重金属短流程冶金炉渣活度研究与过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短流程清洁冶金是重金属冶金技术的发展方向。近几十年来,国内外先后出现了多种短流程直接炼铅和连续炼铜试验方案,有的已经实现了工业化。但是,短流程清洁冶金无论在工艺流程,还是在基础理论上,仍有不少问题有待研究解决。
     本论文以“闪速炼铅”和“闪速连续炼铜”为研究对象,通过开展新型冶金炉渣活度研究和过程数值模拟,探索重金属短流程冶金规律,以完善直接炼铅和连续炼铜理论,为其工业应用提供理论依据和实践指导,促进该项具有自主知识产权的重金属短流程冶金新技术的发展。论文的主要研究内容如下:
     基于炉渣结构共存理论,研究建立了Cu2O-CaO-Fe2O3三元渣系、Cu20-CaO-SiO2-FeO-Fe2O3五元渣系和PbO-ZnO-CaO-SiO2-FeO-Fe2O3六元渣系的组元活度计算模型,计算并绘制了渣中CaO、Cu2O、Fe2O3、PbO和ZnO等组元的等活度曲线图,考察了碱度和温度等因素对组元活度NCaO、NCu2O、NFe2O3和组元活度系数γCu2O、γFeO、γPbO、γZnO的影响。结果表明,计算值与文献实测值吻合程度高,模型能较好地反映炉渣体系的结构本质;研究结果填补了新型冶金炉渣的活度数据,也证明了炉渣结构共存理论用于有色冶金领域的可行性。
     基于最小吉布斯自由能原理,研究建立了闪速炼铅过程多相平衡数学模型;基于此模型,对闪速炼铅过程进行了多因素耦合仿真,通过改变吨矿氧量(OVPTC)、富氧浓度(OG)、熔炼温度(T)、熔剂量以及精矿成分,研究了各工艺参数对粗铅含硫、烟尘率、熔炼直收率的综合影响,研究了闪速炼铅过程的相组成变化规律和氧(硫)势变化情况,研究了铅、锌、铜、铁在闪速炼铅各相中的分配行为。结果表明,所建立模型的模拟结果与奥托昆普半工业试验数据吻合的较好,能较好地反映闪速炼铅实际;奥托昆普公司采用122 Nm3/t的富氧(OG=95%)在1210℃进行闪速炼铅半工业试验,是综合考虑粗铅含硫、烟尘率及铅的直收率等因素的结果。
     将闪速连续炼铜过程视为由相对独立的闪速造锍熔炼过程和连续吹炼造铜过程构成,分别建立了闪速造锍熔炼多相平衡数学模型和连续吹炼造铜局域平衡数学模型,并通过中间物料的传递将两模型有机结合,从而构建了完整的闪速连续炼铜过程数学模型。基于此模型,对闪速连续炼铜过程进行了多因素耦合仿真,研究了炉型结构、炉渣渣型和铜锍品位对闪速连续炼铜过程粗铜生成热力学的影响;研究了闪速连续炼铜过程的相组成变化规律和氧(硫)势变化情况;研究了吨矿氧量(OVPTC)、富氧浓度(OG)、熔炼温度(T)和精矿组成等工艺参数对粗铜含硫、Fe3O4行为、渣含铜、熔炼直收率,以及铁、铜锍在闪速连续炼铜过程中行为的综合影响。结果表明,甩渣吹炼的双烟道闪速连续炼铜炉是比较理想的连续炼铜炉体;在该炉中进行闪速连续炼铜时,熔炼直收率可达97%以上。
Short-flow clean smelting process is the development direction of heavy metal metallurgical technology. There have appeared some pilot programs of lead direct smelting and copper continuous smelting in the world in the past several decades, and some of them have already industrialized. But, no matter the smelting process or the metallurgical theory of the short-flow clean smelting, there are still many issues to be solve.
     In this paper, the slag activity research and the numerical simulation of the "lead flash smelting process" and "copper flash continuous smelting process", which have the independent intellectual property rights of china, were finished by the author. Those researches are helpful to explore the metallurgical law of those short-flow clean smelting processes, to perfect the theories of lead direct smelting and copper continuous smelting, to provide theoretical basis and practical guidance for the industrial applications of them, and also, to promote the development of those technologies. The specific research are shown as follows:
     According to the coexistence theory of slag structure, the activity calculation models for slag system of CaO-Cu2O-Fe2O3, Cu2O-CaO-SiO2-FeO-Fe2O3 and PbO-ZnO-CaO-SiO2-FeO-Fe2O3 were built. Then, the equal activity curves of CaO、Cu2O、Fe2O3、PbO and ZnO in those slag were drawed, and the influences of basicity and temperature on the activities NcaO、Ncu2O、NFe2O3 and the activity coefficientsγCu2o、γFeO、γPbO、γZnO were also analyzed. Results show that the calculated values are in good agreement with the reported measured values, showing that those models can wholly embody those slag structural characteristics. The research results supplemented the activity data of those new metallurgical slags, and proved the feasibility for the coexistence theory of slag structure to be applied to the field of non-ferrous metallurgy.
     Based on the principle of Gibbs free energy minimization, the thermodynamic model of the lead flash smelting process was built. Then, the multi-factor coupled simulation of the lead flash smelting process was carried out based on the model. By adjusting the Oxygen Volume Per Ton Concentrate (OVPTC), Oxygen Grade (OG), Temperature (T), flux quantity and concentrate composition, the integrated influences of those technology parameters on the sulfur content in bullion, the dust rate and the recovery rate of Pb were analyzed, and the change trends of equilibrium phase composition, oxygen potential and sulfur potential were studied, and the distribution behavior of Pb, Zn, Cu and Fe in each phase were also investigated. Results show that the thermodynamic model calculated values are in good agreement with the Outokumpu semi-industrial test values, and the model can wholly embody the lead flash smelting practice. It's a deliberate result for Outokumpu company, by taking into account the sulfur content in bullion, the dust rate, the recovery rate of Pb and so on, to carry out semi-industrial pilot, while OVPTC is 122 Nm3/t, OG is 95% and smelting temperature is 1210℃.
     The copper flash continuous smelting furnace can be regarded as a synthesis reactor of two relatively independent processes:Flash Matting Smelting Process (FMSP) and Copper Continuous Converting Process (CCCP). Based on this thinking, the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP were built, and the integrated model of the copper flash continuous smelting process was made up by combinating the above two models with smelting intermediate materials. Then, the multi-factor coupled simulation of the copper flash continuous smelting process was carried out based on the integrated model. The influences of furnace structure, slag type and matte grade on blister formation thermodynamic condition were analyzed, and the change trends of equilibrium phase composition, oxygen potential and sulfur potential were studied, and the integrated influences of the technology parameters, including the Oxygen Volume Per Ton Concentrate (OVPTC), Oxygen Grade (OG), Temperature (T) and concentrate composition, on the sulfur content in blister, Fe3O4 behavior, copper content in slag, recovery rate of Cu, the behavior of Fe and matte were also investigated. Results show that the flash furnace, with double flues and slag partition wall, is an ideal reactor for copper flash continuous smelting, and the recovery rate of copper can be more than 97%.
引文
[1]蒋继穆.我国铅冶炼现状及改造思路[J].有色冶炼,2005,(5):1-3.
    [2]彭涛.加快铅锌工业结构调整[J].中国有色金属,2007,(11):56-57.
    [3]曹异生.国际铅工业进展及前景展望[J].中国金属通报,2008,(43):34-37.
    [4]周敬元,游力辉.国内外铅冶炼技术进展及发展动向[J].世界有色金属,1999,16(6):7-10.
    [5]胡德勇.铅锌冶炼科技进步现状与“十五”发展方向[J].有色金属工业,2001,(8):11-13.
    [6]A. Siegmund. Modern applied technologies for primary lead smelting at the beginning of the 21st century[C]. Yazawa International Symposium on Metallurgical and Materials Processing: Principles and Technologies; San Diego, CA, USA,2003:43-62.
    [7]Y. H. Lee, Y. M. Park. The experience of lead direct smelting in Korea zinc's Onsan refinery[C]. Yazawa International Symposium on Metallurgical and Materials Processing:Principles and Technologies; San Diego, CA, USA,2003:91-98.
    [8]王忠实.我国重有色金属冶炼行业近况与思考[C].中国重有色金属工业发展战略研讨会暨重冶学委会第四届学术年会论文集,2003:5-9.
    [9]史丽丽.把循环经济理念贯彻到我国有色行业中[J].世界有色金属,2004,(9):8-10.
    [10]何蔼平,魏昶,黄波,吴浩波,谭春娥.面向21世纪我国铅冶炼技术的改造和发展思考[J].有色金属(冶炼部分),2000,(06):2-6.
    [11]李贵.铅烧结工艺改造的思路[J].有色冶炼,2001,(01):6-9.
    [12]殷德洪,陶遵华,贾海波.丹麦托普索WSA法回收硫技术进展[J].有色金属(冶炼部分),1998,(01):19-22.
    [13]Ole Rud Bendixn, Hans Killerich Hansen.托普索WSA法湿烟气制酸技术[J].硫酸工业,1997,(02):28-31.
    [14]R. W. Lee. Continuing evolution of the Imperial smelting process[C]. Lead-Zinc 2000 Symposium as held at the TMS Fall Extraction & Process Metallurgy Meeting; Pittsburgh, PA, USA.2000:455-466.
    [15]K. Kawanaka, Y. Mori. Study of the changes in the permeability of the sintering bed in the Imperial smelting process[C]. Lead-Zinc 2000 Symposium as held at the TMS Fall Extraction & Process Metallurgy Meeting; Pittsburgh, PA, USA.2000:497-509.
    [16]A. Cox, D. J. Fray. Zinc reoxidation in the shaft of a zinc-lead Imperial Smelting Furnace. Ⅰ. Zinc-carbon-oxygen system with deposition initiated on a quartz substrate and subsequent propagation on zinc oxide[C]. Transactions of the Institution of Mining and Metallurgy, Section C (UK).2000,109(C61-116):97-104.
    [17]Cox, A; Fray, D J. Zinc reoxidation in the shaft of a zinc-lead Imperial Smelting Furnace. Ⅱ. Zinc-carbon-oxygen system in combination with sinter and coke substrates[C]. Transactions of the Institution of Mining and Metallurgy, Section C (UK).2000,109(C61-116):105-111.
    [18]谭荣和.密闭鼓风炉炼铅锌的技术进展[J].有色冶炼,2002,31(6):90-92.
    [19]王远文.密闭鼓风炉二次风配置改造及生产实践[J].有色金属,2000,19(1):48-49.
    [20]郭森魁,刘玉英,何蔼平.密闭鼓风炉二次风流场的数值模拟[J].第八届全国铅锌冶金生产技术及产品应用学术年会,2001:8-12.
    [21]Kulenov. Mining and Metallurgy,1998,51 (4):273-279.
    [22]Tan pengfu. Computer simulation of direct lead smelting[C]. International conference on modelling and simulation in metallurgical engineering and materials science,1996:515.
    [23]L. V. Slobodkin, Y. A. Sannikov, Y. A. Grinin, M. A. Lyamina, V. A. Shumskij, N. N. Ushakov. Kivcet treatment of polymetallic feeds[C]. Lead-Zinc 2000 Symposium as held at the TMS Fall Extraction & Process Metallurgy Meeting; Pittsburgh, PA, USA,2000:687-691.2000.
    [24]A. P. Sychev, Y. U. I. Sannikov, M. A. Layamina. Dynamics of Kivcet Process Smelting of Lead-Zinc Sulfide Raw Materials[J]. Russ. Metall,1987, (4):1-8.
    [25]叶国萍.基夫赛特炼铅法[J].有色金属(冶炼部分),2000,(4):20-23.
    [26]孙月强.哈萨克斯坦基夫赛特冶炼技术考察报告[J].有色金属(冶炼部分),1994,(2):13-17.
    [27]Cho K G Metal Processes for the Early Twenty-First Century, Vol.11. Technology and Practice Proc Conf San Diego CA, USA,1994:317-331.
    [28]Myung Bae Kim, Woll Seung Lee, Yong Hack Lee. QSL lead slag fuming process using an Ausmelt furnace. Lead-Zinc 2000,2000:331-343.
    [29]Queneau Paul E, Siegmund. Industrial-scale leadmaking with the QSL continuous oxygen converter [J]. JOM,1996,48(4):38-44.
    [30]R. Puellenberg, A. Rohkohl. Modern lead smelting at the QSL-Plant BERZELIUS metal in Stolberg, Germany. Lead-Zinc 2000,2000:127-148.
    [31]Themelis, Nieholas J. Mineral Processing and Extractive Metallurgy Review.1994,15(1): 10-14.
    [32]黄作仁.QSL法炼铅工艺的新进展[J].湖南有色金属,1997,13(1):34-36.
    [33]黄兴东.韩国锌公司温山QSL炼铅厂[J].有色冶炼,1995,(02):8-11.
    [34]张信德.跨入21世纪的铅工业[J].有色设备,1994,(05):26-29.
    [35]陈海清,马兆华,刘亚雄.QSL炼铅法在我国的工业实践及主要操作参数的研究[J].湖南有色金属,2006,22(6):12-16.
    [36]何国才.白银QSL炼铅工艺实践的回顾与展望[J].中国有色冶金,2004,33(4):24-26.
    [37]李云鹤,徐培伦.QSL炼铅工艺中铅及杂质的行为[C].第二届全国重冶新技术新工艺成果交流推广应用会论文集,2005:241-246.
    [38]J. M. Floyd. The emerging role of new bath smelting technology in non-ferrous metals, Proceedings of the Savard/Lee International Symposium on Bath Smelting,1992,103.
    [39]J. M. Floyd. Converting mattes with the Ausmelt furnace, TMS Annual Meeting, Converting, Fire Refining and Casting,1994:131.
    [40]J. M. Floyd. Proceedings of Savard-Lee International Symposium on Bath smelting, TMS,1992, 103.
    [41]J. M. Floyd. The Howard International Symposium on Injection in Pyrometallurgy, the University of Melbourne, Australia, July,1996:447.
    [42]P. N. Vernon, S. F. Burks. Journal of The South African Institute of Mining and Metallurgy, 1997:89-98.
    [43]J. Sofra. TMS Annual Meeting, TMS Minerals, Metals & Materials Soc(TMS), Feb, 1997:339-348.
    [44]Mounsey. Lead smelting in a submerged arc furnace, JOM, Metals & Materiais Soc (TMS), 1994,46(8):58-60.
    [45]Ross McClelland, Joey Hoang, Brian Lightfoot. COMMISSIONING OF THE AUSMELT LEAD SMELTER AT HINDUSTAN ZINC. Sohn International Symposium/Advanced Processing of Metals and Materials (vol.8):International Symposium on Sulfide Smelting 2006. 2006:163-171.
    [46]E. N. Mounsey, N. L. Piret. A review of ausmelt technology for lead smelting. Lead-Zinc 2000, 2000:149-169.
    [47]朱烨,刘万灵.卡尔多炉处理废杂铜技术[J].有色金属,2000,52(1):72-75.
    [48]Hedlund, Lennart. Proceedings of the TMS Fall Meeting[J]. TMS,1995:155-162.
    [49]刘万灵.卡尔多炉炼铅技术[J].有色金属(冶炼部分),1999,(04):13-16.
    [50]舒见义,何醒民.卡尔多炉炼铅工艺在国外的生产应用[J].工程设计与研究,2006,(03):14-16.
    [51]陈阜东.卡尔多直接炼铅工艺[J].工程设计与研究,2006,(03):11-13.
    [52]何醒民,舒见义.我国引进卡尔多炼铅工艺的生产实践[C].中国首届熔池熔炼技术及装备专题研讨会论文集,2007:52-56.
    [53]许冬云.卡尔多炉炼铅生产实践[J].工程设计与研究,2006,(03):7-8.
    [54]谭宪章.利登隆斯卡尔冶炼厂技术考察及其简要评述[J].有色冶炼,1999,(4):53-57.
    [55]陈汉荣,贺善特.“水口山炼铅法”的实践与展望[J].有色冶炼,1990,(4):1-6.
    [56]林延芳,刘谷良.水口山炼铅法(SKS炼铅法)的新进展[C].全国重冶新技术新工艺成果交流大会,1998:144-149.
    [57]康新建,刘坚.水口山炼铅法的大型工业化生产[J].中国重有色金属工业发展战略研讨会暨重冶学委会第四届学术年会论文集,2003:38-43.
    [58]张训鹏,彭容秋.熔池熔炼的发展[J].有色冶炼,1995,(04):20-25.
    [59]任鸿九,王立川.有色金属提取手册(铜镍)[M].北京:冶金工业出版社,2000,85-168.
    [60]彭荣秋.重金属冶金学(第二版)[M].长沙:中南大学出版社,2004,87-155.
    [61]刘纯鹏.铜冶金物理化学[M].上海:上海科学技术出版社,1990.
    [62]任鸿九.有色金属熔池熔炼[M].北京:冶金工业出版社,2001.
    [63]朱祖泽,贺家齐.现代铜冶金学[M].北京:科学出版社,2003.
    [64]中华人民共和国国家统计局.中华人民共和国2006年国民经济和社会发展统计公报.http://www.hsq.gov.cn/uploadfile/200736105355811.doc,2007,2.
    [65]S. Demetrio, N. Santander, M. Solar. The copper smelters of the 2010 - a vision of the future[C]//D. B. George, W. J. Chen, P. J. Mackey, A. J. Weddick. Proceedings of the COPPER 99-COBRE 99 International Conference, vol. V-Smelting Operations and Advances, Phoenix, AZ,USA,1999:295-303.
    [66]C. Harris. Bath smelting in the Noranda Process Reactor and the El Teniente Converter compared[C]//D. B. George, W. J. Chen, P. J. Mackey, A. J. Weddick. Proceedings of the COPPER 99-COBRE 99 International Conference, vol. V-Smelting Operations and
    Advances, Phoenix, AZ, USA,1999:305-318.
    [67]NORSMELT. The Noranda Smelting Process, company website,2003, February,3p.
    [68]A. H. Binegar. Cyprus Isasmelt start-up and operating parameters[C]//W. J. Chen, C. Diaz, A. Luraschi, P. J. Mackey. Proceedings of Copper 95-COBRE 95 International Conference, vol. IV-Pyrometallurgy of Copper, Santiago,Chile,1995:117-132.
    [69]E. N. Mounsey, H. Li, J. W. Floyd. The design of the Ausmelt Technology smelter at Zhong Tiao Shan's Houma smelter, People's Republic of China[C]//D. B. George, W. J. Chen, P. J. Mackey, A. J. Weddick. Proceedings of the COPPER 99-COBRE 99 International Conference, vol. V-Smelting Operations and Advances, Phoenix, AZ, USA,1999:357-370.
    [70]E. N. Mounsey. Economic and technical evaluation of Ausmelt process systems for copper bearing materials [C]//W. J. Chen, C. Diaz, A. Luraschi, P. J. Mackey. Proceedings of Copper 95-COBRE 95 International Conference, vol. IV-Pyrometallurgy of Copper, Santiago, Chile, 1995:189-204.
    [71]V. P. Bystrov. Vanyukov's Process-continuous, cheap, ecologically safe. Moscow State Institute of Steel and Alloys,2003:17.
    [72]V. P. Bystrov, A.A.Komkov. Optimizing the Vanyukov process and furnace for treatment of complex copper charges[C]//W.J.Chen, Diaz, A. Luraschi, P. J. Mackey. Proceedings of Copper 95-COBRE 95 International Conference, vol. IV-Pyrometallurgy of Copper, Santiago, Chile, 1995:167-178.
    [73]P. Hanniala, I. V. Kojo. The future of flash smelting[C]. Copper 2003-Cobre 2003, Fifth International Conference, Santiago.2003:121-137.
    [74]张文海.闪速熔炼在中国的进展与研究—冷风技术及“非接触冶金”[J].中国有色金属学报,2004,14(1):63-71.
    [75]R.R.Moskalyk, A.M. Alfantazi. Review of copper pyrometallurgical practice:today and tomorrow [J]. Minerals Engineering,2003:893-919.
    [76]P. Hanniala, L. Helle, I. V. Kojo. Competiveness of the Outokumpu flash smelting technology: now and in the third millennium[C]//D. B. George, W. J. Chen, P. J. Mackey, A. J. Weddick. Proceedings of the COPPER 99-COBRE 99 International Conference, vol. V-Smelting Operations and Advances, Phoenix, AZ, USA,1999:221-238.
    [77]Fiscor, Steve. Outokumpu technology makes process improvements possible[J]. Engineering and Mining Journal,2004(9):43-45.
    [78]OUTOKUMPU FLASH SMELTING TECHNOLOGY -A BENCHMARK IN COPPER AND NICKEL PRODUCTION[EB/OL]. http://www.outokumpu.ru/corporat/info/pressrel.nsf /0a94a7c2232e925e422565b40031c76f/c01f3a91fe8902ec2256be200297874/$FILE/FS_FLAS HSMELTING_PR%20attachment_ENG.pdf.
    [79]I. V. Kojo, H. Storch. Copper production with outokumpu flash smelting:an update[C]. Sohn International Symposium; Advanced Processing of Metals and Materials Volume 8: International Symposium on Sulfide Smelting 2006:225-238.
    [80]R. J. Dry, R. J. Batterham, C. P. Bates, D. P. Price. Direct smelting:why have so few made it[C]. In:Proceedings of the International Conference on Iron Ore Processing, Kiruna, Australia.
    Available via ATSE (The Australian Academy of Technological Sciences and Engineering), 2002:11.
    [81]D. Cordero, J. Buchi. Copper continuous smelting at Codelco's El Teniente Division[C]. Copper 2003-Cobre 2003, Fifth International Conference, Santiago.2003:253-267.
    [82]冶金部矿冶研究总院技术情报室编译.国外连续炼铜文集[M].北京:冶金工业出版社,1981.2.
    [83]R. R. Odle, A. E. Morris, R. J. Mcclincy. Investigation of direct smelting of copper concentrates[C]. In:Sohn H Y, ed., Advances in sulfide smelting. Utah:Americal Institute of Mining, Metallurgical and Petroleum Engineers,1983:57.
    [84]K. J. Richards, D. B. George, L. K. Bailey. A new continuous copper converting process[C], In: Sohn H Y, ed., Advances in sulfide smelting. Utah:Americal Institute of Mining, Metallurgical and Petroleum Engineers,1983:489.
    [85]R. J. Mcclincy, C. Arentzen, R. J. Wesely. Commercial implications of direct copper smelting[C]. In:Sohn H Y, ed., Advances in sulfide smelting. Utah:Americal Institute of Mining, Metallurgical and Petroleum Engineers,1983:499.
    [86]E. Johnsen, T. Rosenqvist, P. T. Torgersen. On the Thermodynamics of Continuous Copper Smelting[J]. Journal of Metals,1970,22(9):39-47.
    [87]J. H. E. Jeffes, C. Diaz. Physical Chemistry of'One-Step'Copper Production From a Chalcopyrite Concentrate[J]. Transactions of the Institution of Mining and Metallurgy,1972, 81C(787):127-130.
    [88]Juraj Schmiedl. Physical Chemistry of copper continuous smelting[J]. Physical Chemistry of Process Metallurgy:The Richardson Conference, Institution of Mining and Metallurgy, London, 1974:175-185.
    [89]A. Yazawa. The Future of Copper Pyrometallurgy, Santiago,1974:91-105.
    [90]A. Yazawa, M. Eguchi, J. Sendal. Equilibrium studies on copper slags used in continuous converting[C]//J. Yannopoulos, J. Agarwal. An International Symposium:Extractive Metallurgy of Copper, New York:The Metallurgical society of AIME,1976:3-19.
    [91]M. Nagamori, P. J. Mackey. Thermodynamics of Copper Matte Converting. II.-Distribution of Au, Ag, Pb, Zn, Ni, Se, Te, Bi, Sb and As Between Copper, Matte and Slag in the Noranda Process[J]. Metall. Trans. B.1978,9B(4):567-579.
    [92]M. Nagamori, P. C. Chaubal. Thermodynamics of Copper Matte Converting. IV.-A Priori Predictions of the Behavior of Gold, Silver, Lead, Zinc, Nickel, Selenium, Tellurium, Bismuth, Antimony and Arsenic in the Noranda Process Reactor[J]. Metall. Trans B.1982,13B(3): 331-338.
    [93]M. Goto, E. Oshima, M. Hayashi. Control aspects of the Mitsubishi continuous process[J]. Journal of Metals,1998:60-63.
    [94]F. Schualek, I. Imris. Advances in Extractive Metallurgy and Refining, London,1972:39-62.
    [95]J.C. Yannopoulos. Extractive Metallurgy of Copper.1976,1:49.
    [96]Davenport W G, Partelpoeg E H. Flash smelting analysis, control and optimization. New York: Pergamon Press,1987.
    [97]Arthur G Hunt, Steven K Day, Rosalind G Shaw, Robert C West. Developments in direct-to-blister smelting at Olympic Dam[C]//D.B.George, W.J.Chen, P.J.Mackey, A.J.Weddick. The Copper 99-Cobre 99 4th International Conference on Smelting Operations and Advances, USA:The Minerals, Metals & Materials Society.1999, V:10-13.
    [98]E&Mj, WMC Ltd.'s new copper smelter at Olympic Dam[J]. Engineering and Mining Journal, 1999,200(4):16.
    [99]J. Dobrzanski, W. Kozminski. Copper smelting in KGHM Polska Miedz S.A.[C]. Copper 2003-Cobre 2003, Fifth International Conference, Santiago.2003:239-252.
    [100]Z. Gostynski, D. Haze. FLASH SMELTING FURNACE OF THE KGHM GLOGOW COPPER PLANT-TECHNOLOGICAL AND PROCESS CHALLENGES AS A DRIVING FORCE OF ITS CONTINUOUS MODERNIZATION[C]//A.E.M.Warner, C.J.Newman, A.Vahed, D.B.George, PJ.Mackey, A.Warczok. The Carlod Diaz Symposium on Pyrometallurgy /Proceedings of the 6th International Copper-Cobre Conference, CANADA, TORONTO.2007, 111:25-30.
    [101]J. Tuominen, V. I. Kojo. BLISTER FLASH SMELTING-EFFICIENT AND FLEXIBLE LOW COST CONTINUOUS COPPER PROCESS[C]. Converter and Fire Refining Practices as held at the 2005 TMS Annual Meeting; San Francisco, CA, USA.2005:271-282.
    [102]蒋继穆.采用氧气底吹炉连续炼铜新工艺及其装置[J].中国金属通报,2007,(17):29-31.
    [103]彭容秋.铜冶金[M].长沙:中南大学出版社,2004,26-65.
    [104]F. Tanaka, H. Sato, N. Hasegawa. Technology for decreasing refractory wear in the Mitsubishi Process:fundamental research and its application[C]. The Copper 99-Cobre 99 4th International Conference on Smelting Technology Development Process Modeling and Fundamentals. USA:The Minerals, Metals & Materials Society.1999, VI:10-13.
    [105]MotoGoto,赵玉敏译.三菱法炼铜新技术(一)[J].有色矿冶,1996,4:23-30.
    [106]O. Iida, M. Hayashi, M. Goto. Process designs on new smelter projects of the Mitsubishi continuous copper smelting and converting process[C]. In:Proceedings of the Nickel-Cobalt 97 International Symposium, vol.3, Sudbury, Canada,1997:499-511.
    [107]Y. A. Chang, Y. E. Lee, J. P. Neumann. Phase relationships and thermodynamics of the ternary copper-iron-sulfur system[C]. Extractive Metallurgy of Copper:An International Symposium, New York:The Metallurgical society of AIME,1976:21-48.
    [108]Wilkomirsky, I; Parra, R. Direct production of white metal and blister copper by cyclonic smelting[C]. Copper 2003-Cobre 2003, Fifth International Conference, Santiago.2003:47-60.
    [109]R Schuhmann Jr, PE Queneau, NH Hanover. Thermodynamics of the QS Oxygen Process for Coppermaking[C]. Extractive Metallurgy of Copper:An International Symposium, New York: The Metallurgical society of AIME,1976:76-89.
    [110]高丕英,李江波.物理化学[M].北京:科学出版社,2007.
    [111]刘纯鹏.铜冶金物理化学[M].上海:上海科学技术出版社,1990.
    [112]Davenport W G, King M, Schlesinger M, BISWAS A K. Extractive metallurgy of copper,4th edition[M], New York:Pergamon Press,2002:203-219.
    [113]Kongoli F, McBow I, Yazawa A, Takeda Y, Yamaguchi K, Budd R, Llubani S. Liquidus relationships of calcium ferrite and ferrous calcium silicate slag in continuous copper converting[J]. Transactions of the Institutions of Mining and Metallurgy,2008,117(2):67-76.
    [114]《铅锌冶金学》编委会.铅锌冶金学[M].北京:科学出版社,2003.
    [115]Ilyushechkin A, Hayes P C, Jak E. Liquidus temperatures in calcium ferrite slags in equilibrium with molten copper[J]. Metallurgical and Materials Transactions B,2004,35(2):203-215.
    [116]Sakai T, Ip S W, Toguri J M. Interfacial phenomena in the liquid copper-calcium ferrite slag system[J]. Metallurgical and Materials Transactions B,1997,28(3):401-407.
    [117]Florian K, Akira Y. Liquidus surface of FeO-Fe2O3-SiO2-CaO slag containing Al2O3, MgO, and Cu2O at intermediate oxygen partial pressures[J]. Metallurgical and Materials Transactions B, 2001,32(4):583-592.
    [118]Sang H L, Seok M M, Dong J M, et al. Thermodynamic behavior of nickel in CaO-SiO2-FetO slag[J]. Metallurgical and Materials Transactions B,2002,33(1):55-59.
    [119]Pavol V, Milan H, Vladimir D. Density and surface tension of the systems CaO-FeO-Fe2O3-MgO, CaO-FeO-Fe2O3-ZnO and CaO-Fe2O3-Cu2O[J]. Central European Journal of Chemistry,2006,4(1):174-193.
    [120]N.STANKO, C. H. PETER, J. EVGUENI. Phase Equilibria in Ferrous Calcium Silicate Slags_Part I. Intermediate Oxygen Partial Pressures in the Temperature Range 1200 ℃ to 1350 ℃[J]. Metallurgical and Materials Transactions B,2008,39(2):179-188.
    [121]N.STANKO, H. Hector, C. H. PETER, J. EVGUENI. Phase Equilibria in Ferrous Calcium Silicate Slags:Part Ⅱ. Evaluation of Experimental Data and Computer Thermodynamic Models[J]. Metallurgical and Materials Transactions B,2008,39(2):189-199.
    [122]N.STANKO, H. Hector, C. H. PETER, J. Phase Equilibria in Ferrous Calcium Silicate Slags: Part Ⅲ. Copper-Saturated Slag at 1250 ℃ and 1300 ℃ at an Oxygen Partial Pressure of 10-6 atm[J]. Metallurgical and Materials Transactions B,2008,39(2):200-209.
    [123]N.STANKO, H. Hector, C. H. PETER, J. Phase Equilibria in Ferrous Calcium Silicate Slags: Part Ⅳ. Liquidus Temperatures and Solubility of Copper in "Cu2O"-FeO-Fe2O3-CaO-SiO2 Slags at 1250 ℃ and 1300 ℃ at an Oxygen Partial Pressure of 10-6 atm[J]. Metallurgical and Materials Transactions B,2008,39(2):210-217.
    [124]E. Jak, S. Degterov, P. Wu, P. C. Hayes, A. D. Pelton. Thermodynamic optimization of the systems PbO-SiO2, PbO-ZnO, ZnO-SiO2 and PbO-ZnO-SiO2[J]. Metallurgical and Materials Transactions B,1997,28B:1011-1018.
    [125]R. Altman. Influence of Al2O3 and CaO on solubility of copper in silica-saturated iron silicate slag[J]. TRANS. INST. MIN. METALL.C.,1978,87:23-28.
    [126]E. Jak, B. Zhao, N. Liu, P. C. Hayes. Experimental study of phase equilibria in the system PbO-ZnO-SiO2[J]. Metallurgical and Materials Transactions B,1999,30B:21-27.
    [127]E. Jak, B. Zhao, P. C. Hayes. Experimental study of phase equilibria in the system "FeO"-ZnO-(CaO+SiO2) system with CaO/SiO2 weight ratios of 0.33,0.93 and 1.2 in equilibrium with metallic iron[J]. Metallurgical and Materials Transactions B,2002,33B: 877-890.
    [128]E. Jak, S. Degterov, A. D. Pelton, P. C. Hayes. Coupled experimental and thermodynamic study
    of the Zn-Fe-Si-O system[J]. Metallurgical and Materials Transactions B,2001,32B:793-800.
    [129]M. Kudo, E. Jak, P. C. Hayes, K. Yamaguchi, Y. Takeda. Lead solubility in FeOx-CaO-SiO2 slags at iron saturation[J]. Metallurgical and Materials Transactions B,2000,31B:15-24.
    [130]E. Jak, N. Liu, P. C. Hayes. Experimental study of phase equilibria in the system PbOx-CaO and PbOx-CaO-SiO2[J]. Metallurgical and Materials Transactions B,1998,29B:542-553.
    [131]E. Jak, B. Zhao, P. C. Hayes. Experimental study of phase equilibria in the system "FeO"-ZnO-(CaO+SiO2) system with CaO/SiO2 weight ratios of 0.71 at metallic iron saturation[J]. Metallurgical and Materials Transactions B,2002,33B:865-876.
    [132]E. Jak, P. C. Hayes. Experimental liquidus in the PbO-ZnO-"Fe2O3"-(CaO+SiO2) system in air, with CaO/SiO2=0.35 and PbO/(CaO+SiO2)=3.2[J]. Metallurgical and Materials Transactions B, 2002,33B:851-863.
    [133]E. Jak, B. Zhao, P. C. Hayes. Experimental study of phase equilibria in the systems Fe-Zn-O and Fe-Zn-Si-O at metallic iron saturation[J]. Metallurgical and Materials Transactions B,2000,31B: 1195-1201.
    [134]E. Jak, P. C. Hayes. Experimental study of phase equilibria in the PbO-ZnO-"Fe2O3"-CaO-SiO2 system in air for high lead smelting slags (CaO/SiO2=0.35 and PbO/(CaO+SiO2)=5.0 by weight)[J]. Metallurgical and Materials Transactions B,2002,33B:817-825.
    [135]E. Jak, P. C. Hayes. The effect of the CaO/SiO2 ratio on the phase equilibria in the ZnO-"Fe2O3"-(PbO+CaO+SiO2) system in air:CaO/SiO2=0.1, PbO/(CaO+SiO2)=6.2, and CaO/SiO2=0.6,PbO/(CaO+SiO2)=4.3[J]. Metallurgical and Materials Transactions B,2003,34B: 369-382.
    [136]E. Jak, B. Zhao, P. C. Hayes. Experimental study of phase equilibria in the "FeO"-ZnO-(CaO+SiO2) system with CaO/SiO2 weight ratios of 0.33,0.93 and 1.2 in equilibrium with metallic iron[J]. Metallurgical and Materials Transactions B,2002,33B: 877-890.
    [137]K. Yamaguchi, M. Kudo, Y. Kimura, S. Ueda, Y. Takeda. Activities of lead and zinc oxides in CaO-SiO2-FeOx-AlO1.5 slag[C]//F. Kongoli, R. G Reddy. Sohn International Symposium on Advanced Processing of Metals and Materialsg. TMS,2006:199-208.
    [138]魏庆成.冶金热力学[M].重庆:重庆大学出版社,1996.
    [139]黄希祜.关于炉渣的结构模型及其热力学性质的近代发展[J].中国稀土学报(专辑),2000:51-58.
    [140]C.Borgianni, P.Granati. Monte Carlo calculations of ionic structure in silicate and alumino-silicate melts[J]. Metall. Trans. B,1979.10B(1):21-25.
    [141]M.Hillert, B.Jansson, B.Sundman, J.Agren. A two-sublattice model for molten solutions with different tendency for ionization[J]. Metall. Trans. A, Phys. Metall. Mater. Sci.,1985,16A(2): 261-266.
    [142]P. L. Lin, A. D. Pelton. A structural model for binary silicate systems[J]. Metall. Trans. B,1979, 10B(4):667-675.
    [143]P. Sastri, A. K. Lahiri. A'central atoms'model for binary silicate and aluminate melts[J]. Phys. Chem. Glasses,1983.24(4):98-103.
    [144]王之吕,周继程,程兆年.一个新的聚合模型在CaO-SiO2熔体中的应用[J].金属学报.1986,22(5):25-33.
    [145]M. Hoch. Application of the Hoch-Arpshofen model, to ternary, quaternary, and larger systems[J]. CALPHAD,1987,11(3):219-224.
    [146]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,1990.
    [147]ZHANG Jian. Coexistence theory of slag structure and its application to calculation of oxidizing capability of slag melts[J]. Journal of Iron and Steel Research,2003,10(1):1-10.
    [148]张鉴.冶金熔体的计算热力学[M].北京:冶金工业出版社,1998.
    [149]ZHANG Jian. Thermodynamic properties and mixing thermodynamic parameters of binary homogeneous metallic melts[J]. Rare metals,2003,22(1):25-32.
    [150]张鉴.冶金熔体和溶液的计算热力学[M].北京:冶金工业出版社,2007.
    [151]ZHANG Jian. The applicability of the law of mass action in combination with the coexistence theory of slag structure to the multicomponent slag systems [J]. Acta Metallurgica Sinica,2001, 14(3):177-190.
    [152]张鉴.包含晶体二元金属熔体作用浓度的计算模型[J].中国有色金属学报,1997,7(4):34-36.
    [153]ZHANG Jian. Applicability of the law of mass action to distribution of manganese between slag melts and liquid iron[J]. Transaction of Nonferrous Metals Society of China,2001,11(5): 778-783.
    [154]Phillips B, Muan A. Phase equilibrium in the system CaO-Iron oxide in air and at 1 atm. O2 pressure [J]. Journal of the America Ceramic Society,1958,41(11):445-454.
    [155]Levin E M, Robbins C R, Mcmurdie H F. Phase diagrams for ceramists[M]. Cleveland:America Ceramic Society,1969:17-18.
    [156]德国钢铁工程协会.渣图集[M].王俭,等译.北京:冶金工业出版社,1989.
    [157]Takeda Y, Nakazawa S, Yazawa A. Thermodynamics of calcium ferrite slags at 1200 and 1300 degree C[J]. Canadian Metallurgical Quarterly,1980,1(3):297-305.
    [158]Hino M, Yazawa A.炉渣中氧化铜的溶解平衡[C]//1995年铜国际会议论文集.北京:冶金工业出版社,1998:408-419.
    [159]张鉴.冶金熔体和溶液的计算热力学[M].北京:冶金工业出版社,2007:297-298.
    [160]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993:458.
    [161]Petri Bryk, Rolf Malmstrom, Erik Nyholm. Flash smelting of lead concentrates [J]. Journal of Metals,1966,12:1298-1302.
    [162]EO Nermes, TT Talonen. Flash smelting of lead concentrates [J]. Journal of Metals,1982, 11:55-59.
    [163]曾青云.铜闪速熔炼操作数据的回归分析[J].有色金属(冶炼部分),1995,(5):4-6.
    [164]万维汉,史维祥,袁永发,杨金义.镍闪速熔炼过程的模糊建模[J].冶金自动化,2000,(2):9-12.
    [165]WANG Jin-liang, ZHANG Chuan-fu, ZENG Qing-yun, TONG Chang-ren, ZHANG Wen-hai. Modeling and Optimization of the Copper Flash Smelting Process Based on Neural Network[J]. The Chinese Journal of Process Engineering,2008,8(SUP):105-109.
    [166]Goto Sakichi. Equilibrium calculations between matte, slag and gaseous phases in copper smelting[J]. In:Jones M J ed. Copper Metallurgy-Practice and Theory. London:Institute of Mining and Metallurgy,1975:23.
    [167]Shipo R. An application of equilibrum calculations to the copper smelting operation. In:Sohn H Y ed.Advances in sulfide smelting.Utah:American Institute of Mining, Metallurgical and Perroleum Engineer.1983.
    [168]Nobumasa Kemori. The application of equilibrium calculations to a copper flash smelting furnace. Journal of the Ming and Materials Processing Institute of Japan,1987,103(5).
    [169]Tan Pengfu, Neuschutz Dieter. A thermodynamic model of nickel smelting and direct high-grade nickel matte smelting processes:Part I. Model development and validation[J]. Metallurgical and Materials Transactions B,2001,32(2):341-351.
    [170]谭鹏夫,张传福,李作刚,等.在铜熔炼过程中第VA族元素分配行为的计算机模型[J].中南工业大学学报,1996,26(4):479-483.
    [171]黎书华,黄克雄,梅显芝.贵溪闪速炉铜锍熔炼过程热力学模型[J].中南工业大学学报,1995,26(5):627-631.
    [172]凌玲,沈剑韵,陆金忠,等.镍闪速熔炼过程的平衡计算[J].有色金属,2000,52(4):71-73.
    [173]SR Brinkley. Calculation of the equilibrium composition of systems of many constituents[J]. The Journal of Chemical Physics,1947,15:107.
    [174]Soares ME, Medina AG, Mcdermott C and Ashton N. Chem End Sci[J],1982,37(4):52-528.
    [175]Xiao WD. Zhu KH, Yuan WK and Chien HH. AIChE[J].1989(35):1813.
    [176]Dluzniewsli JH and Adler SB. Calculation of complex reaction and/or phase equilibria problem[J]. I Chem E Sympos Series No5. Int Chem Eng(London),1972(4):21.
    [177]Gordon S and Mebride BJ. Computer program for calculation of complex chemical equilibrium composition, rocket performance, incident and reflected shocks, and chapman-jouguet detonations. NASA. SP-273,1971.
    [178]Gautam R and Seider WD. Computation of phase and chemical equilibrium[J]. AIChE 1979(25): 991.
    [179]George B, frown LP, Farmer CH Buthod P and Manning FS Computation of multicomponent, multiphase equilibrium. Ind Eng Chem Proc Des Dev[J],1976(15):372-377.
    [180]FT Fuller. Process for direct smelting of lead concentrates[J]. Journal of Metals,1968,12: 26-30.
    [181]A.P. Sychev, N.I.Kopylov, V.N.Novoselova, I.P.Polyakov, N.P.Pestunova. Behaviour of sulfidic lead-zinc concentrates during roasting-smelting[J]. Sborn. Trud. VNIIT Tsvet Met.,1975,25: 204-209.
    [182]K.B.Chandhuri, GMelcher. Comparative view on the metallurgy of the Kivcet-cs and other direct lead smelting processes[J]. Can. Min. Metall. Bull.,1978,71(799):126-130.
    [183]Y.I.Sannikov, M.A.Liamina, V.A.Shumskij, Y.A.Grinin, M.V.Radashin. A physical and chemical description of the kivcet lead flash smelting process[J]. Canadian Mining and Metallurgical Bulletin,1998,91(1022):76-81.
    [184]王光信,刘澄凡,张积树编.物理化学[M].北京:化学工业出版社.2001:47-56.
    [185]Powell NH and Sarnar SF. The use of element potential in analysis of chemical equilibrium. General Electric Co, Report R59/FPD,1959,1.
    [186]Reynolds WC. The element potenticl method for chemical equilibrium analysis. Stanford University,1996.
    [187]过道明,李天祥,叶桃红,匡军.系统平衡分析的元素势法[J].中国科学技术大学学报,1997,27(1):88-93.
    [188]R. Shimpo, Y. Watanabe, S. Goto, O. Ogawa. An application of equilibrium calculations to the copper smelting operation[C]. In:Sohn H Y, ed., Advances in sulfide smelting. Utah:Americal Institute of Mining, Metallurgical and Petroleum Engineers,1983:295.
    [189]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993:458.
    [190]Nobumasa K. The application of equilibrium calculations to a copper flash smelting furnance [J]. Journal of the Mining and Materials Processing Institute of Japan,1987,103(5):315.
    [191]谭鹏夫,张传福,张瑞瑛.QSL炼铅过程的计算机模型[J].中南工业大学学报,1996,27(5):543-546.
    [192]G M. Willis. The physical chemistry of lead extraction[A]//J. E. Dutrizac, J. A. Gonzalez, D. M. Henke, et al. Lead-Zinc 2000,2000:457.
    [193]F. Ojebuoboh. Advances in lead and zinc processing[J]. JOM,2003,55(4):18.
    [194]J.A.迪安.兰氏化学手册[M].北京:科学出版社,1991.
    [195]唐尊球.铜PS转炉与闪速吹炼技术比较[J].有色金属(冶炼部分),2003,(1):9-11.
    [196]黄辉荣.铜锍吹炼工艺的选择及发展方向[J].矿冶,2004,13(4):72-75.
    [197]Tan Pengfu, Zhang Chuanfu. Computer model of copper smelting process and distribution behaviors of accessory elements[J]. Journal of Central South University of Technology,1997, 4(1):36-41.
    [198]Tan Pengfu, Zhang Chuanfu. Thermodynamic analysis of nickel smelting process[J]. Journal of Central South University of Technology,1997,4(2):84-88.
    [199]湛垦华,沈小峰.普利高津与耗散结构理论[M].西安:陕西科学技术出版社,1982.
    [200]G Nicolis, I. Prigogine. Self-Organization in Non-Equilibrium Systems[M]. New York: Wiley-Interscience,1977.
    [201]李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社,1986.
    [202]G Nicolis, I. Prigogine.非平衡系统的白组织[M].徐锡中,陈式刚,等译.北京:科学山版社,1986.
    [203]马本.热力学与统计物理[M].北京:人民教育出版社,1982:88-93.
    [204]汪志诚.热力学·统计物理[M].北京:人民教育出版社,1981:106-109.
    [205]Tan Pengfu. APPLICATIONS OF THERMO-CHEMICAL AND THERMO-PHYSICAL MODELING IN THE COPPER CONVERTER INDUSTRIES[J]. International Peirce-Smith Converting Centennial,2009:273-295.
    [206]S. Goto,'The Application of Thermodynamic Calculations to Converter Practice', Copper and Nickel Converters[C]//R. E. Johnson. Warrendale, PA:The Metallurgical Society of AIME, 1979,33-54.
    [207]许志宏,王乐珊.无机热化学数据库[M].北京:科学出版社,1987:50-74.
    [208]王光信,刘澄凡,张积树.物理化学[M].北京:化学工业出版社,2001:47-56.
    [209]S. Goto. The application of thermodynamic calculations to converter practice, The 108th AIME annual meeting,1979:33-55.
    [210]W. A. Krivakey, R. Schuhmann. Thermodynamics of the Cu-Fe-S system at matte smelting temperatures[J]. Trans. AIME,1957,209:981-988.
    [211]MANUEL PEREZ-TELLO, HONG YONG SOHN, KIRSI ST MARIE. Experimental Investigation and Three-Dimensional Computational Fluid-Dynamics Modeling of the Flash-Converting Furnace Shaft[J]. Metallurgical and materials transactions B,2001,32(5): 847-868.
    [212]Ryan Walton, Robert Foster, David George-Kennedy. AN UPDATE ON FLASH CONVERTING AT KENNECOTT UTAH COPPER CORPORATION[C]. The Minerals, Metals & Materials Society (TMS),2005:283-294.
    [213]D. Janney, D. George-Kennedy, R. Burton. KENNECOTT UTAH COPPER SMELTER REBUILD OVER 11 MILLION TONNES OF CONCENTRATE SMELTED[C]. The Carlod Diaz Symposium on Pyrometallurgy/Proceedings of the 6th International Copper-Cobre Conference Vol.Ⅲ:Book 2,2007:431-443.
    [214]F. Kongoli, I. McBow, A. Yazawa. Phase relations of ferrous calcium silicate slag and its possible application in the industrial practice[C]. Sohn International Symposium, Advanced Processing of Metals and Materials Volume 8:International Symposium on Sulfide Smelting 2006,8:367-385.
    [215]A. Yazawa, F. Kongoli. Liquidus surface of newly defined'ferrous calcium silicate slag' and its metallurgical implications[J]. High Temperature Materials and Processes.2001,20(3):201-207.
    [216]F. Tanaka, O. Iida, Y. Takeda. Thermodynamic fundamentals of calcium ferrite slag and their application to Mitsubishi Continuous Copper Converter[C]. Yazawa International Symposium on Metallurgical and Materials Processing:Principles and Technologies; San Diego, CA, USA. 2003:495-508.
    [217]R. C. Sharma, Y. A. Chang. A Thermodynamic Analysis of the Copper-Sulfur System[J]. Metallurgical Transactions B.1980,11(4):575-583.
    [218]V. A. Bryukvin, V. M. Paretsky. Thermodynamic and kinetic properties of copper-sulfur-oxygen melt[C]. Sohn International Symposium, Advanced Processing of Metals and Materials Volume 1:Thermo and Physicochemical Principles:Non-Ferrous High-Temperature Processing.2006,1: 273-277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700