电池正极材料球形Ni(OH)_2的制备条件与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍氢电池以其大功率、高容量、记忆效应小、安全性能良好、价格便宜、绿色环保无污染等优点具有广阔的发展空间。但是对于电池正极材料球形氢氧化镍来说一直存在着高活性和高密度不能兼顾的问题。
     本文综述了国内外镍氢电池的研究现状,指出了镍氢电池存在的问题。采用控制化学结晶法在自制连续搅拌反应器(CSTR)中制备电池正极材料球形氢氧化镍。利用材料热力学理论、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电化学性能测试等研究手段系统深入研究了pH值、反应时间、镍离子浓度和氨镍比对球形氢氧化镍材料的表面形貌、晶体结构、堆积密度和电化学性能的影响。
     材料热力学理论计算表明,反应pH值控制在9.5-11.5之间时,氢氧化镍在氨碱水溶液体系中实现热力学动态平衡,达到完全沉淀,可以有效避免体系中镍离子或碱液过多生成胶体。SEM分析表明制备得氢氧化镍均为球形颗粒,颗粒粒径粗大,颗粒直径从几微米到二十微米均匀分布。XRD分析表明其晶型均为β-Ni(OH)2,晶胞结构完整,晶体结构有序。反应pH值是影响球形氢氧化镍结构和性能的的主要因素,在一定范围内,随着pH值的增大,球形氢氧化镍的堆积密度先增大后减小,粒径分布同样先增大后减小,pH值过大体系过饱和度高,结晶度差易形成胶体,微观形貌为片状,晶粒细化因此堆积密度降低。pH值在10.5-11.5之间都具有较高的堆积密度,粒径分布均匀,球形度较好。反应时间延长利于结晶。随着反应时间的延长氢氧化镍颗粒尺寸逐渐增大,从结构松散的细小团絮状,变成颗粒尺寸较大的团聚状类球形,最终成为结构致密的球形颗粒,粒径均匀分布在2-18μm之间。镍离子浓度过大过小时,材料的球形度差,堆积密度低,因此镍离子浓度适宜控制在0.1-0.12mol/L。随着氨镍比的增大堆积密度先增大后减小,氨镍比在1-1.2之间易得到高密度的电极材料。
     恒流充放电试验显示,粒径增大放电比容量降低,堆积密度增大放电比容量随之降低。pH值为10.5-11.5,镍离子浓度为0.1-0.12mol/L,氨镍比为1-1.2,反应时间>24h时,制备得氢氧化镍具有较高的放电比容量和稳定的放点平台。
     因此在pH值为11,镍离子浓度为0.12mol/L,氨镍比为1.2,反应时间≥24h时,制备的球形氢氧化镍颗粒球形度好,流动性好,同时具有良好的放电比容量和高堆积密度,是理想的高性能电池正极材料。
With the deepening researched and developed of MH-Ni battery materials, the spherical nickel hydroxide cathode material is one of the materials first choice for the battery in the future, because of its advantages on higher power and capacity, smaller memory effects, excellent safety, lower cost, and much more environmentally friendly. However, it is still difficult for the spherical nickel hydroxide applied to cathode material battery, because the spherical nickel hydroxide cathode material would own a higher packing density, while a higher capacity. This problem would still be a challenge to the spherical nickel hydroxide cathode material.
     In this paper, the current conditions and existing problems in the research of MH-Ni battery was analyzed. The spherical nickel hydroxide particles were synthesized by the controlled chemical crystallization method in a continuous stirring tank reactor. The formation, structure, packing density and electrochemical properties of spherical nickel hydroxide were studied by means of thermodynamic analysis, SEM, XRD and electrochemical techniques analysis. The relationship between pH value, reaction time, nickel ions concentration, mole ratio of NH3/Ni and properties of spherical nickel hydroxide were discussed.
     The results of thermodynamic analysis showed that nickel hydroxide precipitated totally between pH=9.5 and pH=11.5, and attained an equilibrium conditions in the reaction system. In this case, the nickel ions could be completely precipitated as Ni(OH)2 while mixed with NH3·H2O. It was found from SEM analysis that the crystallinity degree of spherical nickel hydroxide was high. The size of particles distributes equably between a few microns and twenty microns or more. And it was found from XRD analysis that crystal cell becomes integrated gradually and crystal structure becomes more ordered ofβ-Ni(OH)2. The pH value of the reaction is the main factor which affects the structure and properties of spherical nickel hydroxide. Within the certain range of pH value, with the increase of pH value, the packing density and grain size of spherical nickel hydroxide increase at first and then decrease. Too high pH value was disadvantage to the saturation, because the packing density decreases when the pH value is enhanced. When nickel hydroxide precipitated totally between pH=10.5 and pH=11.5, it possesses a high packing density, uniform particle size and good distribution spherical degree. The reaction time was advantage to crystallization. With the increase of reaction time, grain size of spherical nickel hydroxide is increasing which distributes from 2 microns to 18 microns, and the crystalline form becomes from fine aggregate to spherical aggregate. Too low or too high nickel ions concentration was disadvantage to the spherical degree and packing density, and the nickel ions concentration was controlled in the range of 0.1~0.12 mol/L. With the increase of mole ratio of NH3/N1, the packing density of spherical nickel hydroxide increases firstly and then decreases. The mole ratio of NH3/Ni was controlled in the range of 1 to 1.2.
     Constant current charge-discharge tests showed that the electrochemical properties of the spherical nickel hydroxide electrode characterized with discharge capacity is generally lowered by increasing the size of crystallites and the packing density of the spherical nickel hydroxide particles. The spherical nickel hydroxide possessed a higher discharge capacity and platform potential when it has been precipitated between pH=10.5 and pH=11.5, while the nickel ions concentration was controlled in the range of 0.1-0.12 mol/L, mole ratio of NH3/Ni was from 1 to 1.2, and the reaction time is more than 24 hours.
     The results showed that the spherical nickel hydroxide with good flowability, high packing density and capacity was prepared when pH=11, the nickel ions concentration was controlled in 0.12mol/L, mole ratio of NH3/Ni is 1.2, and the reaction time is more than 24 hours.
引文
[1]李胜茂.2009-2012年中国电池行业投资分析及前景预测报告[R].2009.
    [2]唐有根,李文良.镍氢电池[M].北京:化学工业出版社,2007.
    [3]Wang X Y, Yan J, Zhou Z, et al. Electrochemical characteristics of nickel hydroxide modified by electroless cobalt coating[J]. Int. J. Hydrogen Energy,1998,23(10): 873-877.
    [4]Wang X Y, Yan J, YuanHT, et al. Surface modification and electrochemical studies of spherical nickel hydroxide[J].Journal of Power Sources,1998,72:221-224.
    [5]Chang Z R, LiGG, Zhao Y J, et al. Influence of preparation conditions of spherical nickel hydroxide on its electrochemical properties[J].Journal of Power Sources,1998,74: 252-253.
    [6]Kim H S, Itoh T, Nishizawa M, et al. Microvoltammetric study of electrochemical properties of a single spherical nickel hydroxide particle [J].Int. J. Hydrogen Energy,2002, 27(10):295-299.
    [7]He X M, Wang L, Li W, et al. Ytterbium coating of spherical Ni(OH)2 cathode materials for Ni-MH batteries at elevated temperature [J].Journal of Power Sources,2006, 158:1480-1481.
    [8]Glemser O, Einerhand J. Die struktur hoherer nickel hydroxide[J]. Z Anorg Chem, 1905,261:43-50.
    [9]Srinivasan V, Weidner J W, White R E. Mathematical models of the nickel hydroxide active material[J]. Journal of State Electrochemistry,2000,4(7):367-381.
    [10]Bernard M C, Takenouti H, Bernard P, et al. Electrochemical behavior of quasi-spherical beta-Ni(OH)2 particles studied by Raman spectroscopy[J].Journal of the Electrochemical Society,1996,143(8):2447-2450.
    [11]Bernard M C, Cortes R, Keddam M, et al. Structural defects and electrochemical reactivity of β-Ni(OH)2[J].Journal of Power Sources,1996,63(2):247.
    [12]Pandya K I, Grady W E, Corrigan D A, et al. Extended x-ray absorption fine structure investigations of nickel hydroxides[J].J. Phys. Chem,1990,94(1):21.
    [13]汪锦瑞,陈自江.我国球形氢氧化镍的生产研究现状[J].甘肃冶金,2006,28(3):6.
    [14]Bode H, Dehmelt K, Witte J. Zur kenntnis der nickel hydroxide electrode-Ⅰ Uber das nickel(Π)-Hydroxidhydrat[J].Electrochim Acta,1966,11(9):1079-1086.
    [15]Cresent A, Pralong V, Audemer A, et al. Electrochemical performance comparison between β-type mixed nickel cobalt hydroxides prepared by various synthesis routes[J].Solide State Sciences,2001,3:65.
    [16]郭永全,尹鸽平,葛亮,等.反应体系pH值和氨用量对氢氧化镍性能的影响[J].电源技术,2006,30(2):112-116.
    [17]田吉平,郭少斌,陈启斌,等.球形β-Ni(OH)2XRD线谱与制备工艺的关系[J].电池,2002,32(2):81-82.
    [18]沈湘黔,彭美勋,危亚辉,等.p-球形氢氧化镍的微结构与热分解特征[J].电源技术,2004,28(1):10-12.
    [19]杨书廷,尹艳红,陈红军,等.不同镍盐合成的球形p-Ni(OH)2的充放电特性与结构变化规律[J].电化学,2001,7(3):310-313.
    [20]周辉,任小华,蒋文全,等.制备工艺对球形氢氧化镍结构和性能的影响[J].电源技术,1999,23:67-69.
    [21]葛华才,袁高清,范祥情,等.影响Ni(OH)2性能因素的研究[J].电池,1999,29(4):150-152.
    [22]姜长印,万春荣,张泉荣,等.高密度高活性球形氢氧化镍的制备与性能控制[J].电源技术,1997,21(6):243-246.
    [23]王兴娟,刘红研,汪树军.电化学制氢联产球形氢氧化镍的研究[J].石油大学学报(自然科学版)电化学,2005,29(5):127-130.
    [24]杨长春,李祥杰,陈鹏磊,等.电解法制备球形氢氧化镍工艺研究[J].电源技术,2000,24(5):288-291.
    [25]Liu X H, Yu L. Synthesis of nanosized nickel hydroxide by solide-state reaction atroom temperature[J].Materials Letters,2004,58:1327-1329.
    [26]Liu X H, Yu L. Influence of nanosized Ni(OH)2 addition on the electrochemical performance of nickel hydroxide electrode[J].Journal of Power Sources,2004,128: 326-329.
    [27]Reisner D E, Salkind A j, Strutt P R, et al. Nickel hydroxide and other nanophase cathode material for rechargeable batteries[J].Journal of Power Sources,1997,65: 231-232.
    [28]韩长智.一种含纳米级球镍的球形氢氧化镍的制备方法[P].中国.CN1516301A,2004.
    [29]危亚辉,张翔宇,欧阳红勇,等.纳米界面结构氢氧化镍的制备及其电性能[J].矿冶工程,2009,29(3):82-84.
    [30]Tessier C, Guerlou-Demourgues L, Faure C, et al. Structural and textural evolution of zinc-substituted nickel hydroxide electrode materials upon ageing in KOH and upon redox cycling[J].Solid State Ionics,2000,133:11-22.
    [31]Wang C Y, Zhong S, Konstantinov K, et al. Structural study of Al-substituted nickel hydroxide[J].Solid State Ionics,2002,148:503-507.
    [32]Vishnu K P, Mridula D, Indira L. Stabilized α-Ni(OH)2 as electrode material for alkaline secondary cells[J].J Electrochem Soc,1994,141(11):2956-2958.
    [33]Mridula D, Jayashree R S, Vishnu K P, et al. Electrochemicaly impregnated aluminum-stabilized α-Nickel hydroxide electrodes[J].Electrochemical andSolide-State Letters,1999,2(4):170-171.
    [34]王兴威,沙永香.掺杂a-Ni(OH)2制备及其电化学性能研究[J].电池工业,2006,11(5):300-302.
    [35]韩山恩,康红欣,魏子海,等.混合晶相氢氧化镍的合成和性能研究[J].电源技术,2007,31(5):396-399.
    [36]韩喜江,谢小美,徐崇泉,等.混合纳米氢氧化镍的球镍电极材料的电化学活性研究[J].无机化学学报,2003,19(3):247-251.
    [37]张秀英,胡志国,赵春霞.离子交换树脂法制备氢氧化镍和氧化镍超细微粒[J].功能材料,2000,31(1):109-110.
    [38]申勇峰.影响球形氢氧化镍质量的因素分析与控制[J].湿法冶金,2002,21(2):76-79.
    [39]吴江,宋志方,罗新文,等.MH-Ni电池正极材料球形氢氧化镍的研究[J].江西化工,2005,3:77.
    [40]安晓君,焦红忠,李志.制备条件对球形Ni(OH)2电化学性能的影响[J].宁夏工程 技术,2005,4(2):138-139.
    [41]卫明珍,王天彦,施晓红.影响球形氢氧化镍密度主要因素的实验研究[J].上海有色金属,2001,22(2):75-76.
    [42]Fresitas M. Nickel hydroxide powder for NiOOH/Ni(OH) electrodes of the alkaline batteries[J]. Journal of Power Sources,2001,93:163-172.
    [43]Song Q S, Tang Z Y, Guo H T. Structural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH value [J].Journal of Power Sources,2002,112:428-433.
    [44]Mashiko O, Takashi T. A study on the swelling of a sintered nickel hydroxide electrode[J].J Appl Electrochem,1986,16:403-411.
    [45]Mrha J. Alkaline nickel/tin cell system [J]. Journal of Power Sources,1991,1:65-70.
    [46]Fu X Z, Xu QC, HuRZ, et al. β-CoOOH coated spherical β-NiOOH as the positive electrode material for alkaline Zn-NiOOH battery [J].Journal of Power Sources,2007, 164:916-920.
    [47]Fu X Z, Wang X, Xu Q C, et al. Physical characterization, electrochemical performance and storage stability of spherical Al-substituted γ-NiOOH[J]. Electrochimica Acta,2007,52:2109-2115.
    [48]Ren J X, Zhou Z, Gao X P, et al. Preparation of porous spherical a-Ni(OH)2 and enhancement of high-temperature electrochemical performances through yttrium addition[J].Electrochimica Acta,2006,52:1120-1126.
    [49]Ren J X, Yan Z, Zhou Z, et al. High-temperature electrochemical performance of Ni(OH)2 coated with Lu(OH)3[J].International Journal of Hydrogen Energy,2006,31: 71-76.
    [50]清华大学.制备高密度球形固体颗粒的结晶反应器[P].中国.CN2291202Y,1998.
    [51]中国科学院金属腐蚀与防护研究所.一种球形氢氧化亚镍系粉末的制造设备[P].中国.CN1253118A,2000.
    [52]彭美勋.球形氢氧化镍的微结构形成机理与电化学性能[D].长沙:中南大学,2004.
    [53]IKowa Munehisa, Akutsu Norikatsu,Enokldo,et al.Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them[P]. JP. EP0523284(A2),1993.
    [54]宋全生.MH-Ni电池正极活性材料氢氧化镍的制备、结构及性能研究[D].天津:天津大学,2000.
    [55]Peng Meixun,Shen Xiangqian.Template growth mechanism of spherical Ni(OH)2[J].J Cent South Univ Technol,2007,14(3):310-314.
    [56]周辉,任小华,蒋文全,等.制备工艺对球形氢氧化镍结构和性能的影响[J].电源技术,1999,23:67-69.
    [57]姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科技出版社,1985:777-781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700