低复杂度的跳频连续相位调制传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在军事通信领域,窄带高速数据传输技术是提高频谱利用率、传输速率和系统容量及系统抗干扰能力的关键技术。其中主要包括先进的高效编码调制技术、链路自适应技术等。这些技术对于构建战术互联网和数据链提供了强有力的传输平台。本文主要研究了跳频系统中低复杂度的连续相位调制传输技术。本文的主要研究内容和成果如下:
     1.将分数多比特差分检测器FMDD进行推广,从相位形成的物理意义对FMDD的实质进行解释,并对达到最大性能增益的分数比特区间上限进行了理论分析。分析与仿真结果说明:通过将多个分数比特差分输出合并,改善了信噪比,从而获得性能增益;当分数比特区间达到不影响码元判决的最大区间时,可以获得最大的性能增益。
     2.提出了一种适用于跳频系统的低复杂度的非相干RSDSD检测器。通过合理的状态合并,简化后的检测器与最佳ML检测相比,在欧氏距离上不带来性能损失或仅带来较小的性能损失。另外接收端不需要知道确切的载波初始相位,对于跳频系统和时变信道具有较好的适应性,并且也能够容忍一定程度的频差,更适合于载波恢复困难的情况。
     3.设计了“新一代超短波窄带高速数传电台”的CPM调制解调器波形参数,并在系统样机中实现了非相干的RSDSD检测算法,进行了调制解调器的性能测试、整机的灵敏度测试和远距离通信实验,大大提升了上一代通信装备的数据传输能力。
     4.研究了一种基于判决引导相位同步的CPM准相干解调算法。该算法仅付出较小的开销就可以进一步改善跳频系统下非相干CPM检测的功率利用率,特别适合于快跳频系统中一跳数据量较少的情况。
     5.研究了SCCPM系统的误比特率联合界和系统设计准则。对于不同参数的SCCPM系统,在频谱利用率相同的条件下,权衡误比特率的上限和实现复杂度,找出性能较好的系统参数。
     6.对于SCCPM系统低复杂度的迭代解码器,提出了一种基于RSSD的简化状态SISO迭代译码算法。该算法避免了基于Laurent分解的简化译码算法的局限性,基于状态截短的减化状态SISO算法是该算法的特例。在运算复杂度相同的情况下,基于RSSD的简化状态SISO解码器可以得到比状态截短SISO解码器更小的性能损失。
     7.研究了采用非线性连续相位调制CPM的自适应跳频通信系统的信道质量估计问题,提出了一种基于信号平均相位距离的盲信道质量检测算法。该算法无需训练码元,采用盲估计,运算量小,特别适用于快跳频系统中一跳数据量较少的情况。对于常见的跳频干扰,该算法可以有效地进行信道质量的评估。
In military communication field, narrowband high speed data transmission technique is the key to improve the bandwidth efficiency, transmission rate, system capacity and the ability to combact interference. There includes more advanced high efficiency code and modulation technique, link adaptation technique and etc..These techniques provide powerful transmission platform for constructing tactical internet and data link. In this dissertation, the low complexity continuous phase modulation transmission technique is studied.The main research works and results are listed as follows:
     1. The fractional multi-bit differential detector is generalized. The essential of the technique is explained from the physical meaning of phase forming, and theoretical analysis to the upper bound of the fractional bit duration for the maximum performance improvement is given. Analysis and simulation results show that the signal-to-noise ratio is improved. Performance gain is obtained by combining multiple fractional multi-bit differential detector outputs. When the fractional bit duration is the maximal duration in which the symbol decision is not influenced, the maximum performance gain can be achieved.
     2. A noncoherent RSDSD detector with low complexity for frequency hopping system is proposed. By reasonably choosing state fusing, the reduced detector has no or little degradation in the Euclidean distance compared with the optimum ML detector. Also the exact initial carrier phase need not to be known in the receiver, which is more appropriate to the frequency hopping system and time varying channel. The detector is tolerable to frequency offset within some range and more robust to the situation when the carrier recovery is difficult.
     3. The CPM modem waveform parameters are designed for the New Generation VHF Narrowband High Speed Data Transmission Radio. The noncoherent RSDSD algorithm is implemented in the experimental system radio. The performance of the modem and the sensitivity of the radio are tested. The far distance communication experiment is made. The results show that the transmission ability of the last negeration equipment is upgraded.
     4. A quasi-coherent demodulation algorithm based on the direct decision phase synchrionization is studied. The algorithm can further improve the power efficiency of noncoherent CPM detection for frequency hopping system only at little cost. It is more appropriate to the fast frequency hopping system when there is little data in one hop frame.
     5. The bit error rate union bound and system design criteria of SCCPM system are studied. For SCCPM system with different parameters, the tradeoff between bit error rate union bound and implementation complexity should be consided at the same bandwidth efficiency, and system parameters with good performance should be found.
     6. For the low complexity iterative decoder of SCCPM system, a reduced state SISO iterative decoding algorithm based on RSSD is proposed. The algorithm avoids the limit of the reduced decoding algorithms based on Laurent decomposition, and the reduced state SISO algorithm based on state truncation is also a special case of the proposed algorithm. At the same computation complexity, the reduced state SISO algorithm based on RSSD provides even little performance loss compared with the SISO decoder based on state truncation.
     7. The channel quality estimation for adaptive frequency hopping system using nonlinear continuous phase modulation is studied, and a blind channel quality estimation algorithm based on the average signal phase distance is proposed. The algorithm is blind estimation without training symbols and with low complexity, which is appropriate to the fast frequency hopping system when there is little data in one hop frame. For usual frequency hopping interference, the algorithm can efficiently evaluate the channel quality.
引文
[1] Thomas Carter, Sungill Kim, Mark Johnson, High throughput, power and spectrally efficient communications in dynamic multipath environment, IEEE Military Communications Conference.Vol.1, 13-16 Oct.2003, pp.61-66.
    [2] Mohamed K.Nezami, Bror Peterson, Performance of efficient tactical UHF-SATCOM waveforms: occupied bandwidth, coding Gain, spectral efficiency, bit error rate, and adjacent channel interference, IEEE Military Communications Conference, 2002: 152-159.
    [3] Paul E.Voglewede, Frequency hopping with multi-h CPM ( MIL-STD-188-181B), IEEE Military Communications Conference, 2003: 1089-1094.
    [4] T.L. Tapp, R.L. Mickelson, Turbo-detected coded continuous phase modulation for military UHF satellite communications, IEEE Military Communications Conference, 2002:148-151.
    [5] J.L. Cromwell, G. Paparisto, K.M. Chugg, On the design and hardware demonstration of a robust high-speed frequency-hopped radio for severe battlefield channels, IEEE Military Communications Conference, 2002: 900- 904.
    [6] Geoghegan M. Description and performance results for the advanced range telemetry (ARTM) tier II waveform, Nova Engineering, 2000:1-14
    [7]李秉常,郝建民,多调制指数连续相位调制体制-军用遥测体制的新发展,遥测遥控, 2002, 23(5):1-7.
    [8] Joint Tactical Radio System (JTRS) Wideband Networking Waveform (WNW) Functional Description Document (FDD), JTRS Joint Program Office, 2001.
    [9] Radio communications in the digital age, volume two: VHF/UHF technology, Harris, 2000.
    [10] J.B.Anderson, T. Aulin, C. E. Sunderg, Digital Phase Modulation, New York, Plenum, 1986
    [11] FORNEY G D. Concatenated codes. Cambridge (Massachusetts): MIT Press, 1996.
    [12] W.P.Osborne, M.B.Luntz, Coherent and noncoherent detection of CPFSK, IEEE Transactions on Communications, 1974, 22(8): 1023-1036.
    [13] Marvin K.Simon, Dariush Divsalar, Maximum-likelihood block detection ofnoncoherent continuous phase modulation, IEEE Transaction on Communications, 1993, 41(1): 90-98.
    [14] John H.Lodge, Michael L.Moher, Maximum likelihood sequence estimation of CPM signals transmitted over Rayleigh flat-fading channels, IEEE Transactions on Communications, 1990, 38(6):787-794.
    [15] Johannes Huber, Weiling Liu, An alternative approach to reduced-complexity CPM-receivers, IEEE Journal on Selected Areas in Communications, 1989, 7(9): 1437-1449.
    [16] Eyuboglu,M.V., Qureshi,S.U.H, Reduced-state sequence estimation with set partitioning and decision feedback, IEEE Transactions on Communications, 1988, 36(1): 13-20.
    [17] Eyuboglu,M.V., Qureshi,S.U.H, Reduced-state sequence estimation for coded modulation on intersymbol interference channels, IEEE Journal on Selected Areas on Communications, 1989, 7(6): 989-995.
    [18] A.Svensson, Reduced state sequence detection of partial response continuous phase modulation, IEE Proceedings-I, 1991, 138(4): 256-268.
    [19] C.J.A.Levita, M.Benaissa, I.J.Wassell, Adaptable Viterbi detector for a decomposed CPM model over rings of intergers, IEE Proceeding-Communication, 2000, 147(3): 137-143.
    [20] R.Balasubramanian, M.P.Fitz and J.V. Krongmeier, Suboptimum symbol-by-symbol demodulation of continuous phase modulated signals, Proceedings of the 29th Asilomar Conference on Signals, Systems and Computers, 1996, vol 2., pp.16-20.
    [21] Y.Li, B.Vucetic and Y.Sato, Optimum soft-output detection for channels with intersymbol interference, IEEE Transactions on Information Theory, 1995, 41(3): 704-713.
    [22] Mark J. Miller, Detection of CPFSK signals using per survivor processing, IEEE Military Communications Conference, 1998: 524-528.
    [23] G.K.Kaleh,Differential detection via the Viterbi algorithm for offset modulation and MSK-type signals, IEEE Transactions on Vehicular Technology, 1992, 41(4): 401-406.
    [24] H.Leib, S.Pasupathy, Noncoherent block demodulation of MSK with inherent and enhanced encoding, IEEE Transactions on Communications, 1992, 40(9): 1430-1441.
    [25] A.Abrardo, G.Benelli, G.Cau, Multiple-symbol differential detection of GMSKfor mobile communications, IEEE Transactions on Vehicular Technology, 1995, 44(3): 379-389.
    [26] S.T.Anderson, N.A.B.Svensson, Noncoherent detection of convolutionally encoded continuous phase modulation, IEEE Journal on Selected Areas in Communications, 1989, 7(9):1402-1414.
    [27] D.Makrakis and K.Feher, Multiple differential detection of continuous phase modulation signals, IEEE Transactions on Vehicular Technology, 1993, 42(2): 186-196.
    [28] D.Raphaeli, Noncoherent coded modulation, IEEE Transactions on Communications, 1996, 44(2): 172-183.
    [29] D.Raphaeli, Riccardo Raheli, Noncoherent sequence detection of continuous phase modulation, IEEE Transactions on Communications, 1999, 47(9): 1303-1307.
    [30] D.Raphaeli, Riccardo Raheli, Noncoherent sequence detection of CPM, Electronics Letters, 1998, 3(3): 259-261.
    [31] Giulio Colavolpe, Riccardo Raheli, Reduced-complexity detection and phase synchronization of CPM signals, IEEE Transactions on Communications, 1997, 45(9): 1070-1079.
    [32] G.K.Kaleh, Simple coherent receivers for partial response continuous phase modulation, IEEE Journal on Selected Areas in Communications, 1989, 7(9): 1427-1436.
    [33] O.Andrisano, M.Chiani, The first Nyquist criterion applied to coherent receiver design for generalized MSK signals, IEEE Transactions on Communications, 1994, 42(2-4): 449-457.
    [34] A.N.D’Andrea, A.Ginesi, U.Mengali, Frequency detectors for CPM signals, IEEE Transactions on Communications, 1995, 43(2-4): 1828-1837.
    [35] K.Helen Hwang, Mark A.Wickert, A soft output GMSK demodulator using a 4-Filter MLSE for small BT product, IEEE International Conference on Communications, 2002, vol.5: 2957-2961.
    [36] B.Rimoldi, A decomposition approach to CPM, IEEE Transactions on Information Theory, 1988, 34(2): 260-270.
    [37] P.A.Laurent, Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (AMP), IEEE Transactions on Communications, 1986, 34(2): 150-160.
    [38] U.Mengali, M.Morelli, Decomposition of M -ary CPM Signals into PAMwaveforms, IEEE Transactions on Information Theory, 1995, 41(5): 1265-1275.
    [39] Linda M.Zeger and Hisashi Kobayashi, MLSE for CPM Signals in a Fading Multipath Channel, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 1999, pp.511-515.
    [40] Tong Zhang, Jie Wu, Gray J.Saulnier, Efficient coherent detector VLSI design for continuous phase modulation, The Thirty-Seventh Asilomar Conference on Signals,System and Computers, 2003,vol.2, pp.1663-1666.
    [41]江涛,葛临东, CPM信号引导码元辅助检测方案,信息工程学院学报, 1998, 17(4): 36-41.
    [42]杨龙祥, Myoungjin,汪海燕,部分响应连续相位调制信号在卫星移动信道中的误比特率性能分析,电子与信息学报, 2002, 24(8): 1088-1095.
    [43]李斌,多进制CPFSK的减少状态网格图,电子学报, 1996, 24(10): 100-102.
    [44]江涛,葛临东,卷积编码CPM信号的减少状态译码解调,信息工程学院学报, 1999, 18(1): 55-58.
    [45]郑洪明,施卫香,毕国光, S.H.Leung,一种应用CPM扩频调制的Turbo CDMA系统,电子学报, 2002, 30(10): 1466-1469.
    [46]杨龙祥,傅海阳,酆广增,汪海燕,阴影移动卫星信道中采用DPD和MRC的PRCPM的检测性能,电子学报, 2001, 29(6): 766-769.
    [47] Abbas Yongacoglu, Dimitrios Makrakis, Kamilo Feher, Differential detection of GMSK using decision feedback, IEEE Transactions on Communications, 1988, 36(6): 641-649.
    [48] Kee-Hoon Lee, Jong-Soo Seo,Fractional multi-bit differential detection of continuous phase modulation, ETRI Journal, 2004, 26(6): 635-640.
    [49] Paul Ho, Jae Hyung Kim, Pilot symbol-assisted detection of CPM schemes operating in fast fading channels, IEEE Transactions on Communications, 1996, 44(3): 337-347.
    [50]彭翔,跳频环境下CPM同步算法的研究,中国科学院研究生院硕士学位论文, 2004.
    [51] Bernard Sklar, Digital Communications Fundamentals and Applications, Publishing House of Electronics Industry, 2005.
    [52] G.Lindell, C.E.Sundberg, T.Aulin, Minimum euclidean distance for combinations of short rate 1/2 convolutional codes and CPFSK modulation, IEEE Transactions on Information Theory, 1984, 30(3): 509-519.
    [53] G.Lindell, On Coded Continuous Phase Modulation, Ph.D.dissertation, Dept.Telecomm.Theory, Univ.of Lund, Sweden, 1985.
    [54] S.V.Pizzi, S.G.Wison, Convolutional coding combined with continuous phase modulation, IEEE Transactions on Communications, 1985, 33(1): pp.20-29.
    [55] F.Morales-Moreno, S.Pasupathy, Structure, optimization and realization of FFSK trellis codes, IEEE Transactions on Information Theory, 1988, 34(4): 730-741.
    [56] P.Ho, P.J.Mclane, Spectrum, distance and receiver complexity of encoded continuous phase modulation, IEEE Transactions on Information Theory, 1988, 34(5): 1021-1032.
    [57] F.Morales-Moreno, W.Holubowicz, S.Paupathy, Optimization of trellis coded TFM via matched code. IEEE Transactions on Communications, 1994, 42(2-4): 1586-1594.
    [58] J.L.Massey, T.Mittelholzer, Convolutional codes over rings, in Proc. 4th Joint Swedish-Soviet International Workshop Information Theory, 1989, pp.14-18.
    [59] R.H.-H.Yang, D.P.Taylor, Trellis-coded continuous-phase frequency-shift keying with ring convolutional codes, IEEE Transactions on Information Theory, 1994, 40(4): 1057-1067.
    [60] B.Rimoldi, Q.Li, Coded continuous phase modulation using ring convolutional codes, IEEE Transactions on Communications, 1995, 43(): 2714-2720.
    [61] G. Karam, I.Fernandez, V.Paxal, New coded 8-ary CPFSK schemes, IEEE International Conference on Communications, 1993, pp.1059-1063.
    [62] S.Benedetto, D.Divasalar, G.Montorsi, and F.Pollara, Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding, IEEE Transactions on Information Theory, 1998, 44(3):909-926.
    [63] Imai H, Hirakawa S. A new multiple coding method using error-correcting codes. IEEE Transactions on Information Theory, 1977, IT-23:371-377.
    [64] S.Benedetto, D.Divsalar, G.Montorsi, F.Pollara, Serially concatenated trellis coded modulation with iterative decoding, IEEE International Symposium on Information Theory, 1997, P.8.
    [65] P.Hoeher, J.Lodge, Turbo DPSK: iterative differential PSK demodulation and channel decoding, IEEE Transcations on Communications, 1999, 47(6): 837-843.
    [66] P.Moqvist, T.Aulin, Serially concatenated continuous phase modulation with iterative decoding, IEEE Transcations on Communications, 2001, 49(11): 1901-1915.
    [67] K.R.Narayanan, G.L.Stuber, Performance of trellis coded CPM with iterative demodulation and decoding, IEEE Transactions on Communications, 2001, 49(4):676-687.
    [68] P.Moqvist, Serially concatenated systems: An iterative decoding approach with application to continuous phase modulation, Lic.Eng. thesis, Chalmers Univ. of Technology, G?teborg, Sweden, 1999. Available: http://www.ce.chalmers.se.
    [69] P.Moqvist, T.Aulin, Power and bandwidth efficient serially concatenated CPM with iterative decoding, IEEE Global Telecommunication Conference, 2000, vol. 2, pp.790-794.
    [70] Mark R.Shane, Richard D.Wesel, Reduced complexity iterative demodulation and decoding of serial concatenated continuous phase modulation, IEEE International Conference on Communications, 2002, vol.3, pp.1672-1676.
    [71] Victor F.Szeto, Subbarayan Pasupathy, Iterative decoding of serially concatenated convolutional codes and MSK, IEEE Communications Letters, 1999, 3(9): 272-274.
    [72] R.W.Kerr, P.J.McLane, Coherent detection of interleaved trellis encoded CPFSK on shadowed mobile satellite channels, IEEE Transactions on Vehicular Technology, 1992, 41(2): 159-169.
    [73] L.Yiin, G.L.Stuber, Error Probability for coherent detection of trellis-coded partial response CPM on Rician fading channels, IEEE Transactions on Vehicular Technology, 1996, 45(2): 358-363.
    [74] L.Yiin, G.L.Stuber, Noncoherently detected trellis-coded partial response CPM on mobile radio channels, IEEE Transactions on Communications, 1996, 44(8): 967-975.
    [75] Christophe Brutel, Joseph Boutros, Fabrice Belveze, Serial encoding and iterative detection of continuous phase modulation, IEEE Global Telecommunication Conference, 1999, pp.2375-2379.
    [76] F.Abrishmkar, E.Biglieri, Suboptimum detection of trellis-coded CPM for transmission on bandwidth- and power-limited channels, IEEE Transactions on Communications, 1991, 39(7): 1065-1074.
    [77] Giorgio M.Vitetta, Umberto Mengali, A Noncoherent receiver for interleaved trellis-coded CPFSK signals transmitted over frequency-flat fading channels, IEEE Transactions on Vehicular Technology, 2000, 49(1): 193-201.
    [78] Mark R.Shane, Richard D.Wesel, Parallel concatenated Turbo codes for continuous phase modulation, IEEE Wireless Communications and Networking Conference, 2000, vol.1, pp.147-152.
    [79] John h.Gass,Jr, Performance of a frequency-hop system with Turbo trellis-coded modulation in partial-band interference, IEEE Military CommunicationsConference, 2000, vol.2, pp.866-870.
    [80] Manjeet Singh, Ian J.Wassell, SOVA decoding of concatenated convolutional encoders and CPM schemes over AWGN and fading channels, IEEE International Conference on Personal Wireless Communications, 2000, pp.152-156.
    [81] S.Kons, I.Kalet, Adjacent channel interference susceptibility of serial concatenated continuous phase modulation, IEEE International Conference on Communications, 2001, vol.1, pp.284-289.
    [82] P.Moqvist, T.Aulin, Convergence analysis of SCCPM with iterative decoding, Global Telecommunications Conference 2001, vol.2, pp.1048-1052.
    [83] Wayne G.Phoel, Iterative demodulation and decoding of coded GMSK, IEEE Military Communications Conference, 2001, vol.2, pp.1170-1174.
    [84] P.Moqvist, T.Aulin, Multiuser SCCPM with iterative decoding, Electronics Letters, 2001, 37(19): 1174-1176.
    [85] Anders Hansson, Keith M.Chugg, Tor Aulin, On forward-adaptive versus forward/backward-adaptive SISO algorithm for Rayleigh fading channels, IEEE Communications Letters, 2001, 5(12): 477-479.
    [86] Krishna R.Narayanan, Gordon L.Stuber, Performance of trellis-coded CPM with iterative demodulation and decoding, IEEE Transactions on Communications, 2001, 49(4): 676-687.
    [87] Mark R.Shane, Richard D.Wesel. Reduced complexity iterative demodulation and decoding of serial concatenated continuous phase modulation, The Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, 2001, vol.1, pp.285-289.
    [88] Mark R.Shane, Richard D.Wesel. Reduced complexity iterative demodulation and decoding of serial concatenated continuous phase modulation, IEEE International Conference on Communications, 2002, vol.3, pp.1672-1676.
    [89] Par Moqvist and Tor M.Aulin, Serially concatenated continuous phase modulation with iterative decoding, IEEE Transactions on Communications, 2001, 49(11): 1901-1915.
    [90] John H.Gass,Jr, Christopher J.Langford, Iterative demodulation and decoding for a mobile packet system with parallel concatenated trellis-coded modulation, IEEE Aerospace Conference Proceeding, 2002, vol.3, pp.1355-1360.
    [91] Y.Gottfried, J.Davidson, Non-coherent iterative demodulation and decoding of serially concatenated continuous phase modulation, The 22nd Convention of Electrical and Electronics Engineers in Israel, 2002,pp.186-188.
    [92] Qing Zhao, Hasung Kim, Gordon L.Stuber, Adaptive iterative phase synchronization for serially concatenated continuous phase modulation, IEEE Military Communications Conference, 2003,vol.1, pp.78-83.
    [93] Andrew P.Worthen, Peter H.Wu, CPM optimization for low-complexity serial concatenated CPM, IEEE Military Communications Conference, 2003, vol.1, pp.46-50.
    [94] Krishna R.Narayanan, Ibrahim Altunbas, R.Sekhar Narayanaswami, Design of serial concatenated MSK schemes based on density evolution, IEEE Transactions on Communications, 2003, 51(8): 1283-1295.
    [95] Xiaolin Luo, Iterative noncoherent sequence detection and decoding of serially concatenated coded MSK, IEEE Military Communications Conference, 2003, vol.1, pp.51-56.
    [96] Ozgur Dural, John G.Proakis, Performance bounds on error probability of serially concatenated convolutional codes and CPM in fading channels, IEEE Wireless Communications and Networking, 2003, vol.1, pp.273-277.
    [97] Ozgur Dural, John G.Proakis, Upper bounds on error probability of serially concatenated convolutional codes and MSK in AWGN and fading channels, IEEE International Conference on Communications, 2003, vol.5, pp.3095-3099.
    [98] B.Scanavino, G.Monotorsi, S.Benedetto, Convergence properties of iterative decoders working at bit and symbol level, IEEE Global Telecommunications Conference, 2001, pp.1037-1041.
    [99] C.Fragouli, R.Wesel, Bit vs. symbol interleaving for parallel concatenated trellis coded modulation, IEEE Global Telecommunications Conference, 2001, pp.931-935.
    [100] A.Grant, Convergence of on-binary iterative decoding, IEEE Global Telecommunications Conference, 2001, pp.1058-1062.
    [101] Ming Xiao and Tor M.Aulin, Serially concatenated continuous phase modulation with symbol interleavers: performance, properties and design principles, IEEE Global Telecommunications Conference, 2004, pp.179-183.
    [102] Giulio Colavolpe, Gianluigi Ferrari, Riccardo Raheli, Reduced-state BCJR-type algorithms, IEEE Journal on Selected Areas in Communications, 2001, 19(5): 848-859.
    [103] S.Benedetto,M.Mondin,G.Montorsi, Performance evaluation of trellis-coded modulation schemes, Proceedings of the IEEE, 1994, 82(6): 833-855.
    [104] S.Benedetto, G.Montorsi, Unveiling turbo codes: some results on parallelconcatenated coding schemes, IEEE Transactions on Information Theory, 1996, 42(2): 409-428.
    [105] S.Benedetto , D.Divsalar , G.Montorsi, F.Pollara , Serial concatenation of interleaved codes: performance analysis, design, and iterative decoding, IEEE Transactions on Information Theory, 1998, 44(3): 909-926.
    [106]郭文彬,杨鸿文,杨大成,编码GMSK的一种新的迭代检测方法,北京邮电大学学报, 2004, 27(3): 58-62.
    [107] Xiaopeng Chen, Keith M. Chugg. Reduced-state soft-input/soft-output algorithms for complexity reduction in iterative and non-iterative data detection, IEEE International Conference on Communications, 2000, vol.1, pp.6-10.
    [108] G.Colavolpe, G.Ferrari, R.Raheli, Reduced state BCJR-type algorithms, IEEE International Conference on Communications, 2000, vol.1, pp.460-464.
    [109] Kyuhyuk Chung, Keith M. Chugg, Jun Heo, Reduced state adaptive SISO algorithms for serially concatenated CPM over frequency-selective fading channels, IEEE Global Telecommunications Conference, 2001, Vol.2, pp.1162-1166.
    [110] Kyuhyuk Chung, Jun Heo, RS-A-SISO algorithms for serially concatenated CPM over fading channels and density evolution analysis, Electronics Letters, 2003, 22(39): 1597-1598.
    [111] C.Brutel, J.Boutros, P.Mege, Iterative joint channel estimation and detection of coded CPM, International Zurich Seminar on Broadband Communication, 2000, pp.287-292.
    [112] M.J.Gertsman, J.H.Lodge, Symbol-by-symbol MAP demodulation of CPM and PSK signals on Rayleigh flat-fading channels, IEEE Transactions on Communications, 1997, 45(7): 788-799.
    [113] Eugenio Chiavaccini, Giorgio, A BEM-based detector for CPM Signals transmitted over frequency-flat fading channels, IEEE Transactions on Communications, 2003, 2(3):409-412.
    [114] Anders A.Hansson, Tor M.Aulin, Iterative array detection of CPM over continuous-time Rayleigh fading channels, IEEE International Conference on Communications, 2001, vol.7, pp.2221-2225.
    [115] J.Zander, Adaptive Frequency Hopping in HF Communications, IEEE Military Communications Conference, 1993, vol.2, pp.600-604.
    [116] Dag Stranneby, Per Kallquist, Adaptive frequency hopping in HF environments, IEEE Military Communications Conference, 1993, vol.1, pp.338-341.
    [117] J.Zander, G.Malmgren, Adaptive frequency hopping in HF Communications, IEE Proceeding-Communications, 1995, 142(2): pp.99-105.
    [118] Gunnar Andersson, LPI Performance of an Adaptive Frequency-Hopping System in an HF Interference Environment, IEEE 4th International Symposium on Spread Spectrum Techniques and Applications Proceedings, 1996,vol.2, pp.903-907.
    [119] Qingxin Chen, Elvino S.Sousa, Multicarrier CDMA with adaptive frequency hopping for mobile radio systems, IEEE Journal on Selected Areas in Communications, 1996, 14(9): 1852-1996.
    [120] Y.-H. You, C.-H.Park, M.-C.Ju, K.-W.Kwon, J.-W.Cho, Adaptive frequency hopping scheme for interference-limited WPAN applications, Electronics Letters, 2001, 37(15): 976-978.
    [121] Adaptive frequency hopping for reduced interference between bluetooth and wireless LAN, White Paper, Charles Hodgdon Ericsson Technology Licensing, May 2003.
    [122]谭俊峰,自适应跳频通信系统仿真研究,哈尔滨工程大学硕士论文, 2005.
    [123]徐润,王平,鲜继清,蓝牙与802.11b的非协作共存技术AFH,计算机应用, 2003, vol.23, pp.446-449.
    [124]沈连丰,皱乐,宋扬,宋铁成,一种适用于WPAN应用环境的高速自适应跳频系统及其性能分析,电子学报, 2002, 30(10): 1540-1543.
    [125]谷金山,沈连丰,一种提高WPAN吞吐量的冲突避免自适应跳频技术,电路与系统学报, 2005, 10(1): 111-114.
    [126]李一兵,谭俊峰,刘明伟,自适应跳频通信系统抗干扰性能分析,信息技术, 2004, 28(5): 46-48.
    [127]宋国森,姜霞,修国浩,自适应跳频技术在蓝牙系统中的应用及其性能分析,北京电子科技学院学报, 2003, 11(2): 35-37.
    [128]马小骏,超短波自适应跳频系统的设计与实现,浙江大学硕士学位论文, 2004.
    [129]彭任斌,自适应跳频中的信道估计算法研究,西安电子科技大学硕士论文, 2004.
    [130] Umberto Mengali, Aldo N.D’Andrea, Synchronization Techniques for Digital Receivers, Plenum Press, New York and London, 1997.
    [131] G.Wade, M.Fu, R.Jakobs, J.Ning, and etc., On CPM system design and simulation, http://www.eng.newcastle.edu.au/~mf140/home/Papers/ICITA_FINAL.pdf
    [132] Tommy Svensson, Spectrally Efficient Continuous Phase Modulation, PhD.thesis, Chalmers University of Technology, 2002.
    [133] Par Moqvist, Multiuser Serially Concatenated Continuous Phase Modulation, PhD.thesis, Chalmers University of Technology, 2002.
    [134] Yufei Wu, Design and Implementation of Parallel and Serial Concatenated Convolutional Codes, PhD.thesis, Virginia Polytechnic Institute and State University, 1999.
    [135]金勇,连续相位调制的信道质量估计算法研究,西安电子科技大学硕士论文, 2005.
    [136] John G. Proakis, Digital Communications (Third Edition), Publishing House of Electronics Industry, Beijing, 1998.
    [137]张厥盛,郑继禹,万心平,锁相技术,西安电子科技大学出版社, 1994.
    [138]郭梯云,杨家玮,李建东,数字移动通信,人民邮电出版社, 2001.
    [139]刘东华, Turbo码原理与应用技术,电子工业出版社, 2004.
    [140]李立华,王勇,张平,移动通信中的先进信号处理技术,北京邮电大学出版社, 2005.
    [141] William H.Tranter等著,肖明波等译,通信系统仿真原理与无线应用,机械工业出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700