石榴石A_3B_2C_3O_(12)系列晶体生长及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LD泵浦的全固态激光器(DPSSL)由于具有体积小、结构紧凑、使用寿命长以及转换效率高等特点使其广泛应用于军事、工业、医疗和科学研究等多个领域。激光增益介质作为固体激光器中最重要的组成部分,决定着固体激光器的发展趋势和应用前景。其中,Nd:YAG自从1964年报道以来,到目前为止已经成为应用最为广泛的一种激光增益介质,输出功率可达万瓦级。但Nd:YAG晶体也存在一些问题,例如Nd3+掺杂浓度不高,吸收峰较窄,泵浦效率较低等,限制了Nd:YAG晶体的应用范围,因此需要我们去探索其他的石榴石晶体来弥补这方面的不足。对于石榴石家族来说,它的化学式为A3B2C3O12,A对应十二面体位置,B对应八面体位置,C处于四面体位置,主要包括Gd3Ga5O12(GGG), Y3Ga5O12(YGG)、Lu3Ga5O12(LuGG)、La3Lu2Ga3O12(LLGG)、Y3Sc2Ga3o12(YSGG)、Gd3Sc2Ga3O12(GSGG)、Ca3(Nb,Ga)2Ga3012(CNGG)等。其中,由于LuGG晶体的高熔点和Ga2O3的挥发,过去对此晶体的研究多集中于闪烁性能方面,之前的报道证明了其具有与Nd:YAG一样优良的物化性能,因此我们认为Nd掺杂的LuGG应该也有与Nd:YAG晶体同样优异的激光性能。综上,我们在本文中系统的研究了该晶体的基本物理性能及激光性能,探索了它的激光应用前景。
     传统的石榴石晶体在短脉冲领域应用受到限制,主要是因为其窄的光谱带宽和大的发射截面。窄的光谱带宽会限制超短脉冲的产生,而大的发射截面则导致小的储能能力并影响其在调Q激光领域的应用。因此,人们将注意力转移到混晶上,这是由于混晶具有非均匀加宽的谱线,可以增加晶体的储能能力。先前的报道证明混晶在调Q和锁模方面要比单晶具有更好的优势,因此我们用Sc取代部分的Ga离子得到一种新的石榴石混晶—Lu3ScxGa5-xO12,并研究了此混合晶体的结构、物理性质以及激光性能等。另外,随着近年来InGaAs激光二极管在0.9到1.1μm发射波段范围的发展,Yb掺杂的激光材料由于其自身的低量子损耗,宽的吸收和发射带宽等特点使其很好的应用于超快激光、高功率以及可调谐激光器中。对于Yb掺杂的石榴石晶体,例如Yb:YAG、Yb:GGG,已经在可调谐连续以及飞秒激光器中被证明为很好的增益介质,但是到目前为止并未有对Yb:LuGG以及Yb:YGG晶体性能的详细报道。在本文中,我们对这两种激光晶体的性能及其在脉冲领域的应用前景都进行了详细的研究和分析。
     现阶段如何尽量减小热效应对激光晶体的影响,是目前激光器研究特别是高功率激光器研究的重要课题。为了获得高功率的激光输出,人们提出了复合晶体的概念。通过热键合等方法制备的复合晶体已经大大改善了激光的热性能和光束质量,有利于激光器的稳定及高功率运转。在本章中,我们首次创新性的提出采用光学浮区法制备石榴石复合晶体,并对此复合晶体的相关性能进行了研究。基于对这几方面的认识,本论文系统的表征了这几种石榴石晶体的性能,主要工作如下:
     一、晶体生长
     1、采用光学浮区生长炉,以[111]方向的YAG晶体为籽晶制备了一系列石榴石晶体,包括:Nd:Lu3ScxGa5-xO12(x=0、0.5、0.8、1、1.2、1.5), Nd:YGG, Yb:YGG和Yb:LuGG晶体等。探索了合适的晶体生长参数,并得到了高光学质量的石榴石晶体。
     2、介绍了晶体生长的设备及其制备过程,并对生长过程中可能出现的问题进行了分析;讨论了影响晶体质量的重要因素,包括生长气氛、料棒制作、晶体的转速和生长速度等。选择合理的生长参数(包括转速和拉速)是获得高质量单晶最重要的保证;氧气氛保护和退火步骤能够减少氧缺陷和消除热应力,有效改善晶体的质量;等径均匀、准直致密的料棒可以保证晶体生长过程中稳定的熔区,利于得到高质量晶体。
     二、基本物理性能
     1、首先研究了晶体的结构和组分。采用X射线粉末衍射仪测定了晶体的X-ray衍射谱,结果表明生长的晶体属于立方晶系和Ia3d空间群,并计算了相应的晶胞参数。对于Nd:Lu3ScxGa5-xO12晶体来说,由于Sc离子半径大于Ga离子,随着x的增大,晶格参数也是随之增大的。另外,通过X射线荧光分析确定了Nd:Lu3ScxGa5-xO12晶体中各个元素的有效分凝系数以及Yb离子分别在YGG和LuGG中的有效分凝系数。
     2、系统的研究了石榴石晶体的热学性质,包括比热、热膨胀、热扩散、热导率和热冲击常数等,以及这些性质随温度变化的规律。对于Nd:Lu3ScxGa5-xO12晶体,x值趋近于1时,晶体的热导率逐渐减小,这主要是由于晶体无序度的增大以及x=1时达到最大,从而影响了晶体的热性能。另外,Yb:YGG和Yb:LuGG晶体都具有较好的热学性质,热导率分别为3.97和4.94Wm-1K-1,有潜力应用在中高功率激光器中。
     3、室温下测定了Nd:Lu3ScxGa5-xO12系列晶体的吸收和发射光谱,并通过J-O理论计算了相应的光谱参数,包括吸收和发射面积,荧光寿命等,并讨论了x值变化对光谱参数的影响。其中,x趋向于1时,晶体的发射面积逐渐变小,而对应的荧光寿命则逐渐增大,证明其具有更好地储能能力。另外,此混晶相比于常用的Nd:YAG晶体,具有较大的吸收和发射谱线、小的发射截面以及长的荧光寿命等特点,证明其具有较好的泵浦吸收效率,而且在短脉冲激光器中也有很好的应用前景。
     4、室温下测定了Yb:YGG和Yb:LuGG两种晶体的吸收和发射光谱,并通过倒易法和F-L公式理论计算了相应的光谱参数,包括吸收和发射面积,荧光寿命等,相应的计算了晶体的有效增益截面。这两种晶体的最强吸收峰分别为971nm和924nm,最强发射峰分别为1024和1023nm。最强发射峰的发射面积分别为2.56和1.4×10-20cm2,荧光寿命分别为1.78和1.04ms。结果表明这两种晶体都具有宽的吸收和发射谱线,在超快和可调谐激光器中有着很好的应用前景。
     三、激光性能
     1、Nd:A3B2C3O12
     (1)研究了Nd:YGG晶体的连续和被动调Q激光性能。首先连续激光性能:在1.06μmm处获得了高功率的连续激光输出,最大的输出功率为7.15W,光光转换效率和斜率分别为50.7%和52.7%;其次被动调Q性能:当泵浦功率为11W时,得到的最短的脉冲宽度为3.1ns。通过重复频率和平均输出功率,我们可以计算最大的脉冲能量为153.8μJ,再结合脉冲宽度,计算得到的峰值功率为46.6kW。另外还测定了晶体的激光谱,发现Nd:YGG晶体可以实现三波长输出,分别为1062.1、1060.3和1058.9nm,频率分别为0.47THz、0.37THZ和0.85THz,能够在太赫兹领域有一定的应用前景。
     (2)研究了Nd:LuGG晶体的连续激光性能。当泵浦功率为5.2W时,阈值为1.37W,最大的平均输出功率为855mW,斜率和光光转换效率分别为23.42%和16.44%。如果进行腔优化和晶体镀膜,我们相信晶体的输出功率会有进一步的提高。根据光谱分析仪还测定了晶体的连续激光谱,中心波长位于1062nm。
     (3)研究了Nd:Lu3ScxGa5-xO12系列晶体的连续激光性能,并讨论了激光性能随x的变化规律,其中特别对Nd:Lu3Sc1.5Ga3.5O12的连续和调Q性能进行了系统的研究。对于Nd:Lu3Sc1.5Ga3.5O12,泵浦功率为21.9W时得到的最大输出功率为6.96W,光光转换效率达到31.8%。在被动调Q激光实验中,得到的最窄脉冲宽度为5.1ns、最大的脉冲能量为62.5μJ和最高的峰值功率约为12kW。另外,在泵浦功率高于2.27W时,实现了Nd:Lu3Sc1.5Ga3.5O12晶体的双波长激光输出,分别为1059nm和1061.5nm,这说明Nd:Lu3Sc1.5Ga3.5O12激光器有潜力应用于THz辐射激光源、泵浦探针、光聚焦以及遥感等领域。
     2、Yb:A3B2C3O12
     (1)研究了Yb:YGG晶体的连续和被动调Q激光性能。连续激光性能:当Pabs为9.93W时,最大的输出功率为6.75W,光光转换效率达到68%,另外当泵浦功率大于4.5W时,斜率可以达到85%。被动调Q性能:当T=30%,T0=85.0%时,得到最短的脉冲时间为5.9ns,最大的脉冲能量为140.8μJ和最高的峰值功率为28.6kW。
     (2)研究了Yb:LuGG晶体的连续和被动调Q激光性能。连续激光性能:当透过率为5%时,能够实现最有效的激光输出,吸收泵浦功率为10.5W时,得到最大的输出功率为5.36W,光光转换效率为51%,而泵浦功率位于3-9W时,斜率可以达到63%。被动调Q性能:当泵浦功率为9.05W时,脉冲能量为91μJ,脉冲持续时间为26ns,对应的峰值功率为3.5kW。另外,相比较于连续发射谱中的多峰,被动调Q的发射谱中只有一个波峰1034.5nm,表明此晶体的被动调Q进程可以用于激光选频。
     (3)研究了Yb:YGG(?)勺被动锁模激光性能。采用Z型腔和半导体可饱和吸收镜,对应中心波段1045nm处的FWHM带宽为5.8nm,得到的锁模脉冲时间为245fs,为目前报道的该晶体锁模激光实现的最短脉冲宽度。四、复合晶体
     发明了用光学浮区法生长复合晶体的方法,采用此方法生长得到了高质量的Nd:YGG复合晶体。对得到的晶体进行了加工和测试,通过SEM-EDS测定了多段复合晶体的浓度浓度分布,结果表明此复合晶体的浓度分布呈现规律性变化。此外,我们还比较了三种不同长度的两段复合晶体的激光性能,当T=10%时,激光性能分别为:9mm,最大的输出功率为4.1W,光光转换效率为39.5%;8mm,最大的输出功率为3.3W,光光转换效率为30%;7mm,最大的输出功率为3.42W,光光转换效率为28%。因此,9mm长的复合晶体相比于其他两块短晶体具有更好的激光性能。此外,当吸收泵浦功率达到8W时,7mm长的复合晶体的激光转换斜率开始呈现下降趋势,而9mm长的复合晶体则在吸收泵浦功率达到12W时尚未出现下降的趋势。这说明此复合晶体中未掺杂的部分增大了晶体的制冷面积,有效的改善热效应,保证了激光转换效率,这也证明了光学浮区法是一种有效的生长复合晶体的方法。
Laser-diode (LD) pumped solid-state lasers have been found a wide variety of applications in the field of military, industry, medical treatment and scientific research due to their small volume, compactness, long lifetime and high conversion efficiency. As an important part of solid-state lasers, the laser material is the key factor that determines the development trend and application prospect of lasers. As the most important representative of garnet crystals, Nd-doped YAG has been one of the most widely used laser crystals and output power has reached tens of kilowatts since it was reported in1964. However, Nd:YAG crystal exists some problems, such as lower Nd3+-doped concentration and concentration quenching effect at high doped concentration. In addition, this crystal possesses narrow absorption spectrum, which leads to low pump efficiency. The above problems have limited the application fields of Nd:YAG crystal, which lead us to explore other garnet crystals to cover the shortage. The garnet family crystals have the formula of A3B2C3O12, where A is the dodecahedral site, B is the octahedral site, and C is the tetrahedral site, which contains many kinds of crystals, such as Gd3Ga5O12(GGG), Y3Ga5O12(YGG), Lu3Ga5O12(LuGG), La3Lu2Ga3O12(LLGG), Y3Sc2Ga3O12(YSGG), Gd3Sc2Ga3O12(GSGG), Ca3(Nb,Ga)2Ga3O12(CNGG) and so on. Among them, due to the high melting point and volatilization of Ga2O3, previous reports on LuGG crystal have focused on its scintillation properties, which has demonstrate that it has excellent physical and chemical properties as Nd:YAG. Therefore, we believe that Nd doped LuGG should have the similar outstanding laser performance as Nd:YAG crystal. In conclusion, in this article we systemically studied the basic physical and laser properties of the crystal, and explored its applications prospect on lasers.
     Traditional garnet crystals applied in the field of short pulse are restricted, which were mainly induced by their narrow spectral bandwidths and large emission cross sections. Narrow spectra bands are gone against the generation of ultra-short pulse and the large cross-sections induce their relatively small energy storage capacities that have constrained their application in the Q-switching operation regime. In recent years, it was found that the mixed crystals can induce the variation of their crystals field and the inhomogeneously broadened spectra, which could increase the energy storage capacity. Previous reports have indicated that such mixed crystals possessed more excellent Q-switching and mode-locking performance than single crystals. With Sc ions replacing some of the Ga ions in Nd:LuGG, a new class of Nd-doped mixed garnet Nd:Lu3ScxGa5-xO12crystals can be formed and their structure, physical and laser properties were systemically studied. In recent years, interest in Yb3+-doped materials for application in high-efficiency and high-power diode pumped laser systems has increased due to the advances in high performance InGaAs laser diodes over the wavelength range between0.9and1.1μm. The Yb ion has many advantages:low quantum defect, broad absorption and emission bandwidth, weak concentration quenching, and no excited state absorption, making it attractive in generating ultrashort pulses and in high-power or tunable laser applications. As for Yb-dopd garnet crystals, Yb:YAG and Yb:GGG crystals have been indicated to be good laser gain medium and shown promising application in the tunable continue-wave and ultrafast pulse field. However, up to now, the properties of Yb:LuGG and Yb:YGG crystals have not been studied systemically. In this text, we have studied and analyzed their properties and promising applications in pulse field.
     In recent years, how to decrease the thermal effect on laser crystals is the important research topic, specially the high power lasers. Owning to achieve the laser output of "three highs", people have put forward the concept of composite crystal. The composite crystals produced by thermal bonding method have been greatly improved the laser performance and beam quality, and possess more advantageous for the laser stability and high power laser operation. In this text, we have produced the composite crystals by optical floating-zone method and studied their properties. Based on the understanding of these aspects, this paper systemically charactered the all kinds of properties of several garnet crystals and the main works are as following:
     1. Crystal growth
     (1) The series of garnet crystals were grown by imported optical floating-zone furnace and the oritentation [111] YAG crystal was used as seed. As-grown crystals are including Nd:Lu3ScxGa5-xO12(x=0,0.5,0.8,1,1.2,1.5), Nd:YGG, Yb:YGG and Yb:LuGG. In addition, we also studied the detail growth parameters and obtained the high optical quality garnet crystals.
     (2) We introduced the growth equipment and detail growth procedure, and analyzed the problems in the growth procedure. In addition, we also discussed the effect factor of crystal quality, such as the growth atmosphere, fabricate the feed rod, crystal rotation and growth rate, which have played the crucial role in the growth procedure. Among these factors, the most important factor is the proper growth parameters (including rotation and growth rate); the O2atmosphere and annealing can be able to improve the crystal quality, decrease the oxygen vacancy and remove the thermal stress; the same diameter and compact rod can ensure the stable melting-zone; the above reasons are prone to obtain the high quality crystals.
     2. Basic physical properties
     (1) We have studied the crystal structure and component. The X-ray diffraction spectra were measured by the X-ray power diffraction equipment and have revealed that as-grown crystals belong to cubic system with Iα3d space group and calculated their lattice constants. As for Nd:Lu3ScxGa5-xO12, due to the ionic radies of Sc is larger than Ga ion, so the lattice parameters of series crystals increase with the increasing x. X-ray fluorescence analysis has determined the effective segregation coefficient of elements in Nd:Lu3ScxGa5-xO12and Yb ion in YGG and LuGG crystals.
     (2) We have studied the thermal properties of crystals systemically and reported the thermal properties for the first time, such as specific heat, thermal expansion, thermal diffusion, thermal conductivity and thermal shock parameters, and analyzed their changes with temperature. As for the Nd:Lu3ScxGa5-xO12, the thermal conductivities of series crystals decrease gradually when the x tends to1, since the crystal disorder achieves the maximum with the x=1, which influence the thermal properties of crystals. In addition, as for Yb:YGG and Yb:LuGG, they possess the good thermal proeprties, and the thermal conductivities are3.97and4.94Wm-1K-1,respectively, which shows that they should have potential to apply for medium or high power lasers.
     (3) We have measured the absorption and emission spectra of Nd:Lu3ScxGa5-xO12series crystals at room temperature. In addition, we also calculated the spectra parameters by J-O theory, such as absorption and emission cross-section, fluorescence lifetime and so on. Furthermore, we also discussed the different spectra parameters of the series crystals as a function of x value. When the x tends to1, the emission cross-sections are decreased and the fluorescence lifetimes are increased gradually, which has shown the better storage capacity. Compared to the commerically used Nd:YAG crystals, these series crystals possess the broad absorption and emission spectra lines, small emission cross-section and long lifetime have proved that these crystals possess the promising application prospect in short-pulse lasers.
     (4) As for Yb-doped garnet crystals, we measured the absorption and flourescence spectra at room temperature and calculated the spectra parameters by reciprocity method and F-L formula, including the absorption and emission cross-sections, fluorescence lifetime et al. The highest absorption peaks of two crystals are located at971nm and924nm, respectively. In addition, the strongest emission peaks are1024nm and1023nm with the emission cross-sections of2.56and1.4×10-20cm2, respectively. We also measured the fluorescence lifetime and the results are1.78and1.04ms, respectively. The results have revealed that the two crystals possess the broad absorption and emission spectra bandwidths, which proved that these crystals have promising application in ultrafast and tunable lasers.
     3. Laser performance
     Nd:A3B2C3O12
     (1) The cw and passively Q-switched Nd:YGG lasers at about1.06μm were demonstrated with an LD as the pump source for the first time, to our knowledge. Cw laser performance:the maximum output power of7.15W at1.06μm was obtained with a slope efficiency of52.7%and optical-to-optical efficiency of50.7%. Passive Q-switching laser performance:the shortest pulse duration of3.1ns was obtained under the pump power of11W. According to the repetation frequency and output power, the maximum pulse energy was calculated to be153.8μJ. Then, according to the pulse energy and pulse duration, the peak power was calculated to be46.4kW. The laser spectrum was measured and found this crystal can be achieved three wavelengths output. The three wavelengths are1062.1,1060.3and1058.9nm, and the frequencies are0.47THz,0.37THz and0.85THz, respectively, which can be applied in THz field.
     (2) The cw laser performance of Nd:LuGG was studied. When the pump power was5.2W, the threshold was1.37W, maximum average output power was855mW, slope and optical-to-optical efficiency were23.42%and16.44%, respectively. The laser spectrum was measured by spectrum analyzer and found that the centre wavelength is located at1062nm. We believed that the output power should be improved when the cavity is optimized and the crystal was coated.
     (3) The cw laser performance of Nd:Lu3ScxGa5-xO12series crystals has been studied and the change with the increase of x value was discussed. Among them, we have specially studied the cw and Q-switching properties of Nd:Lu3Sc1.5Ga3.5O12. As for Nd:Lu3Sc1.5Ga3.5O12, under the pump power of21.9W, the maximum output power of6.96W was obtained with the optical to optical efficiency of31.8%. In the Q-switching operation, the shortest pulse duration is about5.1ns, the maximum pulse energy is62.5μJ and the peak power is about12kW. In addition, Nd:Lu3Sc1.5Ga3.5O12can be achieved the dual-wavelengths output that are1058nm and1061.5nm when the pump power is larger than2.27W. The result shows that this dualwavelength laser may be used as a laser source for the generation of THz radiation, pump-probe experiments, optical beating, and remote sensing.
     Yb:A3B2C3O12
     (1) The cw and Q-switching laser performance has been investigated. Cw laser performance:when the pump power is9.93W, the maximum output power is6.75W with the optical-to-optical efficiency of68%. In addition, when the pump power is larger than4.5W, the slope efficiency is achieved to be85%. Q-switching laser performance:when the transmission rate is about30%and To is85%, the pulse duration is changed to be5.9ns, pulse energy is140.8μJ and peak power is28.6kW.
     (2) The cw and Q-switching laser performance of Yb:LuGG crystal has been systemically investigated。Cw laser performance:when the transmission rate is5%, it can be achieved the best laser performance. When the absorbed pump power increased to10.5W, the maximum output power is5.36W with the optical-to-optical efficiency of51%。Furthermore, with the pump power at3to9W, the slope efficiency is up to63%。Q-switching laser performance:when the pump power is9.05W, the pulse duration of26ns and peak power of3.5kW are obtained. In addition, compared to cw laser, the emission spectrum of passive Q-switching has only one wavelength-1034.5nm, it can be concluded that the passive Q-switching process also plays a role in the discrimination of oscillating wavelengths.
     (3) The passive mode-locking laser performance of Yb:YGG has been investigated. With a Z-fold cavity and SESAM, as a result, the laser occurred at the central wavelength of1045nm and FWHM is about5.8nm, the pulse duration of245fs is obtained, which is the shortest pulse width with this crystal reported up to now.
     4-. Composite crystals
     We have invented the optical floating zone method to grow the composite crystals, and obtained the high quality Nd:YGG composite crystals by this method. The Nd:YGG composite crystals, including two, three and multi-segmented, were successfully grown by optical floating-zone method for the first time. As-grown crystals possess the good quality, obvious sections and were cut into samples for measurement. The concentration gradient distribution was investigated by SEM-EDS and the result shows that the concentration gradient distribution of multi-segmented composite crystal changes regularly. In addition, we also compared the laser performance of two segmented copmposite crystals at three different lengthes. When T=10%, cw laser performance:9mm, the maximum output power is4.1W with the optical-optical conversion efficiency of39.5%;8mm, the maximum output power is3.3W with the optical-optical conversion efficiency of30%;7mm, the maximum output power of3.42W with the optical-optical conversion efficiency of28%. Therefore,9mm length composite crystal has better performance than that of other two short crystals. In addition, the conversion efficiency of7mm length composite crystal laser began to decline under the absorbed pump power of8W, while9mm length composite crystal has not yet to appear the declining trend when the absorbed pump power is12W. The above results show that the pure part of composite crystal could increase the cooling area and improve the thermal effect, ensuring the laser conversion efficiency, which is proved that the optical floating zone method is an effective method to grow the composite crystals.
引文
[1]A. Einstein, Verhandl. Dtsch. Phys. Ges.18 (1916) 318-323.
    [2]V. A. FABRIKANT, Investigations in Experimental and Theoretical Physics, (1940) 62-70.
    [3]F. Bloch, R.I. Condit, H.H. Staub, Phys. Rev.70 (1946) 972-973.
    [4]E.M. Purcell, R.V. Pound, Phys. Rev.81 (1951) 279-280.
    [5]A. Kastler, J. Phys. Radium 11 (1950) 255.
    [6]A.L. Schawlow and C.H. Townes, Phys. Rev.82 (1951) 268-269.
    [8]T. H. Maiman, Nature 187 (1960) 493-494.
    [9]仲伟纲,丰建淑,《物理》31(2002)676-681.
    [10]W.克希耐尔,固体激光工程,科学出版社(2002).
    [11]T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, Appl. Phys. Lett.1 (1962) 91-92.
    [12]F.P.舍费尔,染料激光器,北京出版社(1987).
    [13]D. Moses, Appl. Phys. Lett.60 (1992) 3215-3216.
    [14]N.D. Kumar, J.D. Bhawalkar, P.N. Prasad, F.E. Karasz, B. Hu, Appl. Phys. Lett. 71(1997)999-1001
    [15]Y. Yang, G.A. Turnbull, I.D.W. Samuel, Appl. Phys. Lett.92 (2008) 163306 1-3.
    [16]M.C. Gather, S.H. Yun, Nature Photon.5 (2011) 406-410.
    [17]R. Newman, J. Appl. Phys.34 (1963) 437.
    [18]石自彬,山东大学硕士毕业论文(2009).
    [19]Brian M. Walsh, Norman P. Barnes, Ralph L. Hutcheson, Randy W. Equall and Baldassare Di Bartolo, J. Opt. Soc. Am. B 15 (1998) 2794.
    [20]A.P. Patel, M.R. Levy, R.W. Grimes, et al. Appl. Phys. Lett.93 (2008) 191902 1-3.
    [21]K. Mori, K. Sugibuchi, K. Shiboki, J. Appl. Phys.11 (1972) 764.
    [22]A.A. Kaminskii, G.A. Bogomovola, D.N. Vylegzhanin, K.S. Bagdasarov, A.M. Kevorkov, M.M, Gritsenko, Phys. Status Solidi A 38 (1976) 409.
    [23]J.R. Carruthers, M. Kokta, R.L. Barns, M. Grasso, J. Cryst. Growth 19 (1973) 204.
    [24]Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda and G Boulon, Opt. Mater.27 (2005) 1658.
    [25]B.X. Jiang, Z.W. Zhao, X.D, Xu, P.X. Song, X.D. Wang, J. Xu, P.Z. Deng, Opt. Mater.29 (2007) 1188.
    [26]M.I. Demchuk, N.V. Kuleshov, V.P. Mikahailov, IEEE J. Quantum Electron.30 (1994)2120.
    [27]B.R. Reddy, S.K. Nash-Stevenson, J. Appl. Phys.76 (1994) 3896.
    [28]A. Diening, S. Kuck, J. Appl. Phys.87 (2000) 4063.
    [29]V.J. Pugh, F.S. Richardson, J.B. Gruber, M.D. Seltzer, J. Phys. Chem. Solids 58 (1997)85.
    [30]F. Ramos, H. Loro, E. Camarillo, J. GarcaSole, A.A. Kaminskii, U. Caldino, Opt. Mater.12(1999)93.
    [31]J.E. Geusic, H.M. Marcos, and L.G.V. Uitert, Appl. Phys. Lett.4 (1964) 182-184.
    [32]T.Y. Fan and R.L. Byer, IEEE J. Quantum Electron.23 (1987) 605.
    [33]Y.F. Lu, J. Xia, W.B. Cheng, J.F. Chen, G.B. Ning, and Z.L. Liang, Opt. Lett.35 (2010)3670.
    [34]雷小丽,孙玲,刘洋,唐晓军,刘磊,激光与红外,(2011)948-952.
    [35]J.J. Zayhowski and C. Dill Ⅲ, Opt. Lett.19 (1994) 1427.
    [36]U. Keller, Nature 424 (2003) 831-838.
    [37]U. Simon, S. Waltman, I. Loa, F.K. Tittel, L. Hollberg, J. Opt. Soc. Am. B 12 (1995) 323-327.
    [38]张乐潓,人工晶体学报,2(1985)110-117.
    [39]Keszei B, Pairz J, Vandlik J et al, J. Cryst. Growth 228 (2001) 95-100.
    [40]W.F. Krupke, Opt. Commun.12 (1974) 210-212.
    [41]X.Z. Xu, Y.X. Gui, Y.G. Wang, Laser & Infrared 37 (2007) 295-299.
    [42]H. Lundt, H. Weidner, H. Fussstetter, R.A. Huber, and R. Ifflander,1988 Intl Congress on Optical Science and Engineering. International Society for Optics and Photonics,1989.
    [43]H. B. Puell and U. Wostenbrink, Proc. SPIE 1021, High Power Solid State Lasers, 51(1989)51-54.
    [44]孙敦陆,张庆礼,王召兵,邵淑芳,谷长江,王爱华,苏静,江海河,张霞,殷绍唐,量子电子学报,22(2005)570-573.
    [45]W.F. Kruple, M.D. Shinn, J.E. Marion, J. Opt. Soc. Am. B 3 (1986) 102-113.
    [46]A.A. Kaminskii and Kh.S. Bagdasarov, Phys. Status Solidi 34 (1976) 109-114.
    [47]B. Struve and G. Huber, Appl. Phys. B 28 (1982) 235-236.
    [48]S.E. Stokowski, IEEE J Quantum Electronics 24 (1988) 934-948.
    [49]H.J. Eichler and Liu B, Opt. Mater.1 (1992) 21-25.
    [50]N.W. Longbotham, "Experimental characterization of Cr4+:YAG passively Q-switched Cr:Nd:GSGG lasers and comparison with a simple rate equation model" PhD thesis, University of New Mexico, (2008).
    [51]V. Lupei, A. Lupei, C. Gheorghe, A. Ikesue, J. Lumin.128 (2008) 885-887.
    [52]D Sun, J Luo, Q Zhang, J Xiao, W Liu, S Wang, J. Cryst. Growth,318 (2011) 669-673.
    [53]D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. T. Yin, Chin. Phys. Lett.29 (2012) 054209.
    [54]A. Hu, Q. Guo, S. Wang, et al. Infrared and Laser Engineering,5 (2012) 41.
    [55]D. Sun, J. Luo, Q. Zhang, J. Xiao, J. Xu and H. Jiang, J. Lumin.128 (2008) 1886-1889.
    [56]D. L. Sun, J. Q. Luo, J. Z.Xiao, Q. L. Zhang, H. H. Jiang, S. T. Yin, and X. W. Ge, Appl. Phy. B 92 (2008) 529-533.
    [57]D. P. Bour, D. B. Gilbert, K. B. Fabian, IEEE Photon. Technol. Lett.2 (1990) 173-174.
    [58]R. Pappalardo and D.L. Wood, J. Chem. Phys.33 (1960) 1731494.
    [59]於海武,段文涛,徐美健,蒋新颖,激光与光电子学进展,44(2007)30-41.
    [60]L.E. Johnson, J.E. Geusic, and L.G. Van Uiten, Appl. Phys. Lett.7 (1965) 127-130.
    [61]P. Lacovara, H.K. Choi, C.A. Wang, Opt. Lett.16 (1991) 1089-1091.
    [62]D. Harvilla, and R. Brockmann, Proc. SPIE 7578 (2010) 75780C1-11.
    [63]Q. Liu, M.L. Gong, F.Y. Lu, Appl. Phys. Lett.88 (2006) 101-113.
    [64]A. Giesen, J. Speiser, R. Peters, Photonics Spectrum, (2007) 52-58.
    [65]F. Druon, F. Balembois, and P.C.R. Georges, Phys.8 (2007)153-164。
    [66]P. Russbueldt, T. Mans, H.D. Hoffmann, R. Poprawe, Proc. of SPIE.7912 (2011) 79120R1-6.
    [67]O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. Amann, A. Apolonskiy, V. Kalashnikov, and F. Krausz, Opt. Lett.36 (2011) 4746-4748.
    [68]S. Uemura and K. Torizuka, Jpn. J. Appl. Phys.50 (2011) 010201.
    [69]X. Delen, Y. Zaouter, Ⅰ. Martial, et al. Opt. Lett.38 (2013) 109-111.
    [70]U. Brauch, A. Giesen, M. Karszewski, et al. Opt. Lett.20 (1995) 713-715.
    [71]J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, Advanced Solid-State Lasers, Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America,2000), p.106.
    [72]S. Nakamura, H. Yoshioka, and Y. Matsubara, Opt. Commun.281 (2008) 4411-4414.
    [73]S. Nakamura, Frontiers in Guided Wave Optics and Optoelectronics, ISBN 978-953-7619-82-4,513-528 (2010).
    [74]A. Agnesi, A. Greborio, F. Pirzio, et al. Opt. Commun.284 (2011) 4049-4051.
    [75]M. Rumpel, A. Voss, M. Moeller, F. Habel, C. Moormann, M. Schacht, T. Graf, M.A. Ahmed, Opt. Lett.37 (2012) 4188-4190.
    [76]B.B. Zhou, Z.Y. Wei, D.H. Li, H. Teng, and G.L. Bourdet, Chin. Phys. Lett.26 (2009) 054208.
    [77]A. Giesen, J. Speiser, IEEE Select. Top. Quantum Electron 13 (2007) 598-608.
    [78]K. Binnemans, K.V. Herck, C.G. Walrand. Chem. Phys. Lett.266 (1997) 297-302.
    [79]S. Heer, M. Wermuth, K. Kramer, H.U. Gudel, Phys. Rev. B 65 (2002) 125112.
    [80]G. Shirinyan, K.L. Ovanesyan, A. Eganyan, A.G. Petrosyan, C. Pedrini, C Dujardin, I. Kamenskikh, N. Guerassimova, Nucl. Instrum. Methods A 537 (2005) 134.
    [81]A. Novoselov and A. Yoshikawa, J. Cryst. Growth 292 (2006) 236.
    [82]S.G.P. Strohmaier, H.J. Eichler, C. Czeranowsky,B. Ileri, K. Petermann, G. Huber, Opt. Commun.275 (2007) 170-172.
    [83]X.M. Liu, L. Zhu, L.L. Wang, C.C. Yu, J. Lin, and J. Electrochem. Soc.155,21 (2008).
    [84]W.P. Liu, Q.L. Zhang, L.H. Ding, D.L. Sun, J. Xiao, S.T. Yin, Phys. B:Condens. Matter 403 (2008) 3403.
    [85]A. Yamaji, T. Yanagida, Y. Yokota, Y. Fujimoto, M. Sugiyama, A. Yoshikawa, Nuclear Science Symposium Conference Record (NSS/MIC), IEEE. (2010) 179-181.
    [86]V. Venkatramu, S.F.L. Luis, A.D. Lozano-Gorrin, L.Jyothi, P. Babu, U. R. Rodriguez-Mendoza, C.K. Jayasankar, J.E. Munoz-Santiuste, V. Lavin, Journal of Nanoscience and Nanotechnology 12 (2012) 4495-4501.
    [87]E.V. Zharikov, A.I. Zagumennyi, G.B. Lutts, V.A. Smirnov, I.T. Sorokina, and I. A. Shcherbakov, Laser Phys.1 (1991) 216.
    [88]M.H. Ober, E. Sorokin, I. Sorokina, F. Krausz, E. Wintner, and I.A. Shcherbakov, Opt. Lett.17 (1992) 1364-1366.
    [89]E. Sorokin, M.H. Ober, I.Sorokina, E. Wintner, A.I. Zagumennyi, A.J. Schmidt, G. B. Loutts, E.W. Zharikov, and I. A. Shcherbakov, J. Opt. Soc. Am. B 10 (1993) 1436-1442.
    [90]H. Okada, M. Tanaka, H. Kiriyama, Y. Nakai, Y. Ochi, A. Sugiyama, H. Daido, T. Kimura, T. Yanagitani, H. Yagi, and N. Meichin, Opt. Lett.35 (2010) 3048-3050.
    [91]J.Q. Di, X.D. Xu, D.Z. Li, D.H. Zhou, F. Wu, Z.W. Zhao, J. Xu, Laser Physics, 21(2011) 1742-1744.
    [92]B.Y. Zhang, J.L. Xu, G.J. Wang, J.L. He, W.J. Wang, Q.L. Zhang, S.T. Yin, Laser Phys. Lett.8 (2011) 787-790.
    [93]Z.T. Jia, B.T. Zhang, Y.B. Li, et al. Laser Phys. Lett.9 (2012) 20-25.
    [94]H.Yang, X.W. Fu, Z.T.Jia, J.L. He, X.Q. Yang, B.T. Zhang, Y. Yang, Laser Phys. Lett.9 (2012) 704.
    [95]K. Zhong, C. Sun, J. Yao, D. Xu, X. Xie, X. Cao, Q. Zhang, Quantum Electron. IEEE 49 (2013) 375-379.
    [96]A. Agnesi, S. Dell'Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, IEEE J. Quantum Electron.37 (2001) 304.
    [97]石自彬,山东大学硕士学位论文,2009.
    [98]G. Q. Xie, L. J. Qian, P. Yuan, D. Y. Tang, W. D. Tan, H. H. Yu, H. J. Zhang, and J. Y. Wang, Laser Phys. Lett.7 (2010) 483.
    [99]J. Liu, Y. Wan, Z. Zhou, X. Tian, W. Han, H. Zhang, Appl. Phys. B:Lasers and Opt.109(2012)183-188.
    [100]J.L. Xu, S.Y. Guo, J.L. He, B.Y. Zhang, Y. Yang, H. Yang, S.D. Liu, Appl. Phys. B:Lasers and Opt.107 (2012) 53-58
    [101]A.A. Kaminskii, G. Boulon, M. Buoncristiani, B. Dibartolo, A, Kornienko, V. Mironov, Phys. Stat. Sol. A 141 (1994) 471.
    [102]王静雅,王晓丹,赵志伟,徐军,G. Bourdet, J.C. Chanteloup,光学学报,28(2008)316-320.
    [103]E.C. Honea, R.J. Beach, and S.B. Sutton, IEEE J. Quantum Electron.33 (1997) 1592-1560.
    [104]D. Kracht, R. Wilhelm, M. Frede, K. Dupre, L, Ackermann, Opt. Express 25 (2005) 10140-10144.
    [105]B. Chen, Y. Chen, M. Bass, IEEE J. Quantum Electron.42 (2006) 483-488.
    [106]X. Li, X. Yu, J. Gao, J. Peng, F. Chen, J. Yu, and D. Chen, Laser Phys. Lett.5 (2008) 429.
    [107]D.Y. Chen, X.D. Li, Y. Zhang, X. Yu, F. Chen, R.P. Yan, Y.F. Ma, C. Wang, Laser Phys. Lett.8 (2011) 46-49.
    [108]Z. Zhuo, T. Li, S.G. Li, B. Zhao, J.Z. Chen, S.S. Li, Laser Phys. Lett.6 (2009) 445-449.
    [109]徐民,山东大学博士毕业论文(2011).
    [110]S. Joly and T. Taira, in Proceedings of the European Conference on Lasers and Electro-Optics, CA.8.1, Munich, Germany, May 22-26 (2011).
    [111]C. Du, Y. Guo, Y. Yu, G. Huang, S. Ruan, Laser Phys. Lett.10 (2012) 055802.
    [112]张克从,张乐潓,晶体生长科学与技术(第二版)上册,科学出版社(1997).
    [113]P.H. Keek and M.J.E. Golay, Phys. Rev.89 (1953) 1297.
    [114]M. Kitamura, N. Usami, and T. Sugawara, J. Cryst. Growth 280 (2005) 419.
    [115]T.P. Lyubimova, R.V. Skuridin, and I.S. Faizrakhmanova, J. Cryst. Growth 303 (2007) 274.
    [116]N. Usami, M. Kitamura, K. Obara, J. Cryst. Growth 284 (2005) 57.
    [117]T. Sekijima, H. Satoh, K. Tahara, J. Cryst. Growth 193 (1998) 446.
    [1]S.M. Koohpayeh, D. Fort, J.S. Abell, Prog. Cryst. Growth Charact. Mater.54 (2008) 121.
    [2]A. Croll, M. Schweizer, A. Tegetmeier, K.W. Benz, J. Cryst. Growth 166 (1995) 239.
    [3]T. Fujii, T. Watanabe, and A. Matsuda, J. Cryst. Growth 223 (2001) 175.
    [4]R.A. Lefever, G.W. Clark, Rev. Sci. Instrum.33 (1962) 769.
    [1]L. Pauling, J. Am. Chem. Soc.51 (1929) 1010.
    [2]W. Hume-Rothery, R.W. Smallman, C.W. Haworth, The Structure of Metals and Alloys, The Institute of Metals, London,1969.
    [3]T.H. Allik, C.A. Morrison, J.B. Gruber, M.R. Kokta, Phys. Rev. B 41 (1990) 21.
    [4]L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang,H. R. Xia, P. Zhao, and G. Zheng, Cryst. Res. Technol.38 (2003) 793.
    [5]W. Koechner. Appl. Opt.9 (1970) 2548.
    [6]W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E.Stokowski, J. Opt. Soc. Am. B 3 (1986) 102.
    [7]J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, J. Appl. Phys.108 (2010) 123108.
    [8]K. Naito, A. Yokotani, T. Sasaki, T. Okuyama, M. Yamanaka, M. Nakatsuka, S. Nakai, T. Fukuda, M.I. Timoshechkin, Appl. Opt.32 (1993) 7387.
    [9]A.A. Demidovich, A.P. Shkadarevich, M.B. Dansilov, Appl. Phys. B 1998,67,11.
    [10]B.R. Judd, Phys. Rev.127 (1962) 750.
    [11]G.S. Ofelt, J. Chem. Phys.37 (1962) 511.
    [12]孙敦陆,张庆礼,王召兵,邵淑芳,谷氏江,王爱华,苏静,江海河,张霞,殷绍唐,量子电子学报,22(2005)570-573.
    [13]R.D. Peacock, Structure and Bonding, Springer-Verlag, New York,1975.
    [14]A. Kaminskii, Laser Crystals,2nd ed. Springer-Verlag, Berlin,1990.
    [15]A.A. Kaminskii, G. Boulon, M. Buoncristiani, B. Dibartolo, A. Kornienko, V. Mironov, Phys. Stat. Sol. A 141 (1994) 471.
    [16]W.F. Krupke, IEEE J. Sel. Top. Quantum Electron.7 (1971) 153.
    [1]X.D. Xu, Z.W. Zhao, J. Xu, and P.Z. Deng, Solid State Commun.130 (2004) 529.
    [2]T.Y. Fan, D.J. Ripin, R.L. Aggarwal, J.R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, IEEE J. Sel. Topics Quantum Electron.13 (2007) 448.
    [3]L.J. Qin, X.L. Meng, H.Y. Shen, L. Zhu, B.C. Xu, L.X. Huang, H.R. Xia, P. Zhao, and G. Zheng, Cryst. Res. Technol.38 (2003) 793.
    [4]W. Koechner, Appl. Opt.9 (1970) 2548.
    [5]W.M. Koechner, Solid State Laser Engineering 2nd ed (Springer,1988).
    [6]R.L. Aggarwal, D.J. Ripin, J.R. Ochoa, and T.Y. Fan, J. Appl. Phys.98 (2005) 103514.
    [7]R. Gaume, B. Viana, D. Vivien, J.P. Roger, and D. Fournier, Appl. Phys. Lett.83 (2003)1355.
    [8]W.F. Krupke, M.D. Shinn, J.E. Marion, J.A. Caird, and S.E.Stokowski, J. Opt. Soc. Am. B 3 (1986) 102.
    [9]J. Petit, B. Viana, P. Goldner, J.P. Roger, and D. Fournier, J. Appl. Phys.108 (2010) 123108.
    [10]S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, andG. Boulon, Opt. Mater.22 (2003) 99.
    [11]X.Y. Zhang, A. Brenier, Q.P. Wang, Z.P. Wang, J. Chang, P. Li,S.J. Zhang, S.H. Ding, and S.T. Li, Opt. Express 13 (2005) 7708.
    [12]A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Rodenas, D. Jaque, A. Eganyan, and A.G. Petrosyan, J. Opt. Soc. Am. B 23 (2006) 676.
    [13]J. Dong, M. Bass, Y.L. Mao, P.Z. Deng, and F,X. Gan, J. Opt. Soc. Am. B 20 (2003)1975.
    [14]L.D. DeLoach, S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, and W.F. Krupke, IEEE J. Quantum Electron.29 (1993) 1179.
    [15]H.W. Bruesselbach, D.S. Sumida, R.A. Reeder, and R.W. Byren, IEEE J. Quantum Electron.3 (1997) 105.
    [16]G.J. Zhao, X.D. Xu, H.J. Li, J. Xu, Z.W. Zhao, X.M. He, H.Y. Pang, M.Y. Jie, and C.F. Yan, J. Cryst. Growth 274 (2005) 106.
    [17]J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, Opt. Express 18 (2010) 16035.
    [18]H. Kuhn, S.T. Fredrich-Thornton, C. Krankel, R. Peters, and K.Petermann, Opt. Lett.32 (2007) 1908.
    [19]B.F. Aull and H.P. Jenssen, IEEE J. Quantum Electron.18 (1982) 925.
    [20]J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, Opt. Lett.31 (2006) 2580.
    [21]P. Haumesser, R. Gaume, B. Viana, and D. Vivien, J. Opt. Soc. Am. B 19 (2002) 2365.
    [22]F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaume,G.P. Aka, B. Viana, S. Mohr, and D. Kopf, Opt. Lett.27 (2002) 197.
    [23]R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley VCH,2008).
    [24]S. Chenais, F. Balembois, F. Druon, G.L. Leclin, and P. Georges, IEEE J. Quantum Electron.40 (2004) 1217.
    [1]A. A. Kaminskii, G. Boulon, M. Buoncristiani, B. Dibartolo, A. Kornienko, and V. Mironov, Phys. Status Solidi, A Appl. Res.141 (1994) 471.
    [2]蔡履中,王成彦,周玉芳,光学,山东大学出版社,2002.
    [3]J. Dong and K. Lu, Phys. Rev. B 43 (1991) 8808.
    [4]D. Findlay, R.A. Clay, Phys. Lett.20 (1966) 277.
    [5]J. J. Zayhowski and C. Dill Ⅲ, Opt. Lett.19 (1994) 1427.
    [6]U.O. Farrukh, A. M. Buoncristiani, and C. E. Byvik, IEEE J. Quantum Electron. 24(1988)2253.
    [1]W. F. Krupke, IEEE J. Sel. Top. Quantum Electron.6 (2000) 1287.
    [2]P. Lacovara, H. K. Choi, C. A. Wang, R.L. Aggarwal, and T.Y. Fan, Opt. Lett.16 (1991) 1089.
    [3]J. Ye, L. S. Ma, and J. L. Hall, J. Opt. Soc. Am. B 17 (2000) 927.
    [4]T. Y. Fan, S. Klunk, and G. Henein, Opt. Lett.18 (1993) 423.
    [5]J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, Opt. Express 18 (2010) 16035.
    [6]O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C.Amann, V. L Kalashnikov, A. Apolonski, and F. Krausz, Opt. Lett.36 (2011) 4746.
    [7]S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, andG. Boulon, Opt. Mater.22 (2003) 99.
    [8]X. Y. Zhang, A. Brenier, Q. P. Wang, Z. P. Wang, J. Chang, P. Li,S. J. Zhang, S. H. Ding, and S. T. Li, Opt. Express 13 (2005) 7708.
    [9]J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, Opt. Lett.31(2006)2580.
    [10]干福熹主编,信息材料.天津大学出版社,2000.
    [11]H. Liu, J. Nees, and G. Mourou, Opt. Lett.26 (2001) 1723.
    [12]A.L. Calendron, K.S. Wentsch, and M.J. Lederer, Opt. Express 16 (2008) 18838.
    [13]F. Druon, S. Chenais, P. Raybaut, F. Balembois, P.Georges, R. Gaume, G. Aka, B. Viana, S. Mohr, and D.Kopf, Opt. Lett.27 (2002) 197.
    [14]A.A. Lagatsky, A.R. Sarmani, C.T.A. Brown, W. Sibbett, V.E. Kisel, A.G. Selivanov, I.A. Denisov, A.E. Troshin, K.V. Yumashev, N.V. Kuleshov, V.N. Matrosov, T.A. Matrosova, and M.I. Kupchenko, Opt.Lett.30 (2005) 3234.
    [15]S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M.Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, Opt. Express 14 (2006) 11668.
    [16]J. Boudeile, F. Druon, M. Hanna, P. Georges, Y.Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, Opt. Lett.32 (2007) 1962.
    [17]F, Friebel, F. Druon, J. Boudeile, D. N, Papadopoulos, M. Hanna, P. Georges, P. Camy, J. L. Doualan, A. Benayad, R. Moncorge, C. Cassagne, and G. Boudebs, Opt. Lett.34 (2009) 1474.
    [18]M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S.Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, Opt. Lett. 33 (2008) 2770.
    [19]V.E. Kisel, S.V. Kurilchik, A.S. Yasukevich, S.V. Grigoriev, S.A. Smirnova, and N. V. Kuleshov, Opt. Lett.33 (2008) 2194.
    [20]L.D. DeLoach, S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, and W.F. Krupke, IEEE J. Quantum Electron.29 (1993) 1179.
    [1]周寿桓,赵鸿,唐小军,中国激光,7(2009)1605-1618.
    [2]E.C. Honea, R.J. Beach, and S.B. Sutton, IEEE J. Quantum Electron.33 (1997) 1592-1560.
    [3]D. Kracht, R. Wilhelm, M. Frede, K. Dupre, L. Ackermann, Opt. Express 25 10140-10144(2005).
    [4]B. Chen, Y. Chen, M. Bass, IEEE J. Quantum Electron.42 (2006) 483-488.
    [5]K. Oka, H. Unoki, H. Shibata, H. Eisaki, J. Cryst. Growth 286 (2006) 288.
    [6]S.I. Ikeda, U. Azuma, N. Shirakawa, Y. Nishihara, Y. Maeno, J. Cryst. Growth 787 (2002)237-239.
    [7]M. Higuchi, K. Kodaira, S. Nakayama, J. Cryst. Growth 207 (1999) 298.
    [8]S.M. Koohpayeh, D. Fort, J.S. Abell, Prog. Cryst. Growth Charact. Mater.54 (2008) 121-137.
    [9]刘均海,山东大学博士学位论文,1999。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700