黄原胶生物降解及其寡糖生理活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能性寡糖多来自于细胞壁多糖水解,在植物诱抗、抑制病原菌、增强免疫力、改善胃肠功能等方面具有重要生理活性。黄原胶是植物致病菌野油菜黄单胞菌所分泌的胞外多糖,其主链类似纤维素很难降解,除作为生物胶集增稠、悬浮、乳化、稳定于一体外,还是植物毒素因子,能引起十字花科植物黑腐病。本论文研究目的是通过生物方法降解黄原胶,进而去除十字花科植物黑腐病的毒素因子,同时探讨黄原胶降解后所产寡糖是否具有特殊的生理活性。
     从土壤中分离出黄原胶降解菌株XT11。经菌体表观特征、菌落形态、生理生化鉴定等传统细菌分类鉴定,以及G+C含量、16S rRNA基因序列相似性比对和系统发育分析等现代分子生物学鉴定,最终确定菌株XT11是微杆菌属Microbacterium一新种。与M.hydrocarbonoxydans亲缘关系最近,相似性97.8%,遗传距离0.008。黄原胶降解菌株XT11的16S rRNA基因序列GenBank登陆号为DQ350882。同时对微杆菌属的进化遗传关系进行聚类分析,微杆菌属共分两大簇群,其中黄原胶降解菌XT11与近缘菌M.hydrocarbonoxydans构成一子分支,置信度为85%。
     降解菌Microbacterium sp.XT11分泌胞外黄原胶降解酶,降解黄原胶主链使其粘度降低,产黄原胶寡糖。黄原胶降解酶为底物诱导酶。黄原胶、CMC、淀粉、麦芽糖等结构相似,均是其诱导剂,其中黄原胶诱导作用最佳。黄原胶降解菌XT11适宜发酵产酶条件为:0.3%黄原胶、0.3%酵母浸粉的基础培养基,初始pH7.0,28℃160r/min溶氧培养。培养基外加葡萄糖,虽促进XT11菌体自身生长,但却抑制黄原胶诱导产酶。蔗糖、乳糖、麦芽糖、淀粉和纤维素等碳源,也不同程度抑制黄原胶降解酶的诱导合成。
     从黄原胶降解菌XT11发酵产酶特性来看,随着发酵培养时间延长,降解菌不断增长,发酵液粘度迅速下降,黄原胶降解酶活力逐渐上升。发酵28h时酶活达到最高23U/mL。黄原胶降解酶酶学性质初步分析表明,作用黄原胶最适反应温度40℃,最适反应pH值6.0,最适底物浓度0.4%(w/v)。当葡萄糖浓度高于0.06%时,对黄原胶降解酶的酶促反应具有抑制作用。且葡萄糖浓度越高,抑制作用越强。黄原胶降解酶使酶解反应液粘度和还原糖含量呈现良好的对应关系,说明黄原胶类似纤维素的主链发生降解,这正是黄原胶降解产生寡糖所必需的。
     黄原胶降解菌XT11降解黄原胶可得到不同粘度/还原糖比值的黄原胶寡糖。黄原胶降解寡糖生理活性研究表明,黄原胶自身无清除自由基能力,其降解寡糖却具有清除羟基自由基活性,且活性与寡糖浓度基本呈正相关。寡糖聚合度是影响活性的主要因素,其中黄原胶寡糖S6(粘度/还原糖比40.9)羟基自由基清除能力最强。黄原胶寡糖只抑制植物病原菌野油菜黄单胞菌Xanthomonas campetris生长,而对大肠杆菌Esherichiacoli、胡萝卜软腐欧文氏菌Erwinia carotovora,伤寒沙门氏菌Salmonella typhi、绿脓杆菌Pseudomonas aeruginosa、变形链球菌Streptococcus mutans、金黄色葡萄球菌Staphylococcus aureus、枯草芽孢杆菌Bacillus subtilis等其它供试病原菌均无抑制作用。黄原胶寡糖使大豆子叶呈现诱抗活性,诱导植物产生防御反应,提高植物抗病性。
     进一步研究发现,黄原胶寡糖S4、S5(粘度/还原糖比分别为232.5和101.4)对野油菜黄单胞菌野油菜致病变种(Xcc)抑菌活性尤为显著。黄原胶寡糖不仅抑制野油菜黄单胞菌野油菜致病变种(Xcc)生长,还阻止其合成毒素因子黄原胶。同时,黄原胶寡糖还部分抑制野油菜黄单胞菌野油菜致病变种(Xcc)所分泌的作为致病因子的某些酶的活性,如纤维素酶、几丁质酶、果胶酶和蛋白酶等。总之,黄原胶寡糖有明显的防治野油菜黄单胞菌引起十字花科植物黑腐病的生理活性,有开发为生物农药的潜在优势。
Oligosaccharides have been proved to have some bioactivities such as defense response, antimicrobe,immunity reinforcement,etc.,which were degraded mainly from constituent polysaccharides of plant or pathogen cell wails.Xanthan is exopolysaccharide produced by phytopathogen Xanthomonas campestris,which was defined as a virulence factor of X. campestris inducing black rot of cruciate flower.Xanthan could not be easily degraded by most microorganisms because xanthan consists of a main chain similar to cellulose.The aim of this article is to search for a microorganism degrading xanthan to form bioactive oligosaccharides and study the special physiological activity of the formed oligosaccharides.
     One strain XT11 capable of degrading xanthan was isolated from soil samples.Strain XT11 should be assigned to the genus Microbacterium because the determinative taxonomic properties of strain XT11 were consistent with that of the genus Microbacterium.This agrees with the phylogenetic analysis via 16S rRNA gene sequence similarity,in which the strain XT11 is clustered in the genus Microbacteriurn.The closest genetic distance occurred between XT11 and M.hydrocarbonoxydans,the similarity of which is 97.8%.Access number of 16S rRNA gene in GenBank is DQ350882.According to the cluster analysis of the heredity relation of Microbacterium,the Microbacteriurn is divided to two cluster groups. Strain XT11 and peri-edge bacterium M.hydrocarbonoxydans is classified as a son branch. The confidence level is 85%.
     Strain Microbacteriurn sp.XT11 produced exoenzyme degrading glycoside linkage in the backbone of xanthan,leading to the decrease in viscosity and produce xantho-oligosaccharides.The xanthan-degrading enzyme was induced by xanthan and its glycosidic anaiogus CMC,starch and maltose.The optimal medium constituent for xanthan-degrading strain XT11 is 0.3%xanthan and 0.3%yeast extract at the initial pH7.0. The optimum culture temperature is 28℃.The glucose added to the medium promotes the cell growth of the strain XT11,but inhibits the enzyme production induced by xanthan.The carbon source sucrose,lactose,maltose,starch and starch also inhibit the induction of xanthan-degrading enzyme by xanthan.
     The culture time course of xanthan-degrading strain XT11 showed that the viscosity of fermentation broth was quickly descent during cell growth,while the activities of xanthan-degrading enzymes was increased gradually.The highest enzyme activity was obtained at 28-h incubation time,which is 23 U/mL.The properties of xanthan-degrading enzyme showed that the optimal reaction temperature was 40℃,the optimal pH was 6.0,the optimal concentration of substrate was 0.4%(w/v).The concentration of glucose greater than 0.06%inhibits the enzymatic reaction of xanthan-degrading enzyme.A good correlation occurred at between the viscosity decrease and reducing sugar release when xanthan was degraded by xanthan-degrading enzyme,which suggested that the backbone of molecules xanthan was degraded endogenously.This is just necessary for xantho-oligosaccharide production.
     Xantho-oligosaccharides with different ratio of viscosity and reducing sugars were produced from xanthan by xanthan-degrading enzyme.The xantho-oligosaccharides showed the ability to scavenging hydroxy free radicle.The activity is correlated to the concentration of oligosaccharide.The drgree of polymerization is the key factor affecting the activities of oligosaccharide.The xantho-oligosaccharide S6(the value of viscosity and reducing sugar is 40.9) has the strongest ability to discard hydroxyl free radical.Xantho-oligosaccharide could induce defense response in soybean cotyledon,which can protect plants against microbial disease.
     The xanthan-degrading oligosaccharides inhibit the growth of pathogen Xanthomonas campestris which is the pathogenic bacteria variety,but not inhibit other supplied pathogenic bacteria such as Esherichia coli,Erwinia carotovora,Salmonella typhi,Pseudomonas aeruginosa,Streptococcus mutans,Staphylococcus aureus and Bacillus subtilis. Xantho-oligosaccharide S4,S5(the ratio of viscosity and reducing sugar is 232.5 and 101.4 respectively) showed the great activity of bacteriostasis to pathogen Xanthomonas campestris. The xantho-oligosaccharide could inhibit the cells growth of Xanthomonas campestris and prevent the synthesis of virulence factor xanthan.Also it can inhibit partially the production of of cellulase,chitinase,pectinase and proteinase by Xanthomonas campestris.The results showed that the xantho-oligosaccharide had potential application in protection of plants against black rot of cruciferae caused by Xanthomonas campestris.
引文
[1]狄维,王林,王升启.寡糖及其衍生物的生物活性研究进展.中国药物化学杂志.2002,4:59-64.
    [2]香红星,董仲华,刘亚力.功能性寡糖研究发展.中国饲料,2002,14:17-19.
    [3]Jeon Y J,Park P J,Kim S K.Antimicrobial effect of chitooligosaccharides produced by bioreactor.Carbohydrate Polymers,2001,44:71-76.
    [4]Christakopoulos P,Katapodisa P,Kalogeris E,et al.Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases.International Journal of Biological Macromolecules,2003,31:171-175.
    [5]Terakubo S,Takemura H,Yamamoto H,et al.Antimicrobial activity of eveminomicin against clinical isolates of Enterococcus spp.,Staphylococcus spp.,and Streptococcus spp.tested by Etest.Infect Chemother,2001,7:263-266.
    [6]雍元,江丽君.Hib和脑膜炎球菌脂寡糖的作用.生物制品,2004,12:12-13.
    [7]杜昱光,白雪芳,虞星炬等.寡聚糖类物质生理活性研究.中国生化药物,1997,18(5):268-269.
    [8]Kaplan H,Hutkins R W.Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195.Department of Food Science and Technology,2003,69:2217-2222.
    [9]Katsuraya K,Nakashima H,Yamamoto N,et al.Synthesis of sulfated oligosaccharide glycosides having high anti-HIV activity and the relationship between activity and chemical structure.Carbohydr Res,1999,315:234-242.
    [10]Jensen K J,Meldal M,Bock K.Glycosylation of phenols preparation of 1,2-cis and 1,2-trans glycosylated tyrosine derivatives to be used in solid-phase glycopeptide synthesis.Chem Soc,1993,17:2119-2129.
    [11]Hong N,Ogswa T.Stereo controlled syntheses of phytoalexin elicitor-activeβ-D-glucohersoside and γ-D-glucohersoside.Tetrahedron Lett,1990,31:3197-3183.
    [12]Suzuki K,Tokro A,Okawa Y,et al.Enhancing effects of N-acetyl-chitooligosaccharides on the active oxygen-generating and microbicidal activities of peritoneal exudate cells in mice.Chem Pharm Bull,1985,33:886-890.
    [13]Ouchi T,Banba Matsumoto T.Synthesis and antitumor activity of conjugates of 5-fluorouracil and chitooligosaccharides involving a hexamethylene spacer group and carbamoyl bonds.Drug Des Dellv,1990,6:281-289.
    [14]Shon Y H,Nam K S.Inhibition of poluamine biosynthesis in Acanthamoeba castellanii and 12-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase activity by chitosanoligosaccharide.Biotechnol Lett,2003,25:701-704.
    [15]Tokoro A,Suzuki S,Okawa Y,et al.Effect of N-acetyl-chitooligosaccharides on mouse peritoneal exudate cells.Ishigami,1985,31:819-823.
    [16]Tokro A,Kobayashi M,Tatewaki N,et al.Protective effect of N-acetyl chitohexaose on Listeria monocytogenes infection in mice.Microbiol Immunol,1989,33:357-369.
    [17]李信,许雷,刘四朝.黄原胶对小鼠免疫功能的影响.微生物学杂志,1999,19:16-19.
    [18]Lyons T P,Jsvwues K A,Nottingham A.Competitive exclusion of salmonella using bacterial culture and oligosaccharide Technology.Bio and the Feed Industry,1995,16:383-388.
    [19]刘福君,赵修南,汤建芳等.地黄低聚糖对快速老化模型小鼠造血功能的影响.中国药理学通报,1997.13:509-512
    [20]黄丽萍,刘宗明.几丁寡糖、壳寡糖的应用与开发.中国微生态学杂志,1998,10:180-183.
    [21]崔承彬,场明,姚志伟等.中药巴戟天中抗抑郁活性成分的研究.中国中药杂志,1995,20:36-40.
    [22]Roberfroid M,Slavin J.Nondigestible oligosaccharides.Critical reviews in Food Science and Nutrition,2000,40(6):461-480.
    [23]Saksena R,Deepak D,Khare A,et al.A novel pentasaccharide from immunostimulant oligosaccharide fraction of buffalo milk.Biochim Biophys Acta,1999,142(8):433-445.
    [24]郭忠武,王来曦.糖化学研究进展,化学进展,1995,26:10-29.
    [25]魏远安,姚评佳.蔗果低聚糖一种新的功能食品配料.食品工业,2002,2:36-37.
    [26]于敏,魏华.低聚果糖的利用与开发.食品工业,1998,4:33-35.
    [27]魏远安.蔗果低聚糖的研究和生产应用.食品与发酵土业,2000,26(1):48-54.
    [28]Gibson G R,Roberfroid M B.Dietary modulation of the human colonic microbiota:introducing the concept of prebiotics.J.Nutr.,1995,125:1401-1412.
    [29]下业军,吴天星,戴贤君等.果寡糖及其在饲料业中的应用.饲料工业,1999,20(10):21-23.
    [30]叶开.黄原胶技术的发展及其在食品工业中的应用.食品论坛,2002,2:5-7
    [31]Kennedy J F,Bradshaw I J.Production,properties and application of xanthan.Prog Ind Microbiol,1984,19:319-371.
    [32]Rogovin S P,Anderson R F,Cadmus M C.Production of polysaccharide with Xanthomonas campestris.J Biochem Microbiol Technol 1961,3:51-63.
    [33]Garcia-Ochoa F,Santos V E,Casas J A,et al.Xanthan gum:Production,Recovery,and Properties.Biotechnology Advances.2000,18:549-579.
    [34]向晓力,吴小亮.黄原胶的生产和应用.湖北化工.2001,3:34-35.
    [35]Jansson P E,Keene L,Lindberg B.Structure of the extracelluar polysaccharide from xanthomonas campestris Carbohydr Res.,1985,45:275-282.
    [36]Sandford P A,Pittsley J E,Knutson CA,et al.Variation in Xanthomonas campestris NRRL B-1459:characterization of xanthan products of differing pyruvic acid content.Proceedings of the American Chemical Society Symposium Series,1977,45:192-210.
    [37]Kulicke W M,Van Eikeren A.Determination of the microstructure of the fermentation polymer xanthan.Makromol Chem,Macromol Syrup,1992,61:75-93.
    [38]Tortes L G,Brito E,Galindo E,et al.Viscous behavior of xanthan aqueous solutions from a variant strain of Xanthomonas campestris.J Ferment Bioeng,1993,75(1):58-64.
    [39]Moorhouse R.Extracelluar microbial polysaccharides.America Chemical Society Symposium 45.Sanford:Stanford Universit press,1977:99-102.
    [40]Deall C M,Morris E A.Determination of the microstructure of fermentation polymer xanthan gum.American Chemical Society Symposium 45.Stanford:Stanford University press,1977:74-181.
    [41]石宝忠.黄原胶调研报告.化工科技市场,2003,11:23-24.
    [42]胡国华.功能性食品胶.北京:化学工业出版社,2004:217-237.
    [43]Cuvelier G,Launay B.Concentration regimes in xanthan gum solutions deduced from flow and viscoelastic properties.Carbohydr.Polym.,1986,6:321-333.
    [44]麻建国.黄原胶体系的流变性及糖和盐对体系的影响.无锡轻工业大学学报,1998,17:1-7.
    [45]杨新亭,张良.黄原胶的性能及其应用.河南农业大学学报,1999,9:138-139.
    [46]刁虎欣.黄原胶和半乳甘露聚糖分子间的增粘协效性及其应用.食品与发酵工业,1992,1:69-731.
    [47]杨永利.槐豆胶的流变性及与黄原胶的协效性研究.天然产物研究与开发,1995,7(3):29-321.
    [48]Janes A,Pittsley J E,Senti F R.Polysaccharide B-1459:a new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation.J Appl Polymer Sci.,1961,5:519-526.
    [49]Sandford P A,Baird J.Industrial utilization of polysaccharides.In:Aspinall G O,ed.The polysaccharides.Vol 2.New York:Academic Press,1983:411-490.
    [50]Bradbury J F.Genus Ⅱ:Xanthomonas.In:Krieg N R,Holt C G,ed.Manual of systematic bacteriology.Baltimore:Williams & Wilkins,1984:199-210.
    [51]Williams P H.Black rot:a continuing threat to world crucifers.Plant Dis,1980,64:736-742.
    [52]Daniels M J,Collinge D B,Dow J M,et al.Molecular biology of the interaction of Xanthomonas campestris with plants.Plant Physiol Biochem.,1987,25:353-359.
    [53]Swings J G,Civerolo E L.Xanthomonas.London:Chapman and Hall,1993:1-120.
    [54]Kennedy J F,Bradshaw I J.Production,properties and application of xanthan.Prog Ind Microbiol,1984.19:319-371.
    [55]赵鸿莲,于荣敏.诱导子在植物细胞培养中的应用研究进展.沈阳药科大学学报,2000,17:152-156.
    [56]Wang Wei,Kong Fanzuo,New Methodology for Regio-and Stereoselective Synthesis of Oligosaccharides.J.Org.Chem.,1998,63:5744-5745.
    [57]Wang Wei,Kong Fanzuo,New and Effective Method for Synthesis of Mannose-Containing Oligosaccharides.Angew.Chem.Int.Engl.,1999,38:1247-1250.
    [58]Francois C,Michael G H.Oligosaccharins:structures and signal transduction.Plant Mol Biol,1994,26:1379-1411.
    [59]Albersheim P,Darvill A G.Oligosaccharins:Fragments of the plant cell wall have been discovered that serve as regulateory molecules.SciAmer,1985,253(3):58-64.
    [60]Ebel J,Cosio E G.Elicitors of plant defense response.Int Rev Cytol,1994,148:1-36.
    [61]Ayer A R,Ebel J,Finelli F,et al.Host-pathogen interactions:Ⅸ.Quantitative assays of elicitor activity and characterization of the elicitor present in the extraccellular medium of cultures of phytophthara megasperma var.sojae.Plant Physiol,1976,57:751-759.
    [62]Sharp J K,Mcneil M,Albersheim P.The primary structures of one elicitor-active and seven elicitor-inactive hexa(beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f.sp.glycinea.J Biol Chem.1984,259(18):11321-11336.
    [63]Sharp J K,Valent B,Albersheim P.Purification and partial characterization of a β-glucan fragment that elicits phytoalexin accumulation in soybean.J.Biol Chem,1984,259:11312-11320.
    [64]王松,姜国良,李立德等.寡糖诱导植物防卫反应研究进展.海洋科学.2003,27:9-13.
    [65]Ebel J,Mith(o|¨)fer A.Early events in the elicitation of plant defence.Planta,1998,206:335-348.
    [66]Yamashita T,Yonemoto Y,Tanaka H,et al.Promotion of germination and shoot elongation of some plants by alginate oligomers prepared with bacterial alginate lyase.Journal of Fermentation and Bioengineering,1993,75:68-70.
    [67]Descamps V,Klarzinsky O,Barbeyron T,et al.Fuco-oligosaccharides,enzyme pour leur preparation a partir de fucans,bacterie productrice de I'enzyme at application des fuco-oligosaccharides protection des plants.Plant Physiol,1988,88:316-326.
    [68]Nothnagel EA,Mcneil M,Albersheim P,et al.Host Pathogen interaction ⅩⅩ Ⅱ.A galacturonic acid oligosaccharide form plant cell elicits phytoalexins.Plant Physiol,1983,71:916-926.
    [69]Liner F,Thibault J F,Custem Van P.Influence of the Degree of Polymerization of oligogalacturonates and of esterification pattern of pectin on their recognition by monoclonal antibodies.Plant Physiol,1992,99:1099-1104.
    [70]Davill A,Augur C,Bergmann C,et al.Oligosaccharins-oligosaccharides that regulate growth,development and defense responses in plants Glycobiol,1992,2(3):181-198.
    [71]王勇刚,曾富华,吴志华等.植物诱导抗病性与病程相关蛋白.湖南农业大学学报(自然科学版),2002,28(2):177-181.
    [72]Selgel O P.Pathogenesis related proteins in lima bean leaves infected with tobacco ringspot virus distribution within and around local lesions.Plant cell Report,1992,12:25-31
    [73]Wei Z M,Laby R J,Zumoff C H,et al.Harpin,elicitor of the hypersensitive response produced by the plant pathogen Erzuinia amylozbra.Science,1992,257:85-88.
    [74]Ebel J,Grisebach H.Defense strategies of soybean against the fungus Phytophthora megasperma f.sp.glycinea:a molecular analysis.Trends Biochem Sci,1988,13:23-27.
    [75]Parker J E,Schulte W,Hahlbrock K,et al.An extracellular glycoprotein from Phytophthora megasperma f.sp.glycinea elicits phytoalexin synthesis in cultured parsley cells and glyrittett protoplasts.Mol Plant-Microbe Interact,1991,4:19-27.
    [76]王勇刚,曾富华,吴志华.植物诱导抗病性与病程相关蛋白.湖南农业大学学报(自然科学版),2002,28(2):177-181.
    [77]Boller T,Hydrolytic enzymes in plant disease resistance.Kosuge T,Nester E W.Plant-Microbe Interactions,Macmillan,New York,Molecular and Genetic Perspectives,1987,2:385-413.
    [78]BofJ F,Linthorst H J M,Cornelissen B J C.Plant pathogenesis-related Proteins induced by virus infection.Annu Rev Phytopath,1990,28:113-138.
    [79]Mankarios A T,FriendJ J,Polysaccharide degrading enzymes of Batrytis allii and Sclerotoim cepivotun,Enzyme production in culture and the effect of the enzymes on isolated onion cell walls.Physiol Plant Path.1980,17(1):93-104.
    [80]Jones T M,Anderson A J Albersheimp.Host-pathogen interaction.Ⅳ.Studies on the polysaccharide degrading enzymes secreted by Fusarium orysporum.Physiol Plant,1972,2(2):153-166.
    [81]王金生.分子植物病理学.北京:中国农业出版社,1999.
    [82]庞士全.植物逆境生理学基础.哈尔滨:东北林业大学出版社,1990.
    [83]Cote F,Hahm M G.Oligosaccharins structures and signal transduction.Plant Mol Biol,1994,26:1379-1411.
    [84]石瑛,杜昱光,白雪芳.寡糖诱导的植物抗性信号转导.生命科学研究,2001,1:29-32.
    [85]Day R B,Okada M,Ito Y,et al.Binding Site for Chitin Oligosaccharides in the Soybean Plasma Membrane.Plant physiol.2001,126:1162-1173.
    [86]罗建平,贾敬芬.植物寡糖素的结构和生理功能.植物学通报,1996,13(4):28-33.
    [87]Cheong J J,Birberg W,Fugedi P,et al.Structure activity relationships of oligo-β-glucoside elicitors of phytoalexin accumulation in soybean.The Plant Cell,1991,3:127-136.
    [88]Kogel G,Beissmann B,Reisener H J,et al.Specific binding of a hypersensitive lignification elicitor from Pccinia graminis f.sp tritici to the plasma membrane from wheat.Planta,1991,183:164-171.
    [89]李供连,汪守正,王金生等.黄瓜对炭疤病诱导抗病机制的研究.植物病理学报,1993,23:327-332.
    [90]Vander P,Varum K M,Domard A,et al.Comparison of the ability of partially N-acetylated chitosans and chitoligosaccharide to elicit resistance reactions in wheat leaves.Plant Physiol.,1998,118:1353-1359.
    [91]Kodama O,Suzuki T,Miyakawa J,et al.Chitoligosaccharide induced accumulation of phytoalexins in rice leave.Pest Sci,1988,52:2469-2470.
    [92]盛桂莲,李文新.寡糖诱导的植物PA生成.华中师范大学学报(自然科学版),2004,38:321-325
    [93]黄晓波.赵良启.细菌胞外多糖的研究和应用.山西化工,2006,1:10-13.
    [94]Ettinger C,L eh le L.Auxininduces rapid changes in phosphate idylinosito lmetabolites.Nature,1998,43(3):245-250.
    [95]Rinaldo M,Milas M.Enzymic hydrolysis of the bacterial polysaccharide xanthan by cellulase.Int J Biol Macromol,1980,2:45-48.
    [96]Cripps,Sommerville R E,Holt H J,et al.Xanthanase enzyme and its production.EP0030393.1981.
    [97]Cadmus M C,Jackson L K,Burton K A,et al.Biodegradation of xanthan gum by Bacillus sp.Appl Environ Microbiol,1982,44:5-11.
    [98]Hashimoto W,Miki H,Tsuchiya N,et al.Xanthan lyase of Bacillus sp.strain GL1 liberates pyruvylated mannose from xanthan side chains.Appl Environ Microbiol,1998,64:3765-3768.
    [99]Nankai H,Hashimoto W,Murata K.Molecular Identification of Family 38 α-Mannosidase of Bacillus sp.Strain GL1,Responsible for Complete Depolymerization of Xanthan.Appl Environ Microbiol.,2002,68(6):2731-2736.
    [100]Maruyama,Y.,B.Mikami,W.Hashimoto and K.Murata:A structural factor responsible for substrate recognition by Bacillus sp.GL1 xanthan lyase that acts specifically on pyruvated side chains of xanthan.Biochemistry,2007,46(3):781-791.
    [101]Ruijssenaars H J,de Bont J A M,Hartmans S.A pyruvated mannose-specific xanthan lyase involved in xanthan degradation by Paenibacillus alginolyticus XL-1.Appl Environ Microbiol,1999,65:2446-2452.
    [1]Garci'a-Ochoa F,Santos V E,Casas J A,et al.Xanthan gum:production,recovery,and properties.Biotechnol Adv.2000,18:549-579.
    [2]Christensen B E,Myhr M H,Smidsrod O.Degradation of double-stranded xanthan by hydrogen peroxide in the presence of ferrous ions:comparison to acid hydrolysis.Carbohydr Res,1996,280:85-99.
    [3]Rinaldo M,Milas M.Enzymic hydrolysis of the bacterial polysaccharide xanthan by cellulase.Int J Biol Macromol,1980,2:45-48.
    [4]Cadmus M C,Jackson L K,Burton K A,et al.M.E.Biodegradation of xanthan gum by Bacillus sp.Appl Environ Microbiol,1982,44:5-11.
    [5]Hashimoto W,Miki H,Tsuchiya N,et al.Xanthan lyase of Bacillus sp.strain GL1 liberates pyruvylated mannose from xanthan side chains.Appl Environ Microbiol,1998.64:3765-3768.
    [6]Ruijssenaars H J,de Bont J A M,Hartmans S.A pyruvated mannose-specific xanthan lyase involved in xanthan degradation by Paenibacillus alginolyticus XL-1.Appl Environ Microbiol.1999,65:2446-2452.
    [7]周德庆.微生物学实验手册.上海:上海科学技术出版社,1986:85.
    [8]Li X,Gao P.Isolation and partial characterization of cellulose-degrading strain of Streptomyces sp.LX from soil.Lett Appl Microbiol,1996,22:209-213.
    [9]Miller G L.Use of dinitrosalicylic acid reagent for the determination of reducing sugar.Anal Chem,1959,31:426-428.
    [10]东秀珠,蔡妙英.常用细菌鉴定手册.北京:科学出版社,2001:353-363.
    [11]Murray R G E,Doetsch R N,Robinow C F.In Methods for general and molecular bacteriology,ed.Gerhardt P,Murray R G E,Wood W A,et al.Washington D.C:American Society for Microbiology,1994:31-33.
    [12]Smibert R M,Krieg N R.Phenotypic characterization.In Methods for general and molecular bacteriology.Edited by Gerhardt P,Murray R G E,Wood W A,et al.Washington D.C:American Society for Microbiology,1994:607-654.
    [13]Saito H,Miura K.Preparation of transforming deoxyribonucleic acid by phenol treatment.Biochimica et Biophystica Acta,1963,72:619-629.
    [14]Marmur J,Doty P.Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature.Journal of Molecular Biology,1962,9:109-118.
    [15]Takeuchi M,Hatano K.Union of the genera Microbacterium Orla-Jensen and A ureobacterium Collins et al.in aredefined genus Microbacterium.Int J Syst Bacteriol,1998,48:739-747.
    [16]Kulicke W M,Van Eikeren A.Determination of the microstructure of the fermentation polymer xanthan.Makromol Chem,Macromol Syrup,1992,61:75-93.
    [17]Torres L G,Brito E,Galindo E,et al.Viscous behavior of xanthan aqueous solutions from a variant strain of Xanthomonas campestris. J Ferment Bioeng, 1993, 75(1): 58-64.
    [18] Collins M D, Keddie R M. Genus Microbacterium Orla-Jensen 1919, 179~(AL) In Bergey's Manual of Systematic Bacteriology, vol. 2, Edited by Sneath P H A, Mair N S, Sharpe M E, et al. Williams and Wilkins, Baltimore, USA, 1986: 1320-1322.
    [19] Cure G L, Keddie R M. Methods for morphological examination of the aerobic coryneform bacteria. In Sampling Microbiological Monitoring of Environments (Society for Applied Bacteriology Technical Series 7), Edited by Board R G, Lovelock D N. London: Academic Press, 1973: 123-135.
    [20] Matsuyama H, Kawasaki K, Yumoto I, et al. Microbacterium kitamiense sp. nov., a new polysaccharide-producing bacterium isolated from the wastewater of a sugar-beet factory. Int J Syst Bacteriol, 1999,49: 1353-1357.
    [21] Behrendt U, Ulrich A, Schumann P. Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov. Int J Syst Evol Microbiol, 2001, 51: 1267-1276.
    [22] Schippers A, Bosecker K, Sproer C, et al. Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol, 2005, 55: 656-660.
    [1]Lane D J.16S/23S rRNA sequencing.Nucleic acid techniques in bacterial systematics.Stackebrandt E,Goodfellow M.(ed.) UK:John Wiley and Sons,1991:115-175.
    [2]Delong E F,Wickham G S,Pace N R.Phylogenetic stains:ribosomal RNA-based probes for the identification of single cells.Science,243:1360-1363.
    [3]Li X,Gao P.Isolation and partial characterization of cellulose-degrading strain of Streptomyces sp.LX from soil.Lett Appl Microbiol,1996,22:209-213.
    [4]东秀珠,蔡妙英.细菌系统鉴定手册.北京:科学出版社,2001:370-410.
    [5]Brosius J,Palmer M L,Kennedy P J,et al.Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli.Proc.Natl.Acad.Sci.1978,75:4801-4805.
    [6]William G W,Susan M B,Dale A P,et al.16S ribosomal DNA amplification for phylogenetic study.J Bacteriol,1991,173(2):697-703.
    [7]Weinbauer M G,Fritz I,Wenderoth D F,et al.Simultaneous extraction from bacterioplankton of total RNA and DNA suitable for quantitative structure and function analyses.Appl.Environ.Microbiol.,2002,68:1082-1087.
    [8]Thompson J D,gibson T J,plewniak F.the clustalX windows interface:flexble strategies for multiple sequence alignment aided by quality analysis tools.Nucleic acids res,1997,25:4876-4882.
    [9]Saitou N,Nei M.The nelghbour-joining method:a new method for reconstructing phylogenetic trees.Mol Biol Evol,1987,4:406-425.
    [10]R.E.布坎南,N.E.吉本斯等.伯杰细菌鉴定手册(Bergey′s Manual of Determinative Bacteriology)(第八版).北京:科学出版社,1984:870-871.
    [11]伯杰氏系统细菌学手册第二版,分类纲要,2004.
    [12]Felsenstein J.Confidence limits on phylogenies:an approach using the bootstrap.Evolution,1985,39:783-791.
    [13]Drancourt M,Bollet C,Carlioz R,et al.16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates.J Clin Microbiol,2000,38:3623-3630.
    [14] Fox G E, Wisotzkey J D, Jurtshuk P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol, 1992, 42: 166-170.
    [15] Wiik R, Stackebrandt E, Valle O, et al. Classification of fish-pathogenic vibrios based on comparative 16S rRNA analysis. Int J Syst Bacteriol, 1995,45: 421-428.
    [16] Wagner-Dobler I, Rheims H, Felske A, et al. Oceanibulbus indolifex gen. nov., sp. nov., a North Sea Alphaproteo-bacterium producing bioactive metabolites. Int J Syst Evol Microbiol, 2004, 54: 1177-1184.
    [17] Devereux R, He S H, Doyle C L, et al. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol, 1990, 172: 3609-3619.
    [18] Fry N K, Warwick S, Saunders N A, et al. The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae. J Gen Microbiol, 1991, 137: 1215-1222.
    [19] Takeuchi M, Hatano K. Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Inter. J.System.Bacterio, 1998,48: 739-747.
    [1]Garci'a-Ochoa F,Santos V E,Casas J A,et al.Xanthan gum:production,recovery,and properties.Biotechnol Adv,2000,18:549-579.
    [2]Christensen B E,Myhr M H,Smidsrod O.Degradation of double-stranded xanthan by hydrogen peroxide in the presence of ferrous ions:comparison to acid hydrolysis.Carbohydr Res,1996,280:85-99.
    [3]Rinaldo M,Milas M.Enzymic hydrolysis of the bacterial polysaccharide xanthan by cellulase.Int J Biol Macromol,1980,2:45-48.
    [4]Cadmus M C,Jackson L K,Burton K A,et al.Biodegradation of xanthan gum by Bacillus sp.Appl Environ Microbiol,1982,44:5-11.
    [5]Ruijssenaars H J,de Bont J A M.Hartmans S.A pyruvated mannose-specific xanthan lyase involved in xanthan degradation by Paenibacillus alginolyticus XL-1.Appl Environ Microbiol,1999,65:2446-2452.
    [6]Hashimoto W,Miki H,Tsuchiya N,et al.Xanthan lyase of Bacillus sp.strain GL1 liberates pyruvylated mannose from xanthan side chains.Appl Environ Microbiol,1998,64:3765-3768.
    [7]周德庆.微生物学实验手册.上海:上海科学技术出版社,1986:85.
    [8] Li X, Gao P. Isolation and partial characterization of cellulose-degrading strain of Streptomyces sp. LX from soil. Lett Appl Microbiol, 1996,22: 209-213.
    [9] Miller G L. Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal Chem, 1959,31:426-428
    [10] Jansson P E, Kenne L, Lindberg B. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res. 1975, 45: 275-82.
    [1]Garci'a-Ochoa F,Santos V E,Casas J A,et al.Xanthan gum:production,recovery,and properties.Biotechnol Adv,2000,18:549-579.
    [2]Cadmus M C,Jackson L K,.Burton K A,et al.Biodegradation of xanthan gum by Bacillus sp..Appl Environ Microbiol,1982,44:5-11.
    [3]Rinaldo M,Milas M.Enzymic hydrolysis of the bacterial polysaccharide xanthan by cellulase.Int J Biol Macromol,1980,2:45-48.
    [4]Ruijssenaars H J,de Bont J A M,Hartmans S.A pyruvated marmose-specific xanthan lyase involved in xanthan degradation by Paenibacillus alginolyticus XL-1.Appl Environ Microbiol.,1999,65:2446-2452.
    [5]Hashimoto W,Miki H,Tsuchiya N,et al.Xanthan Lyase of Bacillus sp.Strain GL1 Liberates Pyruvylated Mannose from Xanthan Side Chains.Appl Environ Microbiol,1998,64:3765-3768.
    [6]周德庆,微生物学实验手册,上海:上海科学技术出版社,1986:85.
    [7]Li X,Gao P.Isolation and partial characterization of cellulose-degrading strain of Streptomyces sp.LX from soil.Lett Appl Microbiol.,1996,22:209-213.
    [8]Miller G L.Use of dinitrosalicylic acid reagent for the determination of reducing sugar.Anal Chem,1959,31:426-428
    [9] Hahn M G, Darvill A, Albersheim P, et al. Preparation and characterization of oligosaccharide elicitors of phytoalexin accumulation. In: Gurr S J, McPherson M J, Bowles D J eds. Molecular plant pathology: a practical approach. vol. 2. New York: Oxford, 1992: 103-147.
    [10] Ayer A R, Ebel J, Finelli F, et al. Host-pathogen interactions: IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extraccellular medium of cultures of phytophthara megasperma var. sojae. Plant Physiol, 1976, 57: 751-759.
    [1]Varki A.Biological roles ofoligosaccharides:all of the theories are correct.Glycobiology,1993,3:97-130.
    [2]Rina S,Desh D,Anakshi K,et al.A novel pentasaccharide from immunostimulant oligosacchasride fraction of buffalo milk.Biochim Biophys Acta,1999,1428:433-445.
    [3]Suzuki K,Mikami T,Okawa Y,et al.Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose.Carbohydr Res,1986,51:403-408.
    [4]Suzuki S.Studies on biological effects of water soluble lower homologous oligosaccharides of chitin and chitosan.Fragrance Journal,1996,15,61-68.
    [5]Hirano S,Nagao N.Effects of chitosan,pectic acid,lysozyme,and chitinase on the growth of several phytopathogens.Agric Biol Chem.,1989,53:3065-3066.
    [6]Shibuya N,Minami E.Oligosaccharide signaling for defence responses in plant.Physiol Mol Plant Pathol,2001,59:223-233.
    [7]Kendra D F,Hadwiger L A.Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum.Experimental Mycology,1984,8:276-281.
    [8]Spiro M D,Ridley B L,Eberhard S,et al.Biological Activity of Reducing-End-Derivatized Oligogatacturonides in Tobacco Tissue Cultures.Plant Physiol,1998,116:1289-1298.
    [9]Jeon Y J,Park P J,Kim S K.Antimicrobial effect of chitooligosaccharides produced by bioreactor.Carbohydr Polym,2001,44:71-76.
    [10]Young D,Kauss H.Release of calcium from suspension cultured Glycine max cells by chitosan,other polycations,and polyamines in relation to effects on membrane permeability.Plant Physiol.,1983,73:698-702.
    [11]Christakopoulos P,Katapodis P,Kalogeris E,et al.Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases.Int J Biol Macromol,2003,31:171-175.
    [12]Zopf D,Roth S.Oligosaccharide anti-infective agents.Lancet,1996,347:1017-21.
    [13]EI-Ghaouth A,Arul J,A sselin A,et al.Antifungal activity of chitosan on two post-harvest pathogen of strawberry fruits.Phytooath,1992,82:398-402.
    [14]Fry S C,Aldington S,Hetherington P R,et al.Oligosaccharides as signals and substrates in the plant cell wall.Plant Physiol.,1993,103:1-5.
    [15]Flach J,Pilet P E,Jolles P.What's new in chitinase research? Experientia,1992,48:701-715.
    [16]Chou F L,Chou H C,Lin Y S,et al.The Xanthomonas campestris gum D gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot.Biochem Biophys Res Commun,1997,233:265-269.
    [17]周德庆,微生物学实验手册,上海:上海科学技术出版社,1986:85.
    [18]Li X,Gao P.Isolation and partial characterization of cellulose-degrading strain of Streptomyces sp.LX from soil.Lett Appl Microbiol,1996;22:209-213.
    [19]Miller G L.Use of dinitrosalicylic acid for determination of reducing sugar.Anal Chem 1959,31:426-428.
    [20]Lorian V.Antibiotics in laboratory medicine Baltimore:Williams Wilkins;1991:739-786.
    [21]张乃东,郑威,彭永臻.褪色光度法测定芬顿体系中产生的羟自由基.分析化学研究简报,2003,5:552-555.
    [22]Hahn M G,Darvill A,Albersheim P,et al.Preparation and characterization of oligosaccharide elicitors of phytoalexin accumulation.In:Gurr S J,McPherson M J,Bowles D J eds.Molecular plant pathology:a practical approach,vol.2.Oxford:IRL Press,1992:103-147.
    [23]Ayer A R,Ebel J,Finelli F,et al.Host-pathogen interactions:Ⅸ.Quantitative assays of elicitor activity and characterization of the elicitor present in the extraccellular medium of cultures of phytophthara megasperma var.sojae.Plant Physiol,1976,57:751-759
    [24]Sharp J K,Valent B,Albersheim P.Purification and partial characterization of a b-glucan fragment that elicits phytoalexin accumulation in soybean.J Biol Chem,1984,259:11312-11320.
    [25]Baker B,Zambryski P,Staskawicz B,et al.Signaling in plant-microbe interactions.Science,1997,276:726-733.
    [26]Fry S C,Aldington S,Hetherington P R,et al.Oligosaccharides as signals and substrates in the plant cell wall.Plant Physiol,1993,103,1-5.
    [27]Küpper FC,Kloareg B,Guern J,et al.Oligoguturonates elicit an oxidative burst in the brown algal kelp Laminaria digitata.Plant Physiol.,2001,125:278-291.
    [28]Boudart G,Lafitte C,Barthe J P,et al.Differential elicitation of defense responses by pectic fragments in bean seedlings.Planta,1998,206:86-94.
    [29]Denny T P.Involvement of bacterial polysaccharides in plant pathogenesis.Annu Rev Phytopathol,1995,33:173-197.
    [30]Daniels M J,Collinge D B,Dow J M,et al.Molecular biology of the interaction of Xanthomonas campestris with plants.Plant Physiol Biochem,1987,25:353-359.
    [31]Crossman L,Dow J M,Biofilm formation and dispersal in Xanthomonas campestris.Microbes Infec,2004,6:623-629.
    [32]Williams P H,Black rot:a continuing threat to world crucifers.Plant Dis,1980,64:736-742.
    [33]Wul E G,Mguni CM,Mortensen CN,et al.Biological control of black rot(Xanthomonas campestris pv.campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe.Eur J Plant Pathol,2002,108:317-325.
    [34]Ishikawa R,Nishimito M S,Fukuchi A,et al.Effective control of cabbage black rot by validamycin A and its effect on extracellular polysaccharide production of Xanthomonas campestris pv.campestris.J Pestic Sci,2004,29:209-213.
    [35]何晓燕,张利英等.黄原胶寡糖生物活性的研究.微生物学通报,2005,32(3):87-90.
    [36]Liu H,Huang C,Dong W.et al.Biodegradation of xanthan by newly isolated Cellulomonas sp.LX,releasing elicitor-active xanthooligosaccharide-induced phytoalexin synthesis in soybean cotyledons.Process Biochem,2005,40:3701-3706.
    [1]Annon.Pesticide incidents up for 1996/97 compared with previous year.Int Pest Control,1998,40:1-8.
    [2]Barnard M,Padgitt M,Uri N D.Pesticide use and its measurement,Int Pest Control,1997,39:161-164.
    [3]Ayer A R,Ebel J,Finelli F,et al.Host-pathogen interactions:Ⅸ.Quantitative assays of elicitor activity and characterization of the elicitor present in the extraccellular medium of cultures of phytophthara megasperma var.sojae.Plant Physiol.,1976,57:751-759.
    [4]Sharp J K,Valent B,Albersheim P.Purification and partial characterization ofa β-glucan fragment that elicits phytoalexin accumulation in soybean.J Biol Chem,1984,259:11312-11320.
    [5]Bof J F,Linthorst H J M,Comelissen B J C.Plant pathogenesis-related proteins induced by virus infection.Annu Rev Phytopath,1990,28:113-138.
    [6]Ebel J,Cosio E G.Elicitors of plant defense response.Int Rev Cytol,1994,148:1-36.
    [7]Jansson P E,Kerme L,Lindberg B.Structure of the extracellular polysaccharide from Xanthomonas campestris.Carbohydr Res,1975,45:275-282.
    [8]Liu H,Huang C,Dong W,et al.Biodegradation of xanthan by newly isolated Cellulomonas sp.LX,releasing elicitor-active xanthooligosaccharide-induced phytoalexin synthesis in soybean cotyledons.Process Biochem,2005,40:3701-3706.
    [9]Williams P H.Black rot:a continuing threat to world crucifers.Plant Dis,1980,64:736-742.
    [10]Satish S,Raveesha K A,Jandrdhana G R.Antibacterial activity of plant extracts on phytopathogenic Xanthornonas campestris pathovars.Lett Appl Microbiol,1999,28:145-147.
    [11]Wul E G,Mguni C M,Mortensen C N,et al.Biological control of black rot(Xanthomonas campestris pv.campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe.Eur J Plant Pathol,2002,10:317-325.
    [12]周德庆.微生物学实验手册.上海:上海科学技术出版社,1986:85.
    [13]Li X,Gao P.Isolation and partial characterization of cellulose-degrading strain of Streptomyces sp.LX from soil.Lett Appl Microbiol 1996,22:209-213.
    [14]Miller G L.Use of dinitrosalicylic acid for determination of reducing sugar.Anal Chem,1959,31:426-428.
    [15]Boller T,Metraux J P.Extracellular location of chitinase in cucumber.Physiological and Molecular Plant Pathology,1988,33:11-16.
    [16]Boller J,Gehri A,Mauch F,et al.Chitinase in bean leaves:induction by ethylene,purification,properties,and possible function.Planta,1983,157:22-31.
    [17]江洁,刘晓兰.果胶酶活性分光光度测定方法的研究.齐齐哈尔大学学报,1998,3:62-66.
    [18]Lorian V.Antibiotics in laboratory medicine.Baltimore:Williams Wilkins,1991:739-786.
    [19]Hannan P C T.Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species.Vet Res,2000,31:373-395.
    [20]Qian F,An L,He X,et al.Antibacterial activity of xantho-oligosaccharide cleaved from xanthan against phytopathogenic Xanthomonas campestris pv.Campestris.Process Biochem,2006,41(7):1582-1588.
    [21]Varki A.Biological roles of oligosaccharides:all of the theories are correct.Glycobiology,1993,3:97-130.
    [22]John M,R(o|¨)hrig H,Schmidt J,et al.Cell signaling by oligosaccharides.Trends Plant Sci,1994,2:111-115.
    [23]Daniels M J,Barber C E,Turner P C,et al.Cloning of genes involved in pathogenicity of Xanthomonas campestris pv.campestris using the broad-host-range cosmid pLAFRl.EMBO J,1984,3:3323-3328.
    [24]Jeon Y J,Park P J,Kim S K.Antimicrobial effect of chitooligosaccharides produced by bioreactor.Carbohydr Polym,2001,44:71-76.
    [25]Uchida Y,Izume M,Ohtakara A.Preparation of chitosan oligomers with purified chitosanase and its application.In:Skja k-Brcek G,Anthonsen T,Sandford P,eds.Chitin and chitosan:sources,chemistry,biochemistry,physical properties and applications.London:Elsevier Applied Science,1989:373-382.
    [26]Newman M A,Conrads-Strauch J,Schofield G,et al.Defence-related gene induction in Brassica campestris in response to defined mutants of Xanthomonas campestris with altered pathogenicity.Mol Plant Microbe Interact,1994,4:553-563.
    [27]Ishikawa R,Nishimito M S,Fukuchi A,et al.Effective control of cabbage black rot by validamycin A and its effect on extracellular polysaccharide production of Xanthomonas campestris pv.campestris.J Pestic Sci.,2004,29:209-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700