Engasser J M, Ghoul, M. Effect of acyl donor chain length and sugar/acyl donor molar ratio on enzymatic synthesis of fatty acid fructose esters [J]. J. Mol. Catal. B:Enzym.,2001, 11: 725-731
    42. Kuwabara K, Watanabe Y, Adachi S, et al. Synthesis of 6-O-unsaturated acyl L-ascorbate by immobilized lipase in acetone in the presence of molecular sieve [J]. Biochem. Eng. J., 2003, (16):17-23
    43. Garti N. What can nature offer from an emulsifier point of view: trends and progress [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 1999, (152): 125-146
    44. Piao J, Kishi S, Adachi S. Surface tension of aqueous solutions of 1-O-monoacyl sugar alcohols [J]. Colloids Surf. A: Physicochem Eng. Asp., 2006, 277: 15-19
    45. Kunieda H, Hasegawa Y, John A C, et al. Phase behaviour of polyoxyethylene hydrogenated castor oil in oil/water system [J]. Colloids Surf. A: Physicochem Eng. Asp., 1999, 109: 209-216
    46. Ferrer M, Plou F J, Pastor E, et al. Effect of the immobilisation method of lipase from Thermomyces lanuginosus on sucrose acylation [J]. Biocatal. Biotransform., 2002, 20: 63-71
    47.王晓菊.电导法测定表面活性剂溶液的临界胶束浓度[J].化学工程师,1997,(5):45-46
    48.张娴玲,王爱菊,张新胜,等.四乙基氢氧化铵水溶液的临界胶束浓度的测定.应用化学,2007,24 (4):374-377
    49. Osborn H T, Akoh C C. Effect of emulsifier type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions [J]. Food Chem., 2004, 84: 451-456
    50. Fanun M, Wachte E, Antalek B, et al. A study of the microstructure of four-component sucrose ester microemulsions by SAXS and NMR [J]. Colloids Surf. A: Physicochem Eng. Asp., 2001, 180: 173-186
    51. Csóka G, Marton S, Zelko R, et al. Application of sucrose fatty acid esters in transdermal therapeutic systems [J]. Eur. Pharm. Biopharm., 2007, 65: 233-237
    52. Mohammadi M S. Colloidal stability of di-chain cationic and ethoxylated nonionic surfactant mixtures used in commercial fabric softeners [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 288: 96-102
    53. Taha M O, Al-Ghazawi M, Abu-Amara H,et al. Development of quantitative structure–property relationship models for pseudoternary microemulsions formulated with nonionic surfactants and cosurfactants: application of data mining and molecular modeling[J]. Eur. Pharm. Sci., 2002, 15: 461-478
    54. Drummond C J, Wells D. Nonionic lactose and lactitol based surfactants: comparison of some physico-chemical properties [J]. Colloids Surf. A: Physicochem Eng. Asp., 1998, 141: 131-142
    55. Garti N, Clement V, Leser M, et al. Sucrose ester microemulsions [J]. Journal of Mol Liq., 1999, 80: 253-296
    56. Garti N, Aserin A, Fanun M. Non-ionic sucrose esters microemulsions for food applications. Part 1. Water solubilization [J]. Colloids Surf. A: Physicochem Eng. Asp. 2000, 164: 27-38
    57. Piao J, Adachi S. Stability of O/W emulsions prepared using various monoacyl sugar alcohols as an emulsifier [J]. Innovative Food Science Emerging Technol., 2006, (7): 211-216
    58. Olayide S, Lawal L. Kosmotropes and chaotropes as they affect functionality of a protein isolate [J]. Food chem., 2006, 95: 101-107
    59. Glatter O, Orthaber D, Stradner A, et al. Sugar-ester nonionic microemulsion: structural characterization [J]. J. Colloid Interf. Sci., 2001, 241: 215-225
    60. Ezrahi S, Tuval E, Aserin A, et al. The effect of structural variation of alcohols on water solubilization in nonionic microemulsions 1. from linear to branched amphiphiles—general considerations [J]. J. Colloid Interf. Sci., 2005, 291: 263-272
    61. Ezrahi S, Tuval E, Aserin A, et al. The effect of structural variation of alcohols on water solubilization in nonionic microemulsions 2. branched alcohols as solubilization modifiers: results and interpretation [J]. J. Colloid Interf. Sci., 2005, 291: 273-281
    62. Elliot D J, Furlong D N, Grieser F, et al. Preparation and spectral characteristics of gold particles in Langrnuir-Blodgett films [J]. Colloids Surf. A: Physicochem Eng. Asp., 1997, 129-130: 141-150
    63. Choplin L, Sadtler V, Marchal P, et al. Phase behavior and rheological properties of enzymatically synthesized trehalose decanoate aqueous solutions [J]. J. Colloid Interf. Sci., 2006, 294: 187-193
    64. Santini E, Liggieri L, Sacca L, et al., Interfacial rheology of Span 80 adsorbed layers at paraffin oil–water interface and correlation with the corresponding emulsion properties [J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2007, 309: 270-279
    65. Chai J, Zhao J, Gao Y, Yang X, et al. Studies on the phase behavior of the microemulsionsformed by sodium dodecyl sulfonate, sodium dodecyl sulfate and sodium dodecyl benzene sulfonate with a novel fishlike phase diagram [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 302: 31-35
    66. Szüts A, Pallagi E, Regdon J G, et al. Study of thermal behaviour of sugar esters [J]. Int. J. Pharm., 2007, 336: 199-207
    67. Pal R. Shear viscosity behavior of emulsions of two immiscible liquids [J]. J. Colloid Interf. Sci., 2000, 225: 359-366
    68. Khuwijitjaru P, Kimura Y, Matsuno R, et al. Preparation of finely dispersed O/W emulsion from fatty acid solubilizedin subcritical water [J]. J. Colloid Interf. Sci., 2004, 278: 192-197
    69. Fanun M. Conductivity, viscosity, NMR and diclofenac solubilization capacity studies of mixed nonionic surfactants microemulsions [J]. J. Mol Liq., 2007, 135: 5-13
    70. Fedotov V D, Zuev Y F, Archipov V P, et al. A fourier transform pulsed-gradient spin echo nuclear magnetic resonance self-diffusion study of microemulsions and the droplet size determination [J]. Colloids Surf. A: Physicochem Eng. Asp., 1997, 128: 39-46
    71. Garti N, Aserin A, Ezrahi S, et al. Water solubilization and chain length compatibility in nonionic microemulsions [J]. J. Colloid Interf. Sci., 1995, 169: 428-436
    72. Garti N, Aserin A, Ezrahi S, et al. Water behavior in nonionic surfactant systems I: subzero temperature behavior of water in nonionic microemulsions studied by DSC [J]. J. Colloid Interf. Sci., 1996, 178: 60-68
    73. Garti N, Aserin A, Tiunova I, et al. DSC study of water behavior in water-in-oil microemulsions stabilized by sucrose esters and butanol [J]. Colloids Surf. A: Physicochem Eng. Asp., 2000, 170: 1-18
    74. Avendano-Gomez J R., Grossiord J L, Clausse D. Study of mass transfer in oil-water-oil multiple emulsions by differential scanning calorimetry [J]. J. Colloid Interf. Sci., 2005, 290: 533-545
    75. Waysbort D, Ezrahl S, Aserin A., et al. 1H NMR study of a U-type nonionic microemulsion [J]. J. Colloid Interf. Sci., 1997,188: 282-295
    76. Molinier V, Fenet B, Fitremann J, et al. PFGSE–NMR study of the self-diffusion of sucrose fatty acid monoesters in water [J]. J. Colloid Interf. Sci., 2005, 286: 360-368
    77. Molinier V, Fenet B, Fitremann J, et al. Concentration measurements of sucrose and sugar surfactants solutions by using the 1H NMR ERETIC method [J]. Carbohydr Res., 2006, 341:1890-1895
    78. Lee J M, Shin H J, Lim K H. Morphologies of three-phase emulsions of the ternary nonionic amphiphile/oil/water systems and their determination by electrical method [J]. J. Colloid Interf. Sci., 2003, 257: 344-356
    79. S?derberg I, Drummond C J, Furlong D N, et al. Non-ionic sugar-based surfactants: self assembly and air/water interfacial activity [J]. Colloids Surf. A: Physicochem Eng. Asp., 1995, 1021: 91-97
    80. Lemp E, Zanocco A L, Günther G. Structural changes in DODAC unilamellar liposomes by addition of sucrose esters monitored by using fluorescent techniques [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 229: 63-73
    81.郭志伟,徐昌学,路遥,等.泡沫起泡性和稳定性及评价方法[J].化学工程师,2006,(4):51-54
    82. Saint-Jalmes A., Peugeot M L, Ferraz H, et al. Differences between protein and surfactant foams: microscopic properties, stability and coarsening [J]. Colloids Surf. A: Physicochem Eng. Asp., 2005, 263: 219-225
    83. Mikael K U R, Johan R, Hansson P. An investigation of dynamic surface tension, critical micelle concentration, and aggregation number of three nonionic surfactants using NMR, time-resolved fluorescence quenching, and maximum bubble pressure tensiometry [J]. J. Colloid Interf. Sci., 2003, 262: 506-515
    84.吴可克,安庆大.酶促反应合成蔗糖棕榈酸酯的研究[J].中国油脂,2004,29 (3):37-39
    85.王素雅,赵利,任顺成.糖酯在食品中的应用及其酶法合成[J].食品工业科技,2002,23 (3):75-76
    86.李祖义,刘俊杰.酶促合成全氟辛酸半乳糖酯[J].有机化学,1998,18 (5):432-435
    87.汪多仁.蔗糖酯的开发与利用[J].日用化学品科学,1997,97 (6):6-8
    88. Addo K, Slepak M, Akoh C C. Effects of sucrose fatty acid ester and blends on alveograph characteristics of wheat flour doughs [J]. J. Cereal Sci., 1995, 22: 123-127
    89. Sangnark A, Noomhorm A. Effect of dietary fiber from sugarcane bagasse and sucrose ester on dough and bread properties [J]. Lebensm.-Wiss. u.-Technol., 2004, 37: 697-704
    90.刘晓艳.单甘酯的功能特性及其在面制品中的应用.中国食品添加剂,2004,(6):110-114
    91.黄德民,赵国华,阚建全.乳化剂与小麦淀粉的相互作用探析[J].中国食品添加剂,2004,(4):59-63
    92.黄德民,宋成满.乳化剂与面粉中大分子物质的相互作用及其应用[J].冷饮与速冻食品工业,2005,11 (3):22-25,30
    93. Selomulyo V O, Zhou W. Frozen bread dough: effects of freezing storage and dough improvers [J]. J. Cereal Sci., 2007, 45 (1): 1-17
    94. Tsuchido T, Yokosula N, Takano M. Isolation and characteristics of a Bacillus subtilis mutant tolerant to the lytic action of sucrose esters of long-chain fatty-acids [J]. J Ferment Bioeng., 1993, 75:191-195
    95. Hathcox A K, Beuchat L R. Inhibitory effects of sucrose fatty acid ester, alone and combination with ethylenediamine tetraacetic acid and other organic acids, on viability of Escherichia coli O157: H7 [J]. Food Microbiol. 1996, 13: 213-225
    96. Bergsson G, Arnfinnsson J, Steingrimsson O, et al. Killing of Gram-positive cocci by fatty acids and monoglycerides [J]. APMIS, 2001, 109: 670-678
    97. Kumari S D, Aranzazu G S, Ferrer M. Effect of carbohydrate fatty acid esters on Streptococcus sobrinus and glucosyltransferase activity [J]. Carbohydr. Res., 2004, 339: 1029-1034
    98. Tsuchido T, Svarachorn A, Soga H, et al. Lysis and aberant morphology of Bacillus subtilis cell caused by surfactants and their relation to autolysin activity [J]. Antimicrob Agents Chemother, 1990, 34: 781-785
    99. Tetsuaki T, Naomi Y, Mitsuo T. Isolation and characteristics of a Bacillus subtilis mutant tolerant to the lytic action of sucrose esters of long-chain fatty acids [J] J Ferment Bioeng., 1993, 75 (3): 191-195
    100. Yokoi Y, Yonemochi E, Terada K. Effects of sugar ester and hydroxypropyl methylcellulose on the physicochemical stability of amorphous cefditoren pivoxil in aqueous suspension [J]. Int. J. Pharm., 2005, 290: 91-99
    101. Véronique M S, Michèle G, Philippe M, et al. Shear-induced phase transitions in sucrose ester surfactant [J]. J. Colloid Interf. Sci., 2004, (270): 270-275
    102. Ohm J B, Chung O K. Relationships of free lipids with quality factors in hard winter wheat flours [J]. Cereal Chem., 2002, 79 (2):274-278
    103.王仲礼.乳化剂对面粉品质稳定性的影响[J].面粉通讯,2005,(3):42-44
    104. Liu X, Gong L, Xin M, et al.The synthesis of sucrose ester and selection of its catalyst [J]. J.Mol. Catal. A: Chemical, 1999, 147: 37-40
    105. Adachi S, Kobayashi T. Synthesis of esters by immobilized-lipase-catyalyzed condensation reaction of sugar and fatty acids in water-miscibe organic solvent [J]. J. Biosci. Bioeng., 2005, 99 (2): 87-94
    106.李祖义,陈倩.酶法合成表面活性剂[J].工业微生物,2001,31 (2):42-48
    107.刁虎欣,王践,张心平,等.假单胞菌23-1菌株烃代谢产生表面活性剂的研究.微生物学通报,2000,27 (6):413-416
    108.方云,吕栓锁,夏咏梅.酶法合成生物表面活性剂.无锡轻工大学学报,2004,23 (1):99-105
    109. Ikeda I, Klibanov A M. Lipase-catalyzed acylation of sugars solubilized in hydrophobic solvents by complexation [J]. Biotechnol. Bioeng., 1993, 42: 788-791
    110. Arcos, J A, BernabéM, Otero C. Quantitative enzymatic production of 6-O-acylglucose esters [J]. Biotechnol. Bioeng., 1998, 57: 505-509
    111. Degn P, Pedersen L H, Duus J ?, et al. Lipase-catalyzed synthesis of glucose fatty acid esters in tert-butanol [J]. Biotechnol Lett.,1999, 21: 275-280
    112. Watanabe Y, Miyawaki Y, Adachi S, et al. Synthesis of lauroyl saccharides through lipase-catalyzed condensation in microaqueous water-miscible solvents [J] J. Mol. Catal. B: Enzym., 2000, (10): 241-247
    113. Degn P, Zimmermann W. Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica [J]. Biotechnol. Bioeng., 2001, 74: 483-491
    114. Zhang X, Kobayashi T, Adachi S et al. Lipase-catalyzed synthesis of 6-O-vinylacetyl glucose in acetonitrile [J]. Biotechnol. Lett., 2002, 24: 1097-1100
    115.安庆大,吴可克.酶促反应合成葡萄糖硬脂酸酯的研究[J].中国油脂,2004,29 (6):65-67
    116. Coulon D, Girardin M, Ghoul M. Enzymatic synthesis of fructose monooleate in a reduced pressure pilot scale reactor using various acyl donors [J]. Process Biochem., 1999, 34: 913-918
    117. Chamouleau F, Coulon D, Girardin M, et al. Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media [J]. J. Mol. Catal. B:Enzym., 2001, (11): 949-954
    118. Sa?a ?, Maja H, ?eljko. Lipase-catalyzed synthesis of fatty acid fructose esters [J]. J. FoodEng., 2006, 77 (4): 880-886
    119. Zhang X, Kobayashi T, Watanabe Y et al. Lipase-catalyzed synthesis of monolauroyl maltose through condensation of maltose and lauric acid [J]. Food Sci. Technol. Res., 2003, (9): 110-113
    120. Watanabe Y, Miyawaki Y, Adachi S. Equilibrium constant for lipase-catalyzed condensation of mannose and lauric acid in water-miscible organic solvent [J]. Enzyme Microb. Technol., 2001, 29: 494-498
    121. Watanabe Y, Miyawaki Y, Adachi S et al. Continuous production of acyl mannoses by immobilized lipase using a packed-bed reactor and their surfactant properties [J]. Biochem. Eng. J., 2001, (8): 213-216
    122. Zhou J, Tao G, Liu Q, et al. Equilibrium yields of mono- and dilauroyl mannoses through lipase-catalyzed condensation in acetone in the presence of molecular sieve [J]. Biotechnol. Lett., 2006, 28:395-400
    123. Chen J, Kimura Y, Adachi, S. Continuous synthesis of 6-O-linoleoyl hexose using a packed-bed reactor system with immobilized lipase [J]. Biochem. Eng. J., 2005, 22: 145-149
    124. Sakaki K, Aoyama A, Nakane T, et al. Enzymatic synthesis of sugar esters in organic solvent coupled with pervaporation [J]. Desalination, 2006, 193: 260-266
    125. Degn P, Larsen K L, Duus J ?, et al. Two-step enzymatic synthesis of maltooligosaccharide esters [J]. Carbohydr. Res., 2000, 329: 57-63
    126. Pedersen N R, Halling P J, Pedersen L H. Efficient transestericcation of sucrose catalysed by the metalloprotease thermolysin in dimethylsulfoxide [J]. Febs letterts, 2002, 519: 181-184
    127. Ferrer M, Cruces M A, BernabéM, et al. Lipase-catalyzed regioselectivite acylation of sucrose in two-solvent mixtures [J]. Biotechnol. Bioeng., 1999, 65: 10-16
    128. Athawale V, Manjrekar N. Enzymatic synthesis of the acrylic esters: a comparative study [J]. J. Mol. Catal. B: Enzym., 2000, (10): 551-554
    129. Ferrer M, Cruces M A, Plou F J, et al. A simple procedure for the regioselective synthesis of fatty acid esters of maltose, leucrose, maltoriose and n-dodecyl malosides [J]. Tetrahedron, 2000, 56: 4053-4061
    130. Park O J, Kim D Y, Dordick J S. Enzyme-catalyzed synthesis of sugar-containingmonomers and linear polymers [J]. Biotechnol. Bioeng., 2000, 70: 208-216
    131. Li Y, Rethwisch D G. Scale-up of pseudo-solid phase enzymatic synthesis ofα-methyl glucoside acrylate [J]. Biotechnol. Bioeng., 2002, 79: 15-22
    132. Hazarika S, Goswami P, Dutta N N. Lipase catalyzed transesterification of 2-O-benzylglycerol with vinyl acetate: solvent effect [J]. Chem. Eng. J., 2003, 94: 1-10
    133. Yadav G D, Trivedi A H. Kinetic modeling of immobilized-lipase catalyzed transesterification of n-octanol with vinyl acetate in non-aqueous media [J]. Enzyme Microb. Technol., 2003, 32: 783-789
    134. Compton D L, Laszlo J A, Berhow M A. Lipase-catalyzed synthesis of ferulate esters [J]. J. Am. Oil Chem. Soc., 2000, 77: 513-519
    135. Maugard T, Tudella J, Legoy M D. Study of vitamin ester synyhesis by lipase-catalyzed transesterification in organic media [J]. Biotechnol. Prog., 2000, 16: 358-362
    136. Piao J, Adachi S. Enzymatic preparation of fatty acid esters of sugar alcohols by condensation in acetone using a packed-bed reactor with immobilized Candida Antarctica lipase [J]. Biocatal. Biotransform. 2005, 97: 386-392
    137. Watanabe Y, Kuwabara K., Adachi S et al. Production of saturated acyl L-ascorbate by immobilized lipase using a continuous stirred tank reactor [J].J. Agric. Food Chem., 2003, 51: 4628-4632
    138. Kuwabara K, Watanabe Y, Adachi S et al. Continuous production of acyl L-ascorbates using a packed-bed reactor with immobilized lipase [J]. J. Am. Oil Chem. Soc., 2003, 80: 895-899
    139. Adachi S, Nagae K, Matsuno R. Lipase-catalyzed condensation of erythritol and medium-chain fatty acids in acetonitrile with low water content [J]. J. Mol. Catal. B: Enzym., 1999, (6): 21-27
    140. Piao J, Kobayashi T, Adachi S, et al. Continuous synthesis of lauroyl or oleoyl erythritol by a packed-bed reactor with an immobilized lipase [J]. Process Biochem., 2004, 39: 681-686
    141. He X L, Chen B Q, Tan T W. Enzymatic synthesis of 2-ethylhexyl esters of fatty acids by immobilized lipase from Candida sp [J]. J. Mol. Catal. B: Enzym., 2002, 18: 333-339
    142. Castillo E, Pezzotti F, Navarro A, et al. Lipase-catalyzed synthesis of oxylitol monoesters: solvent engineering approach [J]. J. Biotechnol., 2003, 102: 251-259
    143. Carlos T, Cristina O. Direct enzymatic esterification of latic acid with fatty acid [J]. EnzymeMicrob. Technol., 2001, 29: 3-12
    144. Ward O P, Fang J, Li Z. Lipase-catalyzed synthesis of a sugar ester containing arachidonic acid [J]. Enzyme Microb. Technol., 1997, 20 (1): 52-56
    145. Tsitsimpikou C, Daflos H, Kolisis F N. Comparative studies on the sugar esters synthesis catalysed by Candida antarctica and Candida rugosa lipases in hexane [J]. J. Mol. Catal. B: Enzym., 1997,3 (4): 189-192
    146.张念湘,曹淑桂,董恒,等.有机相中脂肪酶催化糖酯合成的研究[J].高等学校化学学报,1996,17 (9):1404-1407
    147. Giuseppe F, Douglas B S, Evgeny N V. Enzymic solvent-free synthesis of sugar acetal fatty acid esters [J]. Enzyme Microb Technol., 1991, 13 (10): 796-800
    148. Cao L, Fisher A, Bornscheuer U T, et al. Lipase-catalyzed solid phase synthesis of sugar fatty acid esters [J] Biocatal. Biotransform. 1996, 14: 269-283
    149. Julitte F, Yves Q, Jean-Paul M, et al. Co-melting of solid sucrose and multivalent cation soaps for solvent-free synthesis of sucrose esters [J]. Tetrahedron Letters, 2007, 48: 4111-4114
    150. Sheldon R. Catalytic reactions in ionic liquids [J]. Chem. Commun., 2001, (7): 2399-2407
    151. Antczak T, Patura J, Szcz?sna-Antczak M, et al. Sugar estersynthesisby a mycelium-bound Mucor circinelloides lipase in a micro-reactor equipped with water activity sensor [J]. J. Mol. Catal. B: Enzym., 2004, 29: 155-161
    152. Naoe K, Ohsa T, Kawagoe M, et al. Esterification by Rhizopus delemar lipase in organic solvent using sugar ester reverse micelles [J]. Biochem. Eng. J., 2001, (9): 67-72
    153. Giacometti J, Giacometti F, Milin C, et al. Kinetic characterisation of enzymatic esterification in a solvent system: adsorptive control of water with molecular sieves [J]. J. Mol. Catal. B: Enzym., 2001, (11): 921-928
    154. Sonwalkar R D, Chen C C, Ju L K. Roles of silica gel in polycondensation of latic acid in organic solvent [J]. Bioresour. Technol., 2003, 87: 69-73
    155. Yan Y, Bornscheuer U T, Schmid R D. Efficient water removal in lipase-cataltzed esterifications using a low-boiling-point azeotrope [J]. Biotechnol. Bioeng., 2002, 78: 31-34
    156. Won K, Lee S B. Computer-aided control of water activity for lipase-catalyzed esterification in solvent-free systems [J] Biotechnol. Prog., 2001, 17: 258-264
    157. Padt V D A, Sewalt J J W, Riet V K. Online water removal during enzymatic triacylglycerolsynythesis by means of pervaporation [J]. J. Membr. Sci., 1993, 80: 199-208
    158. Kwon S J, Song K M, Hong W H, et al. Removal of water produced from lipase-catalyzed esterification in organic solvent by pervaporation [J]. Biotechnl. Bioeng., 1995, 46: 393-395
    159. Bafi-Bak K, Ulbert N D M O, Gubicza L. Applicatin of pervaporation for removal of water produced during enzymatic esterification in ionic liqiuds [J]. Desalination, 2002, 149: 267-268
    160. Yan Y, Bornscheuer U T, Cao L, et al. Lipase-catalyzed solid-phase synthesis of sugar fatty acid esters [J]. Enzyme Microb Technol., 1999, 25: 725-728
    161. Charton M. Contributions of steric, eletrical and polarizability effects in enantioselective hydrolyses with Rhizopus nigricans: a quantitative analysis [J]. J. Org. Chem., 1987, 52: 2400-2403
    162. Bevinakatti H S, Banerji A A. Lipase catalysis: factors governing transesterification [J]. Biotechnol. Lett., 1988, (6): 397-398
    163. Pedersen N R, Wimmer R, Emmersen J, et al. Effect of fatty acid chain length on initial reaction rates and regioselectivity of lipase-catalysed esterification of disaccharides [J]. Carbohydr Res., 2002, 337: 1178-1183
    164. Kobayashi T, Adachi S, Matsuno R. Lipase-catalyzed condensation of p-methoxyphenethyl alcohol and carboxylic acids with different steric and eletrical properties in acetonitrile [J]. Biotechnol. Lett., 2003, 25: 3-7
    165. Xiao Y M, Wu Q, Cai Y, et al. Ultrasound-accelerated enzymatic synthesis of sugar esters in nonaqueous solvents [J]. Carbohydr. Res., 2005, 340: 2097-2103
    166. Tsavas P, Polydorou S, Faflia I, et al. Solubility of glucose in mixtures containing t-pentanol, dimethylsulfoxide, acid, ester and water [J]. J. Chem. Eng. Data, 2002, 47: 807-810
    167. Rusa M, Diaz-Maurino T, Fernandez V M, et al. Purification and characterization of two distinct lipase from Candida cylindracea [J]. Biochem. Biophys. Acta, 1993, 1156: 181-189
    168. Sarney D B, Vulfson E N. Application of enzymes to the synthesis of surfactants [J]. Tibtech, 1995, 13: 164-172
    169.黄成红,徐迪,黄仲立,等.无溶剂体系中蛋白酶催化氨基酸糖酯合成研究[J].中山大学学报(自然科学版),2006,45 (1):69-72
    170.郭铮,张根旺.脂肪酶的结构特征和化学修饰[J].中国油脂,2003,28 (7):5-10
    171. Pirozzi D, Guido G J. Activity and stability of lipases in the synthesis of butyl lactate [J].Enzyme Microb Technol., 2004, 34: 94-100
    172. Plou F J, Cruces M A, Ferrer M, et al. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent [J]. J.Biotechnol., 2002, 96 (1): 55-66
    173. Francisco R J, Neptuno R, Francisco G, et al. Cinnamic carbohydrate esters: new polymeric support for the immobilization of horseradish peroxidase [J]. Carbohydrate Polymers, 2004, 58: 79-88
    174. Szczesna-Antczak M, Antczak T, Rzyska M, et al. Stabilization of an intracellular Mucor circinelloides lipase for application in non-aqueous media [J]. J. Mol. Catal. B:Enzym., 2004, 29: 163-171
    175. Tsuzuki W, Kitamura Y, Suzuki T, et al. Synthesis of sugar fatty acid esters by modified lipase [J]. Biotechnol. Bioeng., 1999, 64 (3): 268-271
    176. Pablo D M, Fernando M A, Sergio P M, et al. Heptyl oleate synthesis as useful tool to discriminate between lipases, proteases and other hydrolases in crude preparations [J]. Enzyme Microb. Technol., 2002, 31 (3): 283-288
    177.韩萍芳,安振明,欧阳平凯.脂肪酶促糖酯合成研究进展.现代化工,2004,24 (增刊1):4-7
    178. Somashekar B R, Divakar S. Lipase catalyzed synthesis of l-alanyl esters of carbohydrates [J]. Enzyme Microb Technol., 2007, 4 (2): 299-309
    179. Schlotterbeck A, Lang S, Wray V, et al. Lipase-catalyzed monoacylation of fructose [J]. Biotechnol. Lett., 1993, 15: 61-64
    180. Schekermann C, Schlotterbeck A, Schmidt M, et al. Enzymatic monoacylation of fructose by two produre [J]. Enzyme Microb. Technol., 1995, 17: 157-162
    181. Bellot J C, Choisnard L, Castillo E, et al. Combining solvent engineering and thermodynamic modeling to enhance selectivity during monoglyceride synthesis by lipase-catalyzed esterification [J]. Enzyme Microb. Technol., 2001, 28: 362-369
    182.杨勤萍,徐国梁,施邑屏,等.高效液相及薄层色谱分析蔗糖脂肪酸酯[J].分析测试学报,1999,18 (1):28-30
    183.周健,张晓鸣.甘露糖酯的分离纯化及分析方法研究[J].食品科学,2006,27 (6):69-72
    184.高旭,刘巧瑜,张晓鸣,等.连续式酶反应器中脂肪酶催化合成麦芽糖月桂酸酯的研究[J].食品与生物技术学报,2007,26 (2):16-20
    185.刘克本.溶剂萃取在分析化学中的应用[M].北京:高等教育出版社,1990
    186.何丽一.平面色谱方法及应用[M].北京:化学工业出版社,2000
    187. Jér?me B, Patrick J, Dominique C, et al. Design and synthesis of novel ionic liquid/liquid crystals (IL2Cs) with axial chirality [J]. Tetrahedron Letters, 2005, 46 (7): 1137-1140
    188. Kobayashi T, Adachi S, Nakanishi K, et al. Semi-continuous production of lauroyl kojic acid through lipase-catalyzed condensation in acetonitrile [J]. Biochem. Eng. J., 2001, 9: 85-89
    189. Otero C, Arcos J A, Berrendero M A, et al. Emulsifiers from solid and liquid polyols: different strategies for obtaining optimum conversions and selectivities [J]. J. Mol. Catal. B: Enzym., 2001, 11: 883-892
    190. Sadtler V M, Guely M, Marchal P, et al. Shear-induced phase transitions in sucrose ester surfactant [J]. J. Colloid Interf. Sci., 2004, 270: 270-275
    191. Simonovska B, Srbinoska M, Vovk I. Analysis of sucrose esters-insecticides from the surface of tobacco plant leaves [J]. J. Chromatogr A, 2006, 1127: 273-277
    192. Yamauchi N, TokuharY, Ohyama Y, et al. Inhibitory effect of sucrose laurate ester on degreening in Citrus agato-yuzukichi fruit during storage [J]. Postharvest Biology Technol., 2008, 43 (3): 333-337
    193. Muller A S, Gagnaire J, Queneau Y, et al. Winsor behaviour of sucrose fatty acid esters: choice of the cosurfactant and effect of the surfactant composition [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects., 2002, 203: 55-66
    194. Yoshida M, Katsuda S, Nakae D, et al. Lack of toxicity or carcinogenicity of S-170, a sucrose fatty acid ster, in F344 rats [J]. Food Chem. Toxicology, 2004, 42: 667-676
    195. Ganem-Quintanar A, Quintanar-Guerrero D, Falson-Rieg F, et al. Exvivo oral mucosal permeation of lidocaine hydrochloride with sucrose fatty acid esters as absorption enhancers [J]. Int. J. Pharm., 1998, 173: 203-210
    196. Thevenin M A, Grossiord J L, Poelman M C.Sucrose esters/cosurfactant microemulsion systems for transdermal delivery: assessment of bicontinuous structures [J]. Int. J. Pharm., 1996, 137: 177-186
    197. Khiew P S, Radiman S, Huang N M, et al. Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion [J]. J. Crystal Growth, 2003, 254: 235-243
    198. Khiew P S, Huang N M, Radiman S, et al. Synthesis of NiS nanoparticles using a sugar-ester nonionic water-in-oil microemulsion [J]. Materials Letters, 2004, 58: 762-767
    199. Ahsan F, Arnold J J, Meezan E, et al. Sucrose cocoate, a component of cosmetic preparations, enhances nasal and ocular peptide absorption [J]. Int. J. Pharm., 2003, 251: 195-203
    200. Garofalakis G, Murray B S. Effect of film ageing on the surface properties of lactoglobulin and lactoglobulin + sucrose stearate monolayers [J]. Colloids Surf. B: Biointerf., 1999, 12: 231-237
    201. Garofalakis G, Murray B S. Dilatational rheology and foaming properties of sucrose monoesters in the presence ofβ-lactoglobulin [J]. Colloids Surf. B: Biointerf., 2001, 21: 3-17
    202. Pérez-Victoria I, Morales J C. Regioselectivity in acylation of oligosaccharides catalyzed by the metalloprotease thermolysin [J]. Tetrahedron., 2006, 62: 2361-2369
    203. Kim J E, Han J J, Yoon J H, et al. Effect of salt hydrate pair on lipase-catalyzed regioselective monoacylation of sucrose [J]. Biotechnol. Bioeng., 1998, 57 (1): 121-125
    204.吴谋成.仪器分析[M].北京:科学出版社,2003
    205.冯雷刚,张国政.非水相中酶法合成糖酯的研究[J].食品科技,2004,(2):58-60
    206. Ghanem A. Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds [J]. Tetrahedron, 2007, 63 (8): 1721-1754
    207. Katsoura M H, Polydera A C, Katapodis P, et al. Effect of different reaction parameters on the lipase-catalyzed selective acylation of polyhydroxylated natural compounds in ionic liquids [J]. Process Biochem., 2007, 42 (9): 1326-1334
    208. Zhang D H, Bai S, Sun Y. Lipase-catalyzed regioselective synthesis of monoester of pyridoxine (vitamin B6) in acetonitrile [J]. Food Chem., 2007, 102 (4): 1012-1019
    209.孙红,陈天圆.高分辨率微库仑法测定烯烃中微量水[J].高师理学,2004,(2):46-48
    210. GB3009.35—85
    211.赵思明.食品科学与工程中的计算机应用[M].北京:化工出版社,2005
    212. Carrea G, Ottolina G, Riva S. Role of solvent in the control of enzyme selectivity in organic media [J]. Trends Biotechnol., 1995, 13: 63-70
    213. Ducret A, Trani M, Lortie R. Lipase-catalysed enantioselective esterification of ibufuren in organic solvents under controlled water activity [J]. Enzyme. Microb. Technol., 1998, 22:212-216
    214. Yan Y, Bornscheuer U T, Stadler G, et al. Production of sugar fatty acid esters by enzymatic esterification in a stirred-tank membrane reactor: optimization of parameters by response surface methodology [J]. J. Am. Oil Chem. Soc., 2001, 78: 147-152
    215. Piao J, Adachi S. Enzymatic preparation of fatty acid esters of sugar alcohols by condensation in acetone using a packed-bed reactor with immobilized Candida antarctica lipase [J]. Biocatal Biotransform., 2003, 22: 269-274
    216. Bousquet M P, Willemot R M, Monsan P, et al. Enzymatic synthesis ofα-butylglucoside linoleate in a packed bed reactor for future pilot scale-up [J]. Biotechnol. Prog., 2000, 16: 589-594
    217. Kobayashi T, Adachi S, Nakanishi K, et al. A continuous process for the synthesis of hexylβ-D-glucoside in aqueous phase using immobilizedβ-glucosidase and extractive product recovery with 1-hexanol [J]. Biotechnol. Lett., 2000, 22: 1845-1848
    218. Ryu S A, Kim C S, Kim H J, et al. Continuous D-tagatose production by immobilized thermostable larabinose isomerase in a packed-bed bioreactor [J]. Biotechnol. Prog., 2003, 19: 1643-1647
    219. Iwamoto N, Shima M, Adachi S. Synthesis of xylitoyl fatty acid monoesters by immobilized lipase in subcritical acetone [J]. Biochem. Eng. J., 2008, 38 (1): 16-21
    220. Pedersen N R., Wimmer R, Matthiesen R, et al. Synthesis of sucrose laurate using a new alkaline protease [J]. Tetrahedron, 2003, 14: 667-673
    221. Moh M H, Tang T S, Tan G H. Improved separation of sucrose ester isomers using gradient high performance liquid chromatography with evaporative light scattering detection [J]. Food Chem., 2000, 69: 105-110
    222. Oosterom M W, Rantwijk F, Sheldon R A. Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase [J]. Biotechnol. Bioeng., 1996, 49: 328-333
    223. Redmann I, Pina M, Guyot B, et al. Chemoenzymatic synthesis of glucose fatty esters [J]. Carbohydr. Res., 1997, 300: 103-108
    224. Yan Y, Bornscheuer U T, Schmid R D. Lipase-catalyzed synthesis of vitamin C fatty acid esters [J]. Biotechnol. Lett., 1999, 21: 1051-1054
    225. Kobayashi T, Adachi S. Reaction equilibrium for lipase-catalyzed condensation in organicsolvent systems [J]. Biotechnol. Lett., 2004, 26: 1461-1468
    226. (?)abeder S, Habulin M, Knez ?. Lipase-catalyzed synthesis of fatty acid fructose esters [J]. J. Food Eng., 2006, 77: 880-886
    227. Greenwald H L, Brown G L, Fineman M N. Determination of the Hydrophile-Lipophile Character of surface active agents and oils by a water titration [J]. Anal. Chem., 1976, (7): 1693-1696
    228.路亦景.水数法测定蔗糖酯的HLB值[J].表面活性剂工业,1989,(1):51-55
    229.乔建江,徐心茹.非离子型表面活性剂亲水-亲油平衡值的水数表征法[J].石油学报,1998,14 (3):62-65
    230. Zhao X, Cao Q, Zheng L, et al. Rheological properties and microstructures of gelatin-containing microemulsion-based organogels [J]. Colloids Surf. A: Physicochem Eng. Asp., 2006, 281: 67-73
    231. Ferrer M, Comelles F, Plou F J, et al. Comparative surface activities of di- and trisaccharide fatty acid esters [J]. Langmuir, 2002, 18: 667-673
    232. Zhang T, Marchant R E. Novel polysaccharide surfactants: The effect of hydrophobic and hydrophilic chain length on surface active properties [J]. J. of Colloid and Interface Science, 1996, 177: 419-426
    233.刘小杰,何国庆.蔗糖酯的合成工艺及其应用研究[J].食品与发酵工业,2001,(11):64-69
    234.傅小伟,冯凤琴,林美富.复配型糕团品质改良剂的试验研究[J].农业工程学报,2003,19 (4):212-215
    235.张文福.食品乳化剂在面包生产中的应用[J].食品研究与开发,2006,27 (4):185-187
    236.刑其毅,徐瑞秋,周政,等.基础有机化学(上册)[M].北京:高等教育出版社,1993:第二版
    237.姚玉英,黄凤廉,陈常贵,等.化工原理(上册)[M].天津:天津大学出版社,1998
    238.王辛,周惠明,蒋蕴珍.传统糕团类食品抗老化技术的研究[J].粮食与饲料工业,2007,(5):23-24
    239.宋晓燕,阮晖,许琼,等.糯玉米辛烯基琥珀酸淀粉酯的制备及其RVA谱特性分析[J].中国粮油学报,2006,21(1):55-59
    240.包劲松.应用RVA测定米粉淀粉成糊温度.中国水稻科学,2007,21 (5):543-546
    241.赫林.食品微生物实验技术[M].北京:中国农业出版社,2001
    242.张正茂,史俊丽,赵思明,等.超微细化大米淀粉的形貌与润涨特性研究[J].中国粮油学报,2007,22 (2):40-44
    243.钱存柔,黄仪秀.微生物学实验教程[M].北京:北京大学出版社,1999
    244. Sara B, Wilhelm H H. Improved screening procedure by lactic acid bacteria [J]. J. of Food Microbiology, 1999, 53: 33-41
    245.张赟彬,李彩侠.荷叶乙醇提取物的抗氧化与抑菌作用研究[J].食品与发酵工业,2005,31 (10):21-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700