工作面瓦斯涌出量时序混沌分形特性分析及其预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上煤与瓦斯突出灾害最严重的国家之一,具有突出矿井多、分布范围广、始突深度浅,突出强度大等一系列问题。由于尚未认清煤与瓦斯突出机理,故完全杜绝煤与瓦斯突出发生还不太可能。尽管目前国内外在局部检测与解危措施方面的研究已近成熟,但在防治煤与瓦斯突出的实施方面存在很大的难度。大量的事实表明,重特大的突出事故大多发生在煤巷掘进工作面,所以研究掘进工作面非接触式动态连续的煤与瓦斯突出预警方法具有重要的现实意义。
     首先,本文从瓦斯在煤层中的流动理论出发,得出掘进工作面的瓦斯涌出量与煤层瓦斯含量、瓦斯压力、煤层透气性、地质构造等因素有关,由此得出瓦斯突出与工作面瓦斯涌出量的复杂特性密切相关。
     其次,利用Taken的相空间重构理论来分析工作面瓦斯涌出时间序列的动力学模型。相空间重构参数的选取,文中采用了微熵率最小原则,最终确定所研究实例的几个嵌入维数均大于8,说明工作面瓦斯涌出动力学系统是一个高维的复杂系统。在此基础上,利用功率谱与Poincare截面定性分析工作面瓦斯涌出量时间序列数据具有混沌特性。针对实际时间序列长度有限且噪声未知的情况,在定量混沌特性分析中,提出了基于NLSR的LLE的求取,和基于FCM的关联维数的求取。为了进一步验证所提方法的有效性,利用确定的混沌时间序列Logistic和Hénon系统对算法进行验证,之后将所提算法用于实际时间序列混沌特性判别。LLE的求取结果进一步确定了工作面的瓦斯时间序列数据具有混沌特性。关联维数的确定也进一步验证了前面嵌入维数求取的正确。
     第三,引入Hurst指数来分析时间序列的长程相关性,并针对传统的R/S分析法存在的缺点,引入了V/S分析法来求其长程趋势特性,同时文中引入有效关联长度来进一步分析长程特性。最终得出几组实际的瓦斯时间序列数据的Hurst指数范围介于0.6301到0.9137,其有效关联长度范围为101.415到102.134。结果表明:工作面瓦斯时间序列具有长程正向趋势特性,而且未发生突出时的瓦斯时间序列数据正向长程相关性要强于已发生突出时的数据。
     最后,提出利用Bayesian推理框架下的LS-SVM回归模型对工作面瓦斯涌出量时间序列进行了多步预测。进一步地为了提高模型的鲁棒性,针对此BayesianLS-SVM对异常点的敏感而引入了BWLS-SVM。文中引入四个误差指标来评价所有给出模型的预测效果。由于在预测函数中自变量的更新值使用的是实测数据,所以所提方法均可较好地实现多步预测,而且预测误差也较小。为了进一步说明所提多步预测方法的效果,文中给出在Bayesian推理框架下LS-SVM模型的传统迭代预测效果。仿真结果表明传统迭代预测效果并没有文中所提方法好。
     作者从混沌时间序列的角度研究了工作面瓦斯涌出量的复杂特性,并在此基础上建立了时间序列预测模型。所研究内容为工作面非接触式煤与瓦斯突出动态预测奠定了一定的理论基础,同时也为深入分析工作面瓦斯涌出量的复杂特性开辟了新思路。
China is one of the most serious countries in the world where the coal and gasoutburst often happens, with a series of problems such as many outburst wells, widelydistribution, shallow penetration outburst depth, high outburst frequency, hugeoutburst strength etc. However, the coal and gas outburst mechanism still hasn’t beenfully understood yet. No country can absolutely prevent the occurrence of outburst.Moreover, at presents, research and methodology on local test gas and getting rid ofdanger is gradually improved at home and abroad, there is a great difficulty in theprevention and control of coal and gas outburst. A large number of data indicate thataccidents which created particularly serious coal and gas outburst mostly take place inmine workface. So seeking a better non-contact dynamic continuous predictionmeasure is quite necessary.
     Firstly, the relationship between workface gas emission with coal seam gascontent, gas pressure, seam permeability, geological structure factors and other factorshave been proposed according to the flow theory of gas in coal seams. Further, therelated complex features of gas outburst with gas emission time-series be obtained,and it is as studying content in full text.
     Secondly, the dynamics simulation of gas emission time-series is analyzed byapplying Taken’s phase space reconstruction theory. The phase space reconstructionparameters are selected by using the differential entropy minimum principle. Severalembedding dimension of studying instance been ultimately identified are great than8.It indicates that the gas emission dynamics system is a high-dimensional complexsystem. On this basis, the chaotic characteristics of gas emission time-series data isqualitatively analyzed by using power spectrum and Poincare section. LargestLyapunov exponent solution based on nonlinear least squares regression andcorrelation dimension solution based on FCM are proposed in thesis because oflimited actual length of time-series and unknown noise. To further verifying thevalidity of the method, the algorithm has been carried out to test by using identifiedLogistic chaotic time-series and Hénon system. Then, the method is used todistinguish characteristics of the actual time-series, and determination of thecorrelation dimension also further validates the correctness of the embeddingdimension solution mentioned in front.
     Thirdly, Hurst exponent is appointed to analyze long-range correlation oftime-series in this thesis, and appointed V/S method to solve the long-range trend characteristics for shortcomings of the traditional R/S method. Further, the effectivecorrelation length is quoted to analyze the long-range features. The Hurst exponentrange of several groups of actual data is between0.6301-0.9137, and its effectivecorrelation length range is from101.415to102.134. These data suggest that workface gastime-series with positive long-range trend characteristics, and this characteristics ofno-outburst gas time-series data is significantly stronger than outburst gas time-seriesdata.
     Finally, the LS-SVM regression model within the Bayesian inference frameworkis adapted to multi-step predict workface gas emission time-series. Further, in order toimprove the robustness of the models, BWLS-SVM model is introduced for theBayesian LS-SVM is sensitive to outliers. In this paper four error indicators areintroduced to evaluate prediction effect of the given model. The updated value of theprediction function variables is used the measured data, so the mentioned methods canachieve better multi-step prediction; the prediction error is also smaller. To furthercompare the proposed multi-step prediction effect, the traditional iterative predictionby using LS-SVM model within Bayesian inference framework is given. The finalresults show that the traditional iterative prediction results are unsatisfactory.
     The author studies the complex nature of workface gas emission from the pointof view of the chaotic time-series, and on this basis to establish time-series forecastingmodels. The contents of this article has laid a theoretical basis for non-contact coaland gas outburst dynamic forecast, but also open up new ideas for in-depth analysis ofthe gas emission complex.
引文
[1]马丕梁,蔡成功.我国煤矿瓦斯综合治理现状及发展战略[J].煤炭科学技术,2007,35(12):7~11.
    [2]邓明,张国枢,陈清华.基于瓦斯涌出时间序列的煤与瓦斯突出预报[J].煤炭学报,2010,35(2):260~263.
    [3]钱鸣高.科学采矿破解第一难题: http://news.cumt.edu.cn/ArticleRead.aspx?Id=45507,2011
    [4]金芳勇.基于分形-混沌理论的煤与瓦斯突出预测研究[D].安徽理工大学,2006.
    [5]陈祖云.煤与瓦斯突出前兆的非线性预测及支持向量机识别研究[D].中国矿业大学,2009.
    [6]高建良,候三中.掘进工作面动态瓦斯压力分布及涌出规律[J].煤炭学报,2007,32(11):1127~1131.
    [7]何利文.煤矿回采工作面瓦斯涌出非线性特性分析及预测仿真理论研究[D].中南大学,2010.
    [8]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [9] Yonemoto K, Yanagawa T. Estimating the Lyapunov exponent from chaotic time serieswith dynamic noise[J]. Statistical Methodology,2007,4(4):461~480.
    [10] Yun B, Guang-Jun W, Hai-Yan J, et al. Predictability of Iteration Method for Chaotic TimeSeries[J]. IEICE Transactions on Fundamentals of Electronics, Communications andComputer Sciences,2010, E93-A(4):840~842.
    [11] Harikrishnan K P, Misra R, Ambika G, et al. A non-subjective approach to the GPalgorithm for analysing noisy time series[J]. Physica D: Nonlinear Phenomena,2006,215(2):137~145.
    [12] Harikrishnan K P, Misra R, Ambika G. Combined use of correlation dimension and entropyas discriminating measures for time series analysis[J]. Communications in NonlinearScience and Numerical Simulation,2009,14(9-10):3608~3614.
    [13] Bodyanskiy Y, Popov S. Neural network approach to forecasting of quasiperiodic financialtime series[J]. European Journal of Operational Research,2006,175(3):1357~1366.
    [14] Kozma R, Beliaev I. Time series prediction using chaotic neural networks: Case study ofIJCNN CATS benchmark test[C].2004:1609~1613.
    [15]王永生,刘卫华,杨利斌等.基于最小二乘支持向量回归的混沌时间序列预测研究[J].海军航空工程学院学报,2009,24(3):283~288.
    [16]张子敏.瓦斯地质学[M].徐州:中国矿业大学出版社,2009.
    [17]王汉斌.煤与瓦斯突出的分形预测理论及应用[D].太原理工大学,2009.
    [18]杨文旺,崔洪庆,张子敏.掘进工作面瓦斯涌出量混沌动力学方法研究[J].矿业安全与环保,2010,37(01):12~15.
    [19] Singh J G. A mechanism of outbursts of coal and gas[J]. Mining Science and Technology,1984,1(4):269~273.
    [20]王凯.煤与瓦斯突出的非线性特征及预测模型[M].徐州:中国矿业大学出版社,2005.
    [21] Flores R M. Coalbed methane: from hazard to resource[J]. International Journal of CoalGeology,1998,35(1-4):3~26.
    [22] Jingyu J, Yuanping C, Lei W, et al. Effect of magma intrusion on the occurrence of coal gasin the Wolonghu coalfield[J]. Mining Science and Technology,2011,21(5):737~741.
    [23] Lichtenberger M. Underground Measurements of Electromagnetic Radiation Related toStress-induced Fractures in the Odenwald Mountains (Germany)[J]. Pure and AppliedGeophysics,2006,163(8):1661.
    [24]李胜.煤与瓦斯突出区域预测的模式识别方法研究[D].辽宁工程技术大学,2004.
    [25]曹垚林.综掘工作面瓦斯预测技术在平顶山矿区的应用研究[D].煤炭科学研究总院,2003.
    [26]王世栋,张志宏,常海英等.分源预测法预测矿井瓦斯涌出量的误差来源分析[J].煤炭技术,2008,27(8):85~87.
    [27]朱红青,常文杰,张彬.回采工作面瓦斯涌出BP神经网络分源预测模型及应用[J].煤炭学报,2007,32(5):504~508.
    [28]孙叶,谭成轩,孙炜锋等.煤瓦斯突出研究现状及其研究方向探讨[J].地质力学学报,2008,14(2):117~134.
    [29]苏文叔.利用瓦斯涌出动态指标预测煤与瓦斯突出[J].煤炭工程师,1996,(05):2~7.
    [30]张伟民,周勇,王珂奇.声发射预测煤与瓦斯突出危险性方法及指标的研究[J].煤矿安全,1999,(5):2~4.
    [31]聂百胜,何学秋,王恩元等.煤体剪切破坏过程电磁辐射与声发射研究[J].中国矿业大学学报,2002,31(6):65~67.
    [32]邹银辉,赵旭生,刘胜.声发射连续预测煤与瓦斯突出技术研究[J].煤炭科学技术,2005,33(6):61~65.
    [33]曹树刚,刘延保,张立强.突出煤体变形破坏声发射特征的综合分析[J].岩石力学与工程学报,2007,26(S1):2794~2799.
    [34]孙继平,李迎春.红外诊断技术在突出工作面预测中的应用[J].煤矿安全,2006,(11):17~20.
    [35]赵庆珍.红外探测技术用于预测煤与瓦斯突出的试验[J].采矿与安全工程学报,2009,26(4):529~533.
    [36] Wang E, He X, Liu X, et al. A non-contact mine pressure evaluation method byelectromagnetic radiation[J]. Journal of Applied Geophysics,2011,75(2):338~344.
    [37]王恩元,何学秋,聂百胜等.电磁辐射法预测煤与瓦斯突出原理[J].中国矿业大学学报,2000,29(3)
    [38]撒占友,何学秋,张永亮等.煤岩电磁辐射效应及其在煤与瓦斯突出预测中的应用[J].中国矿业,2006,15(1):48~54.
    [39]李俊亮.声发射预测煤与瓦斯突出危险性技术研究[D].西安科技大学,2009.
    [40]刘晓丹,卢国斌.地球物理方法预测煤与瓦斯突出[J].辽宁工程技术大学学报(自然科学版),2008,27(S1):7~9.
    [41]王宏图,李晓红,鲜学福等.地电场作用下煤中甲烷气体渗流性质的实验研究[J].岩石力学与工程学报,2004,23(2):303~306.
    [42]王晓亮,郭勇义,吴世跃.煤层中瓦斯流动的计算机模拟[J].太原理工大学学报,2003,34(4):402~405.
    [43]毛剑琴,姚健,丁海山.基于模糊树模型的混沌时间序列预测[J].物理学报,2009,58(04):2220~2229.
    [44]谷松,崔洪庆,冯文丽.基于灰色理论的小波神经网络对瓦斯涌出量的预测[J].煤炭学报,2007,32(9):964~966.
    [45]郝吉生,倪小明.基于Windows平台的采掘工作面煤与瓦斯突出预测专家系统[J].煤炭学报,2005,30(2):141~145.
    [46]乔美英,马小平,乔铁柱等.工作面瓦斯涌出量时间序列分形特性研究[J].煤炭科学技术,2011,39(12):51~55.
    [47]王凯,俞启香,彭永周.非线性理论在煤与瓦斯突出研究中的应用[J].辽宁工程技术大学学报(自然科学版),2000,19(4):348~352.
    [48]张剑英,程健,侯玉华等.煤矿瓦斯浓度预测的ANFIS方法研究[J].中国矿业大学学报,2007,36(4):494~498.
    [49]桂祥友,郁钟铭.基于灰色关联分析的瓦斯突出危险性风险评价[J].采矿与安全工程学报,2006,23(4):464~467.
    [50]桂祥友,郁钟铭.基于模糊聚类关联分析法的煤与瓦斯突出程度分析[J].安全与环境学报,2006,6(4):85~88.
    [51]郭德勇,李念友,裴大文等.煤与瓦斯突出预测灰色理论-神经网络方法[J].北京科技大学学报,2007,29(4):354~357.
    [52]桂祥友,郁钟铭.基于灰色系统理论的煤矿瓦斯涌出量预测研究[J].贵州工业大学学报(自然科学版),2007,36(6):9~13.
    [53]谭云亮,肖亚勋,孙伟芳.煤与瓦斯突出自适应小波基神经网络辨识和预测模型[J].岩石力学与工程学报,2007,26(S1):3373~3377.
    [54]张子戌,刘高峰,吕闰生等.基于模糊聚类分析和模糊模式识别的煤与瓦斯突出预测[J].煤田地质与勘探,2007,35(3):22~25.
    [55]王其军,程久龙.基于免疫神经网络模型的瓦斯浓度智能预测[J].煤炭学报,2008,33(6):665~669.
    [56]高莉,胡延军,于洪珍.基于W-RBF的瓦斯时间序列预测方法[J].煤炭学报,2008,33(1):67~70.
    [57]王凯,王轶波,卢杰.煤与瓦斯突出动态前兆的非线性特征研究[J].采矿与安全工程学报,2007,24(1):22~26.
    [58]刘式达,梁福明,刘式适等.自然科学中的混沌和分形[M].北京:北京大学出版社,2003.
    [59]李彦彬.河川径流的混沌特征和预测研究[D].西安理工大学,2009.
    [60]李辉.混沌数字通信[M].北京:清华大学出版社,2006.
    [61]陈士华,吕金虎,陆君安.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [62]韩敏.混沌时间序列预测理论与方法[M].北京:中国水利水电出版社,2007.
    [63] Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series--the role of the time window length[J]. Physica D: Nonlinear Phenomena,1996,95(1):13~28.
    [64]赵敏.基于混沌理论的电力推进船舶电力负荷预测[D].大连海事大学,2008.
    [65] Ganz R E, Lenz C. A program for the user-independent computation of the correlationdimension and the largest Lyapunov exponent of heart rate dynamics from small datasets[J]. Computer Methods and Programs in Biomedicine,1996,49(1):61~68.
    [66] Gilat R, Aboudi J. The Lyapunov exponents as a quantitative criterion for the dynamicbuckling of composite plates[J]. International Journal of Solids and Structures,2002,39(2):467~481.
    [67]李海波.混沌时间序列预测应用研究[D].中国科学技术大学,2009.
    [68]修妍.混沌时序分析中的若干问题及其应用研究[D].天津大学,2007.
    [69]高洁.基于时间序列理论方法的生物序列特征分析[D].江南大学,2009.
    [70]孟庆芳.非线性动力系统时间序列分析方法及其应用研究[D].山东大学,2008.
    [71]王鼐.非线性动力学方法在时间序列分析中的应用[D].复旦大学,2005.
    [72]马军海,陈予恕.混沌时序相空间重构的分析和应用研究[J].应用数学和力学,2000,21(11):1117~1124.
    [73]韩敏.混沌时间序列预测理论与方法[M].北京:中国水利水电出版社,2007.193~195.
    [74]王兴元,赵敏,樊印海.船舶电力负荷预测混沌时间序列分析法[J].大连理工大学学报,2010,50(1):141~144.
    [75]杨新意,丁胜祥.宜昌站月径流时间序列的混沌特性分析[J].人民长江,2009,40(22):32~34.
    [76]张玉梅,曲仕茹,温凯歌.交通流量的混沌特性分析及预测模型研究[J].土木工程学报,2009,42(1):119~123.
    [77]汤琳,杨永国.混沌时间序列分析及应用研究[J].武汉理工大学学报,2010,32(19):189~192.
    [78] Coelho L D S, Santos A A P. A RBF neural network model with GARCH errors:Application to electricity price forecasting[J]. Electric Power Systems Research,2011,81(1):74~83.
    [79] Ardalani-Farsa M, Zolfaghari S. Chaotic time series prediction with residual analysismethod using hybrid Elman-NARX neural networks[J]. Neurocomputing,2010,73(13-15):2540~2553.
    [80] Bhardwaj S, Srivastava S, Vaishnavi S, et al. Chaotic time series prediction usingcombination of Hidden Markov Model and Neural Nets[C].2010:585~589.
    [81] Itoh Y, Adachi M. Chaotic time series prediction by combining echo-state networks andradial basis function networks[C].2010:238~243.
    [82]李洋,石必明.基于贝叶斯正则化BP人工神经网络的煤与瓦斯突出预测的研究[J].工矿自动化,2009,35(2):1~5.
    [83]杨淑群,芮景析,冯汉中.支持向量机(SVM)方法在降水分类预测中的应用[J].西南农业大学学报(自然科学版),2006,28(2):252~257.
    [84] He P, Wang Y, Gui W, et al. Chaotic time series analysis and SVM prediction of aluminasilicon slag composition[C].2010:1273~1277.
    [85]行鸿彦,金天力.基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测[J].物理学报,2010,59(01):140~146.
    [86]叶美盈,汪晓东,张浩然.基于在线最小二乘支持向量机回归的混沌时间序列预测[J].物理学报,2005,54(6):2568~2573.
    [87]陈磊,张土乔.基于贝叶斯最小二乘支持向量机的时用水量预测模型[J].天津大学学报,2006,39(9):1037~1042.
    [88]黄丽,孙玉坤,嵇小辅等.基于CPSO与LSSVM融合的发酵过程软测量建模[J].仪器仪表学报,2011,32(9):2066~2070.
    [89] Yang Z, Gu X S, Liang X Y, et al. Genetic algorithm-least squares support vectorregression based predicting and optimizing model on carbon fiber composite integratedconductivity[J]. Materials&Design,2010,31(3):1042~1049.
    [90] Quan T, Liu X, Liu Q. Weighted least squares support vector machine local region methodfor nonlinear time series prediction[J]. Applied Soft Computing Journal,2010,10(2):562~566.
    [91]李赣平,阎威武,邵惠鹤.基于贝叶斯证据框架下支持向量机建模的迭代优化控制(英文)[J]. Journal of Shanghai University(English Edition),2007,11(6):591~596.
    [92]张旭东,陈锋,高隽等.稀疏贝叶斯及其在时间序列预测中的应用[J].控制与决策,2006,21(5):585~588.
    [93] Cao S G, Liu Y B, Wang Y P. A forecasting and forewarning model for methane hazard inworking face of coal mine based on LS-SVM[J]. Journal of China University of Mining andTechnology,2008,18(2):172~176.
    [94] Zhao X H, Wang G, Zhao K K, et al. On-line least squares support vector machinealgorithm in gas prediction[J]. Mining Science and Technology (China),2009,19(2):194~198.
    [95]郭小荟,马小平.基于最小二乘支持向量机的选煤厂日用水量短期预测[J].煤炭学报,2007,32(10):1093~1097.
    [96] Guo X, Ma X. Mine water discharge prediction based on least squares support vectormachines[J]. Mining Science and Technology (China),2010,20(5):738~742.
    [97] Qiao M, Ma X, Lan J, et al. Time-series gas prediction model using LS-SVR within aBayesian framework[J]. Mining Science and Technology (China),2011,21(1):153~157.
    [98]施式亮,宋译,何利文等.矿井掘进工作面瓦斯涌出混沌特性判别研究[J].煤炭学报,2006,31(6):701~705.
    [99] Shengrui Z, Baisheng N, Shuiwen L, et al. Model of Gas Concentration Forecast Based onChaos Theory[J]. Procedia EngineeringISMSSE2011,2011,26(0):211~217.
    [100] Yanga L, Qingjun S, Jinga L, et al. Study on Gas Emission Rate Prediction Based on ChaosAnalysis[J]. Procedia Engineering,2011,24:106~110.
    [101] Qiao M, Tao H, Ma X. Identification method of correlation dimension scaleless regionbased on fuzzy C-means clustering[C].2011:337~341.
    [102]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24~37.
    [103]舒龙勇,程远平,王亮等.地质因素对煤层瓦斯赋存影响的研究[J].中国安全科学学报,2011,21(2):121~125.
    [104]陈祖云.煤与瓦斯突出前兆的非线性预测及支持向量机识别研究[D].中国矿业大学,2009.
    [105]吴爱军.松软煤层煤巷掘进突出危险性预测的连续流量法技术研究[D].中国矿业大学,2011.
    [106]李中州.煤厚变化对煤与瓦斯突出危险性的影响[J].煤炭科学技术,2010,38(9):65~67.
    [107]蔡成功,王佑安.煤与瓦斯突出一般规律定性定量分析研究[J].中国安全科学学报,2004,14(6):112~115.
    [108]邵强,王恩营,王红卫等.构造煤分布规律对煤与瓦斯突出的控制[J].煤炭学报,2010,35(2):250~254.
    [109]许满贵,葛岭梅.煤体结构对矿井瓦斯灾害的影响研究[J].湖南科技大学学报(自然科学版),2007,22(1):17~20.
    [110]王刚,程卫民,谢军等.煤与瓦斯突出过程中煤体瓦斯的作用研究[J].中国安全科学学报,2010,20(9):116~120.
    [111]王魁军.矿井瓦斯防治技术优选—瓦斯涌出量预测与抽放[M].徐州:中国矿业大学出版社,2008.
    [112]王佑安.煤与瓦斯突出[M].北京:中国工业出版社,1966.
    [113]苏文叔.利用瓦斯涌出动态指标预测煤与瓦斯突出[J].煤炭工程师,1996,(5):2~6.
    [114]李元喜.应用沿空留巷技术处理工作面过断层[J].煤矿现代化,2008,(1):13.
    [115]刘彦伟,刘明举,武刚生.鹤煤十矿突出前瓦斯涌出特征及预测指标的选择与应用[J].煤矿安全,2005,36(11):18~21.
    [116]林振山.长期预报的相空间理论和模式[M].北京:气象出版社,1993.
    [117]何利文,施式亮,宋译等.回采工作面瓦斯涌出的复杂性及其度量[J].煤炭学报,2008,33(05):547~550.
    [118]郝柏林.分岔、混沌、奇怪吸引子、湍流及其他-关于确定论系统的内在随机性[J].物理学进展,1983,3(3):329~416.
    [119]何利文.煤矿回采工作面瓦斯涌出非线性特性分析及预测仿真理论研究[D].长沙:中南大学,2009.
    [120]程健,白静宜,钱建生等.基于混沌时间序列的煤矿瓦斯浓度短期预测[J].中国矿业大学学报,2008,37(02):231~235.
    [121]吕金虎,陆均安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社:2002.
    [122] N. Packard J C D F. Geometry from a time series[J]. Physical Review Letters,1980,45(9):712~716.
    [123] Takens F. Detecting strange attractors in turbulence.[J]. Dynamical Systems and Turbulence,1981,898:366~381.
    [124] Ma é R. On the dimension of the compact invariant sets of certain nonlinear maps[J].Lecture Notes in Mathematics,1981,898:230~242.
    [125] T S, A Y J, Casdagli M. Embedology[J]. Journal of Statistical Physics,1991,65(3-4):579~616.
    [126]乔美英,马小平,兰建义等.基于加权LS-SVM时间序列短期瓦斯预测研究[J].采矿与安全工程学报,2011,28(2):310~314.
    [127]王海燕,卢山.非线性时间序列分析及其应用[M].北京:科学出版社,2006.
    [128] Albano A M, Passamante A, Farrell M E. Using higher-order correlations to define anembedding window[J]. Physica D.,1991,54(1-2):85~97.
    [129] Buzug T P S G. Optimal delay time and embedding dimension for delay-time coordinates byanalysis of the global static and local dynamical behavior of strange attractors[J]. Physical.Review. A,1992,45(10):7073~7084.
    [130] Cao L. Practical method for determining the minimum embedding dimension of a scalartime series[J]. Physica D: Nonlinear Phenomena,1997,110(1-2):43~50.
    [131] Lei M, Wang Z, Feng Z. A method of embedding dimension estimation based on symplecticgeometry[J]. Physics Letters A,2002,303(2-3):179~189.
    [132] Kim H S, Eykholt R, Salas J D. Nonlinear Dynamics, Delay Times, and EmbeddingWindows[J]. Physica D: Nonlinear Phenomena,1999,127(1-2):48~60.
    [133] Ataei M B, Lohmann A. Model based method for determining the minimum embeddingdimension from chaotic time series-Univariate and multivariate case[J]. Journal ofNonlinear Phenomena in Complex Systems,2003,6(4):842~851.
    [134] Gautama T, Mandic D P, Van Hulle M M. A differential entropy based method fordetermining the optimal embedding parameters of a signal [C]. Hong Kong, Hong kong:2003.
    [135] Lurcat Francois,马金章译.混沌[M].北京:科学出版社,2005.
    [136]傅强,钟纪华,张朝曦. Rayleigh-Benard对流温度信号的混沌特性分析[J].解放军理工大学学报(自然科学版),2011,12(5):536~540.
    [137] Ubeyli E D. Lyapunov exponents/probabilistic neural networks for analysis of EEGsignals[J]. Expert Systems with Applications,2010,37(2):985~992.
    [138]卢山.基于非线性动力学的金融时间序列预测技术研究[D].东南大学,2006.
    [139]李彦彬,黄强,徐建新等.基于混沌支持向量机的河川径流预测研究[J].水力发电学报,2008,27(6):42~47.
    [140] Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a timeseries[J]. Physica D: Nonlinear Phenomena,1985,16(3):285~317.
    [141] Gencay R, Dechert W D. The identification of spurious Lyapunov exponents in Jacobianalgorithms[J]. Studies in Nonlinear Dynamics\&Econometrics,1996,1(3):145~154.
    [142] Barna G, Tsuda I. A new method for computing Lyapunov exponents[J]. Physics Letters A,1993,175(6):421~427.
    [143] Liu H, Dai Z, Li W, et al. Noise robust estimates of the largest Lyapunov exponent[J].Physics Letters A,2005,341(1-4):119~127.
    [144] Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largestLyapunov exponents from small data sets[J]. Physica D: Nonlinear Phenomena,1993,65(1-2):117~134.
    [145] Argyris J, Andreadis I, Pavlos G, et al. On the influence of noise on the largest Lyapunovexponent and on the geometric structure of attractors[J]. Chaos, solitons and fractals,1998,9(6):947~958.
    [146] Argyris J, Andreadis I. On the influence of noise on the largest Lyapunov exponent ofattractors of stochastic dynamic systems[J]. Chaos, solitons and fractals,1998,9(6):959~963.
    [147]韩敏,王一颉.含噪声混沌信号最大Lyapunov指数计算[J].控制理论与应用,2008,25(5):898~900.
    [148] Yang J H, Hu D L, Li S H, et al. On stationary probability density and maximal Lyapunovexponent of a co-dimension two bifurcation system subjected to parametric excitation byreal noise[J]. International Journal of Non-Linear Mechanics,2011,46(1):186~196.
    [149] Liu X B, Liew K M. The Lyapunov exponent for a codimension two bifurcation system thatis driven by a real noise[J]. International Journal of Non-Linear Mechanics,2003,38(10):1495~1511.
    [150] Kantz H, Schreiber T, Mackay R S. Nonlinear time series analysis[M]. London: CambridgeUniversity Press Cambridge,1997.
    [151] Holger K. A robust method to estimate the maximal Lyapunov exponent of a time series[J].Physics Letters A,1994,185(1):77~87.
    [152] Eckmann J P, Ruelle D. Ergodic theory of chaos and strange attractors[J]. Reviews ofmodern physics,1985,57(3):617.
    [153] Harikrishnan K P, Misra R, Ambika G. Efficient use of correlation entropy for analysingtime series data[J]. Pramana-Journal of Physics,2009,72(2):325~333.
    [154] Grassberger P, Procaccia I. Characterization of strange attractors[J]. Physical review letters,1983,50(5):346~349.
    [155] Maragos P, Sun F K. Measuring the fractal dimension of signals: morphological covers anditerative optimization[C].1993:108.
    [156] Yang H Y, Ye H, Wang G Z, et al. Identification of scaling regime in chaotic correlationdimension calculation[C].2008:1383~1387.
    [157]姬翠翠,朱华,江炜.混沌时间序列关联维数计算中无标度区间识别的新方法[J].科学通报,2010,55(31):3072~3079.
    [158] Harikrishnan K P, Misra R, Ambika G. Combined use of correlation dimension and entropyas discriminating measures for time series analysis[J]. Communications in NonlinearScience and Numerical Simulation,2009,14(9-10):3608~3614.
    [159] Huizhi Y, Hui M. Chaotic Time Series Prediction Based on Fuzzy Possibility C-mean andComposite Kernel Support Vector Regression[C].2010:236~239.
    [160] Harikrishnan K P, Misra R, Ambika G, et al. A non-subjective approach to the GP algorithmfor analysing noisy time series[J]. Physica D: Nonlinear Phenomena,2006,215(2):137~145.
    [161] Sprott J C, Rowlands G. Improved correlation dimension calculation[J]. InternationalJournal of Bifurcation and Chaos,2001,11(7):1865~1880.
    [162] Peters E E. R/S Analysis Using Logarithmic Returns[J]. Financial Analysts Journal,1992,48(6):81~82.
    [163] Peters E E. Fractal market analysis[M]. Oxford: Wiley,1994.
    [164]黄存捍,冯涛,王卫军等.基于分形和支持向量机矿井涌水量的预测[J].煤炭学报,2010,35(5):806~810.
    [165] Selvaratnam S, Kirley M. Predicting Stock Market Time Series Using EvolutionaryArtificial Neural Networks with Hurst Exponent Input Windows[C]. Australian: SpringerBerlin/Heidelberg,2006.
    [166]李业学,刘建锋.基于R/S分析法与分形理论的围岩变形特征研究[J].四川大学学报(工程科学版),2010,42(3):43~48.
    [167]李远耀,殷坤龙,程温鸣. R/S分析在滑坡变形趋势预测中的应用[J].岩土工程学报,2010,32(8):1291~1296.
    [168] Li M, Lim S C, Hu B J, et al. Towards describing multi-fractality of traffic using local hurstfunction[C]. Beijing, China:2007.
    [169]王文静.金融时间序列的长记忆特性及预测研究[D].天津大学,2009.
    [170] Benassi A, Bertrand P, Cohen S, et al. Identification of the Hurst Index of a Step FractionalBrownian Motion[J]. Statistical Inference for Stochastic Processes,2000,3(1):101~111.
    [171] B M B, R W J. Rebustness of the Rescaled Range R/S in the Measurement of NoncyclicLong Run Statistical Dependence[J].1969,5(05):967~998.
    [172] Lo A W. Long-term memory in stock market prices [J]. Econometrica,1991,59(5):1279~1313.
    [173] Hauser M A. Semiparametric and nonparametric testing for long memory: A monte carlostudy[J]. Empirical Economics,1997,22(2):247~271.
    [174] Teverovsky V, Taqqu M S, Willinger W. A critical look at Lo's modified R/S statistic[J].Journal of Statistical Planning and Inference,1999,80(1-2):211~227.
    [175] Giraitis L, Kokoszka P, Leipus R, et al. Rescaled variance and related tests for long memoryin volatility and levels[J]. Journal of econometrics,2003,112(2):265~294.
    [176]黄诒蓉,罗奕.基于经典R/S分析方法的H指数估计有效性评价[J].统计与信息论坛,2009,24(8):59~64.
    [177]刘彦伟,潘辉,刘明举等.鹤壁矿区煤与瓦斯突出规律及其控制因素分析[J].煤矿安全,2006,(12):13~16.
    [178] Chen Y, Sun R, Zhou A. An improved Hurst parameter estimator based on fractionalFourier transforms [J]. Telecommunication Systems,2010,43(3-4):197~206.
    [179] B. M, Van Ness J W. Fractional Brownian Motions: Fractional Noises and Applications[J].SIAM Review,1968,10(4):422~437.
    [180] Abry P. The wavelet-based synthesis for fractional Brownian motion proposed by F. Sellanand Y. Meyer: Remarks and fast implementation[J]. Applied and computational harmonicanalysis,1996,3(4):377~383.
    [181] Wood A T A, Chan G. Simulation of stationary Gaussian processes in [0,1]d[J]. Journal ofcomputational and graphical statistics,1994,(3):409~432.
    [182] Boufoussi B, Dozzi M, Marty R. Local time and Tanaka formula for a Volterra-typemultifractional Gaussian process[J]. Bernoulli,2010,16(4):1294~1311.
    [183] Jackson B S. Consequences of long-range temporal dependence in neural spiking activityfor theories of processing and coding [D]. Syracuse University,2003.
    [184]荣腾中.基于混沌理论的时间序列分析[D].西南交通大学,2003.
    [185] Rojas I, Valenzuela O, Rojas F, et al. Soft-computing techniques and ARMA model for timeseries prediction[J]. Neurocomputing,2008,71(4-6):519~537.
    [186] Zemouri R, Racoceanu D, Zerhouni N. Recurrent radial basis function network fortime-series prediction[J]. Engineering Applications of Artificial Intelligence,2003,16(5-6):453~463.
    [187] Mandal P, Senjyu T, Funabashi T. Neural networks approach to forecast several hour aheadelectricity prices and loads in deregulated market[J]. Energy Conversion and Management,2006,47(15-16):2128~2142.
    [188]缪燕子.多传感器信息融合理论及在矿井瓦斯突出预警系统中的应用研究[D].中国矿业大学,2009.
    [189] Vapnik Vladimir Naumovich.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [190]田英杰,邓乃扬.支持向量机-理论、算法与拓展[M].北京:科学出版社,2009.
    [191]熊杨.最小二乘支持向量机算法及应用研究[D].国防科学技术大学,2010.
    [192] Espinoza M, Suykens J A K. Structured Kernel Based Modeling An Exploration inShort-Term Load Forecasting[J]. Neurocomputing,2006,(3):2053~2058.
    [193] Guo X, Ma X. Mine water discharge prediction based on least squares support vectormachines[J]. Mining Science and Technology (China),2010,20(5):738~742.
    [194] Guo Z H, Zhao J, Zhang W Y, et al. A corrected hybrid approach for wind speed predictionin Hexi Corridor of China[J]. ENERGY,2011,36(3):1668~1679.
    [195]孙峰超.基于最小二乘支持向量机的非线性预测控制[D].中国石油大学,2010.
    [196] Suykens J A K, Gestel T V. Least Square Support Vector Machines[M]. K U. Leuven,Belgium: World Scientific,2002.
    [197]李娜,刘明光,杨恒等.基于贝叶斯置信框架的最小二乘支持向量机模型参数选择方法及SS-7型电力机车牵引电机建模[J].中国铁道科学,2009,30(06):61~66.
    [198] Van Gestel T, Suykens J A K, Baestaens D E, et al. Financial time series prediction usingleast squares support vector machines within the evidence framework[J]. IEEE Transactionson Neural Networks,2001,12(4):809~821.
    [199] Qiao M, Ma X, Tao H. Chaotic Time Series Prediction Based on Phase SpaceReconstruction and LSSVR Model [C].2011:3243~3247.
    [200]李晋,秦琳琳,吴刚等.基于加权最小二乘支持向量机的温室小气候建模与仿真[J].系统仿真学报,2008,20(16):4232~4236.
    [201]郭阳明,翟正军,姜红梅.基于新息的多参量混沌时间序列LS-SVR加权预测[J].西北工业大学学报,2009,27(1):83~87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700