银系纳米抗菌材料的制备与抗菌性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展和人类生活水平的日益提高,人们对抗菌材料、抗菌制品的需求将会不断增加。为了增进人体健康,改善生活和工作环境,研究和开发新型、高效、无毒无味和抗菌性能持久的抗菌材料,成为当前的研究热点。银系抗菌材料具有高效、广谱、低毒、无味、不污染环境、安全环保等特点,正成为首选抗菌剂之一。
     本论文研究了纳米银及载银纳米抗菌剂的制备工艺及其抗菌性能。分别用透射电子显微镜、扫描电子显微镜和原子力显微镜,紫外-可见吸收光谱、红外光谱,X射线衍射,X射线光电子能谱等技术对抗菌剂的表面形貌,光学特性,晶体结构和银的存在形态等进行了系统的表征。选用大肠杆菌和金黄色葡萄球菌两种菌种为代表,采用抑菌圈法、连续稀释法及SYNBIOSIS全自动微生物检测仪对制备的抗菌材料的抗菌性能进行了定性和定量检测。实验结果证实所制备的银系材料均对革兰氏阴性菌、革兰氏阳性菌及霉菌具有良好的抗菌性能。而且抗菌性能持久。
     本论文由综述与实验两部分组成,全文共分七章。
     第一章:对近年来抗菌剂的研究进展进行了全面的综述,对本领域今后的发展方向提出了展望。
     第二章:以柠檬酸三钠、硼氢化钠为混和还原剂,采用化学还原法制备了不同的纳米银胶体,采用透射电镜对纳米银溶胶的形貌进行了表征,从而优化了制备条件,同时对纳米银溶胶的抗菌性等进行了研究。
     第三章:利用化学还原法,用通过硝酸银、硼氢化钠和聚乙烯醇分别作为前驱体、还原剂和稳定剂,制备了均匀分散的银/聚乙烯醇纳米复合物溶胶,利用UV-Vis光谱,透射电子显微镜和原子力显微镜技术对纳米复合物的结构和形貌进行了系统的表征。分别以金黄色葡萄球菌、绿脓杆菌、大肠杆菌以及白色念珠菌为对象考察了纳米复合物溶胶对革兰氏阳性菌、革兰氏阴性菌和霉菌的抗菌活性。
     第四章:利用化学还原法,以硝酸银、聚乙二醇分别作为前驱体、还原剂和稳定剂,制备了均匀分散的银/聚乙二醇纳米复合物溶胶,利用UV-Vis光谱,透射电子显微镜和原子力显微镜技术对纳米复合物的结构和形貌进行了系统的表征。分别以金黄色葡萄球菌、绿脓杆菌、大肠杆菌以及白色念珠菌考察了纳米复合物溶胶对革兰氏阳性菌、革兰氏阴性菌和霉菌的杀灭活性。本法以清洁无毒的聚乙二醇作为还原剂,以水作溶剂,是一种绿色无污染的制备方法。
     第五章:采用浸渍法合成了纳米载银抗菌剂Ag/SiO_2,利用UV-Vis吸收光谱,X-射线粉末衍射,X射线光电子能谱、透射电子显微镜和原子力显微镜技术对纳米Ag/SiO_2的结构和形貌进行了系统的表征。分别以金黄色葡萄球菌、大肠杆菌为代表考察了纳米Ag/SiO_2对革兰氏阳性菌、革兰氏阴性菌的杀灭活性,发现纳米Ag/SiO_2对它们具有强的杀灭作用。
     第六章:分别采用两步法和一步法合成了载银纳米介孔材料Ag/MCM-41,利用UV-Vis吸收光谱,X射线粉末衍射,低温氮气吸附,FT-IR,X射线光电子能谱、透射电子显微镜和原子力显微镜技术对纳米Ag/MCM-41的结构和形貌进行了系统的表征。研究结果表明,该类抗菌剂对以金黄色葡萄球菌、大肠杆菌为代表的革兰氏阳性菌、革兰氏阴性菌有很高的的抗菌活性,且作用持久。
     第七章:采用两步法合成了纳米Ag/SBA-15,利用UV-Vis吸收光谱,X-射线粉末衍射,FT-IR,X射线光电子能谱、透射电子显微镜和原子力显微镜技术对纳米Ag/SBA-15的结构和形貌进行了系统的表征。分别以金黄色葡萄球菌、大肠杆菌为代表考察了纳米Ag/SBA-15对革兰氏阳性菌、革兰氏阴性菌的抗菌作用,性能良好。
With development of modern science and technology and progress of the society, the demands of people to antibacterial materials will enhance rapidly. It has become an important study topic and attracted a lot of attention in the past years to explore and develop new-type anti-bacterium materials with high efficiency, innocuity and lasting anti-bacterium capacity to control and restrain the growth and reproduction of deleterious bacteria. Due to some notable advantages such as high efficiency, broad-spectrum, low toxin , tastelessness and non-pollution, the silver-based antimicrobial agents has become a preferred field in antibacterial research.
     The preparations of nanometric silver sols and silver-loaded antimicrobials and their antibacterial activities were studied in this thesis. The morphologies of the antimicrobials were characterized by transmission electron microscope(TEM), scanning electron microscope(SEM) and atomic force microscope (AFM), the optical characteristics were analyzed by ultraviolet-visible spectroscopy(UV-Vis spectra) and Fourier transform infrared spectroscopy(FT-IRs), the structures were evaluated by X-ray diffraction (XRD) and the chemical states of silver in matrix antimicrobials were investigated by X-ray photoelectron spectrum (XPS). The antibacterial activities of the antimicrobials and antibacterial products were characterized by inhibition zone, dilution and immersion. Escherichia coli (E.coli, ATCC25922), Peudomonas eruginosa (P. eruginosa, ATCC27853), Staphylococcus aureus (S. aureus, ATCC25923) and Candida albicans (C. albicans) are employed as models. These as-prepared materrials are proved to have good and long-lived antiseptic property to Gram-positive, Gam-negative bacteria and mildew.
     The dissertation consists of seven parts:
     In Chapter 1, a review on an investigation progress of the silver-based anti-bacterial materials has been described.
     In chapter 2, Ag colloids were prepared by reduction method, in which the silver nitrate, sodium borohydride and tri-sodium citrate, and PVP served as precursor, reductant and stabilizer, respectively. The synthesized colloids have potent antibacterial activity toward both gram-positive and gram-negative bacteria. Further studies demonstrated that the Ag nanoparticle distribution was uniform by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atom force microscopy (AFM).
     In chapter 3, Ag/PVA nanocomposites were prepared by in situ reduction method, in which the silver nitrate, sodium borohydride and poly (vinyl alcohol) (PVA) acted as precursor, reductant and stabilizer, respectively. The synthesized composites have a high antibacterial activity toward both gram-positive and gram-negative bacteria. PVA molecules effectively protected silver nanoparticles to avoid aggregation of the particles so that prepared silver nanopartilces were of small grain size, well-dispersive and stable in aqueous solution.
     In chapter 4, stable Ag colloids were prepared by a simple process with polyethylene glycol (PEG) as an environmentally benign reducing agent and stabilizer, with water as green solvent. The structural and spectral analyses have showed a uniform size distribution with an average grain size less than 10 nm. The PEG-stablized colloids showed a high antibacterial activity toward gram-positive, gram-negative bacteria and fungi.
     In chapter 5, the stable Ag/SiO_2 nanocomposites were prepared simply by an immersion method. The Ag/SiO_2 nanocomposites were characterized by UV–vis spectra, transmission electron microscopy (TEM) and atom force microscopy (AFM). The antibacterial experiments demonstrated the nanoparticles had a high and long-lived antibacterial activity toward gram-positive and gram-negative bacteria.
     In chapter 6, the mesoporous nanocomposites Ag/MCM-41 were prepared respectively by a one-route procedure and a two-route one. Structural analyses have showed that nanoscale silver particles uniformly distributed inner the holes and on the surface of MCM-41 matrix. High antibacterial activities toward gram-positive and gram-negative bacteria attributed to conjunct actions of Ag+ ion and silver nanoparticles.
     In chapter 7, the mesoporous Ag/SBA-15 nanocomposites were prepared by a two-step procedure. The Ag/SBA-15 nanocomposites were systemically characterized by UV–vis spectra, transmission electron microscopy (TEM), atom force microscopy (AFM) and so on. The antibacterial activity of the Ag/SBA-15 nanocomposites was also studied. The results showed that the sample has high antibacterial activity toward gram-positive and gram-negative.
引文
[1]夏金兰,王春,刘新星.抗菌剂及其抗菌机理[J].中南大学学报(自然科学版), 2004,35(1):31-38.
    [2]王维清,冯启明,董发勤,银系抗菌材料及其研发应用现状[J].应用化工, 2004,33(4):2-6.
    [3]李毕忠,季君辉,董晓旭,武进,严庆,抗菌塑料的研制及其在家电中的应用[J].工程塑料应用, 1999, 27(2):19-21.
    [4]蔡政斌,杨玲,新型的无机材料[J],化工新型材料, 1999,5:36-37.
    [5]张立德,牟季美,纳米材料和纳米结构[M],北京:科学出版社, 2001, 88.
    [6]张志锟,崔作林,纳米技术与纳米材料[M],北京:国防工业出版社, 2000,185-188.
    [7]刘维平,邱定蕃,卢惠民,纳米材料制备方法及应用领域[J],化工矿物与加工,2003,(12):1-6.
    [8] D. E. Collins,E. B. Slamovich,Preparation of a Homogeneously Dispersed BaTiO3/Polymer Nanocomposite Thin Film [J], Chem. Mater., 1999, 11: 2319- 2321.
    [9]季君晖,史维明,抗菌材料[M],北京:化学工业出版社, 2003,316.
    [10] A. Oya, M. Kimura, T. Sugo, A. Katakai, Y. Abe, T. Iizuka, N. Makiyama, A. Linares-Solano, C. Salinas-Martinez de Lecea, Antibacterial activated carbon fiber derived from methyl methacrylate-grafted phenolic resin fiber[J]. Carbon, 1994, 32(1): 107-110.
    [11] A. Oya, S. Yoshida, J. Alcaniz-Monge, A. Linares-Solano, Preparation and properties of an antibacterial activated carbon fiber containing mesopores[J]. Carbon, 1996, 34(1): 53-57.
    [12] V. Shashikala, V. Siva Kumar, A. H. Padmasri, B. David Raju, S. Venkata Mohan, P. Nageswara Sarma, K.S. Rama Rao, Advantages of nano-silver-carbon covered alumina catalyst prepared by electro-chemical method for drinking water purification[J]. J. Mol. Catal. A: Chem., 2007, 268(1-2): 95-100.
    [13] Ch. Y. Li, Y. Z. Wan, J. Wang, Y. L. Wang, X. Q. Jiang, L. M. Han, Antibacterial pitch-based activated carbon fiber supporting silver[J]. Carbon, 1998, 36, 1-2: 61-65.
    [14] Seiichi Miyanaga, Akio Hiwara, Hajime Yasuda. Preparation and high bacteriostatic action of the activated carbons possessing ultrafine silver particles [J]. Sci. Technol. Adv. Mater., 2002, 3(2): 103-109.
    [15] Soo-Jin Park, Yu-Sin Jang, Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J. Colloid Interf. Sci., 2003, 261(2): 238-243.
    [16] Shuting Zhang, Ruowen Fu, Dingcai Wu, Wei Xu, Qiwei Ye, Zhangliu Chen, Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels[J]. Carbon, 2004, 42(15): 3209-3216.
    [17] H. Le Pape, F. Solano-Serena, P. Contini, C. Devillers, A. Maftah, P. Leprat, Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver: Bactericidal activity of ACF(Ag) mediated by ROS[J]. J. Inorg. Biochem., 2004, 98(6): 1054-1060.
    [18] J. Zhao, H.J. Feng, H.Q. Tang, J.H. Zheng, Bactericidal properties of silver implanted pyrolytic carbon [J], Nucl. Instr. and Meth. in Phys. Res. B, 2006,243(2): 299-303.
    [19] Won Keun Son, Ji Ho Youk, Won Ho Park, Antimicrobial cellulose acetate nanofibers containing silver nanoparticles[J]. Carbohydrate Polym., 2006, 65(4): 430-434.
    [20] H.Q. Tang, T. Liu, X. Liu, H.Q. Gu, J. Zhao, A study on biocompatibility and bactericidal properties of pyrolytic carbon by silver ion implantation[J], Nuclear Nucl. Instr. and Meth. in Phys. Res. B, 2007, 255(2): 304-308.
    [21] S.C.H. Kwok, W. Zhang, G.J. Wan, D.R. McKenzie, M.M.M. Bilek, Paul K. Chu, Hemocompatibility and anti-bacterial properties of silver doped diamond-like carbon prepared by pulsed filtered cathodic vacuum arc deposition[J]. Diamond Related Mater., 2007, 16(4-7): 1353-1360.
    [22] T. Liu, H.Q. Tang, X.M. Cai, J. Zhao, D.J. Li, R. Li, X.L. Sun, A study on bactericidal properties of Ag coated carbon nanotubes[J], Nuclear Nucl. Instr. and Meth. in Phys. Res. B, 2007, 264(2): 282-286.
    [23] Dieqing Zhang, Ying Wan, Guisheng Li, Jing Zhang, Hexing Li, Synthesis of silver nanowire/mesoporous silica composite as a highly active antiseptic[J]. Studies Surf. Sci. Catal., 2007, 165: 841-846.
    [24] Hairong Liu, Qi Chen, Li Song, Reifang Ye, Jianying Lu, Huiping Li, Ag-doped antibacterial porous materials with slow release of silver ions[J]. J. Non-Cryst., 2008, 354(12-13): 1314-1317.
    [25] K. Kawahara, K. Tsuruda, M. Morishita, M. Uchida, Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions[J], Dental Mater., 2000, 16(6): 452-455.
    [26] Yoshihiro Inoue, Masanobu Hoshino, Hiroo Takahashi, Tomoko Noguchi, Tomomi Murata, Yasushi Kanzaki, Hajime Hamashima, Masanori Sasatsu, Bactericidal activity of Ag–zeolite mediated by reactive oxygen species under aerated conditions[J]. J. Inorg. Biochem., 2002, 92(1): 37-42.
    [27] H. Pehlivan, D. Balk?se, S.ülkü, F. Tihminliogˇlu, Characterization of pure and silver exchanged natural zeolite filled polypropylene composite films[J], Compos. Sci. Technol., 2005, 65(13): 2049-2058.
    [28] Ayben Top, Semraülkü, Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity[J], Appl. Clay Sci., 2004, 27(1-2): 13-19.
    [29] Ning-lin Zhou, Ying Liu, Li Li, Na Meng, Ying-xia Huang, Jun Zhang, Shao-hua Wei, Jian Shen, A new nanocomposite biomedical material of polymer/Clay–Cts–Ag nanocomposites[J], Current Appl. Phys., 2007, 7(1): 58-62.
    [30] Shuiping Chen, Guozhong Wu, Hongyan Zeng, Preparation of high antimicrobial activity thiourea chitosan–Ag+ complex[J], Carbohydrate Polym., 2005, 60(1):33-38.
    [31] S. M. Maga?a, P. Quintana, D. H. Aguilar, J.A. Toledo, Evaluation of the physico-chemical properties of chitosan as a potential carrier for rifampicin,using voltammetric and spectrophotometric techniques[J], Bioelectrochem., 2008, 72(2): 122-126.
    [32] Yunli Ma, Tao Zhou, Changsheng Zhao, Preparation of chitosan–nylon-6 blended membranes containing silver ions as antibacterial materials[J], Carbohydrate Res., 2008, 343(2): 230-237.
    [33] Ying Yi, Yuting Wang, Hui Liu, Preparation of new crosslinked chitosan with crown ether and their adsorption for silver ion for antibacterial activities[J], Carbohydrate Polym., 2003, 53(4): 425-430.
    [34] Qing Ling Feng, Taik Nam Kim, Jing Wu, Eui Seo Park, Jong Ock Kim, Dae Young Lim, Fu Zhai Cui, Antibacterial effects of Ag-HAp thin films on alumina substrates[J], Thin Solid Films, 1998, 335(1-2): 214-219.
    [35] Hirokazu Miyoshi, Masamitsu Ieyasu, Tomio Yoshino, Hiroki Koura. Photochemical property and surface characterization of silver-loaded zirconium phosphate [J], J. Photochem. Photobiol. A: Chem., 1998, 112(2-3): 239-244.
    [36] Klaus D. Jandt, Abdullah M. O. Al-Jasser, Khalid Al-Ateeq, Richard W. Vowles, Geoff C. Allen, Mechanical properties and radiopacity of experimental glass-silica-metal hybrid composites[J], Dental Mater., 2002, 18(6): 429-435.
    [37] J. J. Blaker, S. N. Nazhat, A. R. Boccaccini, Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications[J], Biomater., 2004, 25(7-8): 1319-1329.
    [38] Ying Xu, Jinshu Cheng, Weihong Zheng, Deqiang Gao, Study on the preparation and properties of silver-doped borosilicate antibacterial glass[J], J. Non-Cryst. Solids, 2008, 354(12-13):1342-1346.
    [39] Meixue Chen, Lizhu Yan, Hong He, Qingyun Chang, Yunbo Yu, Jiuhui Qu, Catalytic sterilization of Escherichia coli K 12 on Ag/Al2O3 surface[J], J. Inorg. Biochem., 2007, 101(5): 817-823.
    [40] Kinuyo Kawano, Manabu Komatsu, Yoshiyuki Yajima, Hajime Haneda, Hideyuki Maki, Taisei Yamamoto, Photoreduction of Ag ion on ZnO single crystal[J], Appl. Surf. Sci., 2002, 189(3-4): 265-270.
    [41] Xin He, Xiujian Zhao, Baoshun Liu, The synthesis and kinetic growth of anisotropic silver particles loaded on TiO2 surface by photoelectrochemical reduction method [J], Appl. Surf. Sci., 2008, 254(6): 1705-1709.
    [42] Ruxiong Cai, Yoshinobu Kubota, Akira Fujishima, Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles[J], J. Catal., 2003, 219(1): 214-218.
    [43] Shinji Kato, Yuji Hirano, Misao Iwata, Taizo Sano, Koji Takeuchi, Sadao Matsuzawa, Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide[J], Appl. Catal. B: Environ., 2005, 57(2): 109-115.
    [44] N. Sobana, M. Muruganadham, M. Swaminathan, Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes [J], J. Mol. Catal. A: Chem., 2006, 258(1-2): 124-132.
    [45] Qilin Cheng, Chunzhong Li, Vladimir Pavlinek, Petr Saha, Huanbing Wang, Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties[J], Appl. Surf. Sci., 2006, 252(12): 4154-4160.
    [46] T. Yuranova, A.G. Rincon, C. Pulgarin, D. Laub, N. Xantopoulos, H.-J. Mathieu, J. Kiwi, Performance and characterization of Ag–cotton and Ag/TiO2 loaded textiles during the abatement of E. coli [J], J. Photochem. Photobiol. A: Chem., 2006, 181(2-3): 363-369.
    [47] Michael K. Seery, Reenamole George, Patrick Floris, Suresh C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis[J], J. Photochem. Photobiol., A: Chem., 2007, 189(2-3): 258-263.
    [48] M. Yoshinari, Y. Oda, T. Kato, K. Okuda, Influence of surface modifications to titanium on antibacterial activity in vitro[J], Biomater., 2001, 22(14): 2043-2048.
    [49]张文钲,载银抗菌材料研究与发展[J],化工新型材料, 1997, 6:20-22.
    [50] M. Rivera-Garza, Silver supported on natural Mexican zeolite as an antibacterial material mi-croporous and mesoporous materials [J], Micropor. Mesopor. Mater., 2000,39:431-440.
    [51] A. D. Russell, F. G. C. Path, S. Pharm, et al, Antimicr-obial activity and acting of silver [A]. Progressin Medicine Chemistry (vol 31) [C], USA: EllisG P andLuscombe D KElser Science Press, 1994, 351-370.
    [52]冯乃谦,严建华,载银天然沸石抗菌耐久性的研究[J],硅酸盐通报, 2002,21(3):7-10
    [53]王德平,黄文敏,有源无机抗菌材料的研究进展[J],建筑材料学报,2000,3(1):73-79.
    [54]黄占杰,磷酸盐陶瓷生物降解研究的进展[J],功能材料,1997,28(1):1-4.
    [55]张文钲,张羽天,载银抗菌材料及其制品[J],贵金属,1998,19(4):50-53
    [56] Hoson Hideo, Abe Yoshihiro, Silver ion selective porous lithium titanium phosphate glass ceram-iscation exchanger and it`s application to bacterial materials [J], Mater. Res. Bull., 1994, 29(11):1157-1162.
    [57]汪山,程继键,磷酸盐玻璃缓释材料应用进展[J],玻璃与搪瓷, 1999, 27(3):53-57.
    [58]大谷朝南,っつてろゞヵㄦ,1996,25(19):5-14.
    [59]李博文,肖清华,载银膨润土的抗菌性能研究[J],非金属矿,2001,24(5):17-18.
    [60] A. Oya A, S. Yoshida, Y. Abe, et al, Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate [J], Carbon, 1993, 31(1):71-73.
    [61]李毕忠,抗菌塑料的发展和应用[J],化工新型材料,2000,28(6):8-12.
    [62]陈水挟,罗颖,银型抗菌活性碳纤维的结构及其抗菌性能的研究[J],材料科学与工程, 2001,19(4):7-13.
    [63] A. Oya, T. Wakahara, S. Yoshida, Preparation of pitch based antibacterial activated carbon fiber [J]. Carbon, 1993, 31:1243-1247.
    [64] Ruowen Fu, Hanmin Zeng, Yun Lu, The reduction of Pt(IV)with activated carbon fibers--an XPS study[J], Carbon, 1995,33(5):657-661.
    [65] Ruowen Fu, Hanmin Zeng, Yun Lu, The reduction property of activated carbon fibers [J], Carbon, 1993, 31(4):1089-1094.
    [66]朱征,具有灭菌功能活性碳纤维的研究[J],离子交换与吸附, 1995, 11(3): 200-205.
    [67]杨玉旺,刘敬利,纳米银研究和应用新进展[J],工业催化, 2003,11(12):7-13.
    [68]刘伟,张子德,王琦,李鹏,纳米银对常见食品污染菌的抑制作用研究[J].食品研究与开发, 2006,27(5):135-138.
    [69]周秋宝,郭惠仁,化纤织物的纳米银抗菌整理[J],印染, 2007,24:28-34.
    [70] Ahmad R. Shahverdi, Ali Fakhimi, Hamid R. Shahverdi, Sara Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli[J], Nanomed.: Nanotechnol., Biol. Med., 2007, 3(2): 168-171.
    [71] Kakarla Raghava Reddy, Kwang-Pill Lee, Youngil Lee, Anantha Iyengar Gopalan., Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles[J], Mater. Lett., 2008, 62(12-13): 1815-1818.
    [72] Hernane S. Barud, Celina Barrios, Thais Regiani, Rodrigo F. C. Marques, Marc Verelst, Jeannette Dexpert-Ghys, Younes Messaddeq and Sidney J. L. Ribeiro, Self-supported silver nanoparticles containing bacterial cellulose membranes[J], Mater. Sci. Eng., C, 2008, 28(4): 515-518.
    [73] RenêH.T. Santos, Neemias G. Santos, JoséP.H. Alves, Carlos A.B. Garcia, Luciane C.P. Rom?o, Maria Lara P.M. Arguelho, Antibacterial activity of montmorillonites modified with silver[J], J. Mol. Catal. A: Chem., 2008, 281(1-2): 192-199.
    [74] J. -J. Morrier, G. Suchett-Kaye, D. Nguyen, J. -P. Rocca, J. Blanc-Benon, O. Barsotti, Antimicrobial activity of amalgams, alloys and their elements and phases[J], Dental Mater., 1998, 14(2): 150-157.
    [75] A. J. Betts, D. P. Dowling, M. L. McConnell, C. Pope., The influence of platinum on the performance of silver–platinum anti-bacterial coatings[J], Mater. Design, 2005, 26(3): 217-222.
    [76] Kyung-Hwan Cho, Jong-Eun Park, Tetsuya Osaka, Soo-Gil Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient[J], Electrochim. Acta, 2005, 51(5): 956-960.
    [77] Mouxing Fu, Qingbiao Li, Daohua Sun, Yinghua Lu, Ning He, Xu Deng, Huixuan Wang, Jiale Huang, Rapid preparation process of silver nanoparticles by bioreduction and their characterizations[J], Chin. J. Chem. Eng., 2006, 14(1):114-117.
    [78] Raymond Rowan, Theresa Tallon, Anita M. Sheahan, Robert Curran, Malachy McCann, Kevin Kavanagh, Michael Devereux, Vickie McKee,‘Silver bullets’inantimicrobial chemotherapy: Synthesis, characterisation and biological screening of some new Ag(I)-containing imidazole complexes[J], Polyhedron, 2006, 25(8): 1771-1778.
    [79] Difang Zhao, Jie Zhou, Ning Liu, Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior[J], Appl. Clay Sci., 2006, 33(3-4): 161-170.
    [80] Bernadette S. Creaven, Denise A. Egan, Kevin Kavanagh, Malachy McCann, Andy Noble, Bhumika Thati, Maureen Walsh, Synthesis, characterization and antimicrobial activity of a series of substituted coumarin-3-carboxylatosilver(I) complexes[J], Inorg. Chim. Acta, 2006, 359(12): 3976-3984.
    [81] Veysel T. Yilmaz, Fatih Yilmaz, Haydar Karakaya, Orhan Büyükgüng?r, William T. A. Harrison, Silver(I)-barbital based frameworks: Syntheses, crystal structures, spectroscopic, thermal and antimicrobial activity studies[J], Polyhedron, 2006, 25(15): 2829-2840.
    [82] Anvarhusein A. Isab, Mohammed I. M. Wazeer, Synthesis and characterization of thiolate–Ag (I) complexes by solid-state and solution NMR and their antimicrobial activity [J], Spectrochim. Acta A: Mol. Biomol. Spectrosco., 2007, 66(2):364-370.
    [83] Jun Sung Kim, Eunye Kuk, Kyeong Nam Yu, Jong-Ho Kim, Sung Jin Park, Hu Jang Lee, So Hyun Kim, Young Kyung Park, Yong Ho Park, Cheol-Yong Hwang, Yong-Kwon Kim, Yoon-Sik Lee, Dae Hong Jeong, Myung-Haing Cho, Antimicrobial effects of silver nanoparticles[J], Nanomed.: Nanotechnol., Biol. Med., 2007, 3(1): 95-101.
    [84] Yuesheng Huang, Xiaolu Li, Zhenjiang Liao, Guoan Zhang, Qun Liu, Jin Tang, Yizhi Peng, Xuesheng Liu, Qizhi Luo, A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis[J], Burns, 2007, 33(2): 161-166.
    [85] Bishara S. Atiyeh, Michel Costagliola, Shady N. Hayek, Saad A. Dibo, Effect of silver on burn wound infection control and healing: Review of the literature [J], Burns, 2007, 33(2): 139-148.
    [86] Susan J. Berners-Price, Randall K. Johnson, Al J. Giovenella, Leo F. Faucette, Christopher K. Mirabelli, Peter J. Sadler, Antimicrobial and anticancer activity of tetrahedral, chelated, diphosphine silver(I) complexes: Comparison with copper and gold[J], J. Inorg. Biochem., 1988, 33(4): 285-295.
    [87] D. P. Dowling, A. J. Betts, C. Pope, M. L. McConnell, R. Eloy, M. N. Arnaud, Anti-bacterial silver coatings exhibiting enhanced activity through the addition of platinum[J], Surf. Coatings Technol., 2003, 163-164: 637-640.
    [88] Clifford V. Harding, Lakshmi Ramachandra, Mary Jo Wick, Interaction of bacteria with antigen presenting cells: influences on antigen presentation and antibacterial immunity [J], Current Opinion in Immunology, 2003, 15(1): 112-119.
    [89] Lei Zhang, Yun Ling, Miao Du, Synthesis, crystal structures and in vitro anti-fungal activities of two silver (I) coordination polymers with fluconazole [J], Inorg. Chim. Acta, 2007, 360(10): 3182-3188.
    [90] Robert Curran, Joanne Lenehan, Malachy McCann, Kevin Kavanagh, Michael Devereux, Denise A. Egan, Grace Clifford, Kevin Keane, Bernadette S. Creaven, Vickie McKee, [Ag2(aca)2]n and [Ag4(aca)4(NH3)2] (acaH = 9-anthracene- carboxylic acid): Synthesis, X-ray crystal structures, antimicrobial and anti-cancer activities[J], Inorg. Chem. Commun., 2007, 10(10): 1149-1153.
    [91] A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M.ávalos-Borja, F. F. Castillón-Barraza, A. Posada-Amarillas, Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol[J], Mater. Res. Bull., 2008, 43(1): 90-96.
    [92] Weizhong Jiang, Ying Wang, Lixia Gu, Study of the antibacterial function of enamel surface with Ag element diffusion [J], Mater. Lett., 2008, 62(2): 262-265.
    [93] Xuemei Wang, Christoph Somsen, Guido Grundmeier, Ageing of thin Ag/fluorocarbon plasma polymer nanocomposite films exposed to water-based electrolytes[J], Acta Mater., 2008, 56(4): 762-773.
    [94] Wanzhong Zhang, Xueliang Qiao, Jianguo Chen, Synthesis and characterization of silver nanoparticles in AOT microemulsion system[J], Chem. Phys., 2006, 330(3):495-500.
    [95]代小英,许欣,陈昭斌,张朝武,纳米银制备方法概述[J],中国消毒学杂志, 2007,24(6):561-564.
    [1] Liu Tao, Lin Lin, Zhao Hong, et al,DNA and RNA sensor[J],Science in China,Series B:Chemistry,2005,48(1):1-10.
    [2] Kikuo Okuyama, Wuled Lenggoro, Toru Iwaki, Nanoparticle preparation and its application–a nanotechnology particle project in Japan [A], Proceedings-2004 International Conference on MEMS, NANO and Smart Systems[C]. Banff Canada: IEEE Computer Society, 2004:369-372.
    [3] I. V. Uvarova, Preparation and use of nanosized materials [J], Metallofizikai Noveishie Tekhnologii, 2003, 25(11):1495-1516.
    [4] S. A. Maier, M. L. Brongersma, P. G. Kik, et al,Plasmonics-a route to nanoscale optical devices[J],Adv. Mater., 2001, 13(19): 1501-1505.
    [5] Prashant V. Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles [J], J. Phys. Chem. B, 2002, 106(32): 7729-7744.
    [6] M. P. Pileni, Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals [J]. Adv. Funct. Mater., 2001,11(5):323-397.
    [7]石川,程谟杰,曲振平,等,纳米银催化的甲烷选择还原NO反应研究[J],复旦学报(自然科学版), 2002,41(3): 269~273,279.
    [8] S. Hirano, Y. Wakasa, A. Saka, et al, Preparation of Bi-2223 bulk composed with silver-alloy wire [J]. Physica C: Superconductivity and Its Applications, 2003, 392-396: 458~462.
    [9]容敏智,章明秋,刘宏,低含量纳米银导电浆料及其制备方法[P], CN 1437200A. 2003-8-20.
    [10]任湘菱,唐芳琼,超细银-金复合颗粒增强酶生物传感器的研究[J],化学学报, 2002,60(3):393-397.
    [11] Hongquan Jiang, Manolache Sorin, Wong Amy C. Lee, et al, Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics[J], J. Appl. Polym. Sci., 2004, 93(3):1411-1422.
    [12]肖清华,李博文,载银无机抗菌剂的研究现状和发展趋势[J],中国非金属矿导报, 1999,6:5-7.
    [13] Hongshui Wang, Xueliang Qiao, Jianguo Chen, Xiaojian Wang, Shiyuan Ding,Mechanisms of PVP in the preparation of silver nanoparticles[J], Mater. Chem. Phys., 2005, 94:449-453.
    [14] A. Henglein, Small-Particle pesearch-Physicochemical properties of extremely small colloidal metal and demiconductor particles[J], Chem. Rev., 1989,89(8):1861-1873.
    [15]樊新,黄可龙,刘素琴,于金刚,尹良果化学还原法制备纳米银粒子及其表征[J],功能材料, 2007, 38(6): 996-1002.
    [16] M. Raffi, J. I. Akhter and M. M. Hasan, Effect of annealing temperature on Ag nano-composite synthesized by sol–gel[J], Mater. Chem. Phys., 2006, 99(2-3): 405-409.
    [17] Wanzhong Zhang, Xueliang Qiao, Jianguo Chen, Hongshui Wang, Preparation of silver nanoparticles in water-in-oil AOT reverse micelles[J], J. Colloid Interf. Sci, 2006, 302(1): 370-373.
    [18] Wanzhong Zhang, Xueliang Qiao and Jianguo Chen, Synthesis and characterization of silver nanoparticles in AOT microemulsion system[J], Chem. Phys., 2006, 330(3): 495-500.
    [19] A. Slistan-Grijalva, R. Herrera-Urbina, J.F. Rivas-Silva, M.ávalos-Borja, F.F. Castillón-Barraza, A. Posada-Amarillas, Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol[J], Mater. Res. Bull., 2008, 43(1): 90-96.
    [20] Ping Yin, Yucai Hu, Xianyang Chen, Tao Liang, Wei Jiang, Zhongxi Yu, Chongrong Bao, Xiao-Feng Lü, Studies on cadmium phosphate with rectangle layers morphology and its absorption properties for Hg(II) and Ag(I) ions[J], Mater. Chem. Phys., 2008, 109(1): 26-29.
    [21] Hernane S. Barud, Celina Barrios, Thais Regiani, Rodrigo F.C. Marques, Marc Verelst, Jeannette Dexpert-Ghys, Younes Messaddeq, Sidney J.L. Ribeiro, Self-supported silver nanoparticles containing bacterial cellulose membranes[J], Mater. Sci. Eng. C, 2008, 28(4): 515-518.
    [22] Yong Yang, Jianlin Shi, Go Kawamura, Masayuki Nogami, Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering[J], Scripta Mater., 2008, 58(10): 862-865.
    [23] Chung-Liang Cheng, Jia-Syu Lin, Yang-Fang Chen, Fabrication and growth mechanism of metal (Zn, Sn) nanotube arrays and metal (Cu, Ag) nanotube/nanowire junction arrays[J], Mater. Lett., 2008, 62(10-11):1666-1669.
    [24] Yi-Chang Chung, I.-Han Chen, Ching-Jung Chen, The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake[J], Biomater., 2008, 29(12): 1807-1816.
    [25] S. Bucak, A. Pugh-Jones, C. Lewis, D.C. Steytler, Metal nanoparticle formation in oil media using di(2-ethylhexyl) phosphoric acid (HDEHP) [J], J. Colloid Interf. Sci., 2008, 320(1): 163-167.
    [26] Zhongli Lei, Bing Hu, Hong Yang, Synthesis of different crystalline silver nanocomposites stabilized by an amphiphilic block copolymer [J], Mater. Lett., 2008, 62(8-9): 1424-1426.
    [27] Masaharu Tsuji, Michiko Nishio, Peng Jiang, Nobuhiro Miyamae, Seongyop Lim, Kisei Matsumoto, Daisuke Ueyama, Xin-Ling Tang, Role of chloride ions in the formation of Au@Ag core–shell nanocrystal structures by using a microwave–polyol method[J], Colloids Surf. A: Physicochem.Eng. Aspects, 2008, 317(1-3): 247-255.
    [28] Lei Qian, Xiurong Yang, Dendrimers as“controllers”for modulation of electrodeposited silver nanostructures [J], Colloids Surf. A: Physicochem. Eng. Aspects, 2008, 317(1-3):528-534.
    [29] Zhongli Lei, Xiangyu Wei, Liang Zhang, Shuxian Bi, Amphiphilic core–shell particles as carrier systems for metallic nanoparticles[J], Colloids Surf. A: Physicochem. Eng. Aspects, 2008, 317(1-3): 705-710.
    [30] Dongwei Wei, Weiping Qian., Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent [J]. Colloids and Surfaces B: Biointerfaces, 2008, 62, 1: 136-142.
    [31] Yongqiang Deng, Guodong Dang, Hongwei Zhou, Xianhua Rao, Chunhai Chen, Preparation and characterization of polyimide membranes containing Agnanoparticles in pores distributing on one side[J], Mater. Lett., 2008, 62( 6-7): 1143-1146.
    [32] Li-Ping Ding, Yan Fang, Influence of the microstructure of several substrates on the SERS effect of p-hyroxybenzoic absorbed on Ag nanoparticles [J], Colloids Surf. A: Physicochem. Eng. Aspects, 2008, 316(1-3): 253-257.
    [33]Peng He, Xinyuan Zhu, Synthesis and characterization of phospholipid-functionalized silver nanoparticles [J], Mater. Res. Bull., 2008, 43(3): 625-630.
    [34] J. Freudenberger, H.-J. Klau?, K. Heinze, A. Gaganov, M. Schaper, L. Schultz, Fatigue of highly strengthened Cu–Ag alloys[J], Inter. J. Fatigue, 2008, 30(3): 437-443
    [35] Limin Guo, Jingjing Nie, Binyang Du, Zhangquan Peng, Bernd Tesche, Karl Kleinermanns, Thermoresponsive polymer-stabilized silver nanoparticles [J], J. Colloid Interf. Sci., 2008, 319(1): 175-181.
    [36] G. Kartopu, S. Habouti, M. Es-Souni, Synthesis of palladium nanowire arrays with controlled diameter and length [J], Mate. Chem. Phys., 2008, 107(2-3): 226-230.
    [37] Noritsugu Kometani, Yoshizumi Kohara, Yoshiro Yonezawa, Preparation of colloidal silver nanoparticles using benzoin as a photoinitiator[J], Colloids Surf. A: Physicochem. Eng. Aspects, 2008, 313-314(1):43-46.
    [38] Doowon Seo, Wonjung Yoon, Sangjoon Park, Jihyeon Kim, Jongsung Kim, The preparation of hydrophobic silver nanoparticles via solvent exchange method[J], Colloids Surf. A: Physicochem. Eng.Aspects, 2008, 313-314(1):158-161.
    [1]伍敏杨,魏运方,日本塑料与纤维用抗菌防霉剂的现状及发展趋势[J],精细石油化工,1998,6:14-19.
    [2]刘伟,张子德,王琦,李鹏纳米银对常见食品污染菌的抑制作用研究[J],食品研究与开发, 2006. 27(5):135-137.
    [3]纪旭,熊金鈺,抗菌剂研究进展[J],实用药物与临床, 2005,8(1):45~47.
    [4] Genya Gekker, Shuxian Hu, Marla Spivak, James R. Lokensgard, Phillip K. Peterson, Anti-HIV-1 activity of propolis in CD4+ lymphocyte and microglial cell cultures[J], J. Ethnopharmac., 2005, 102(2): 158-163.
    [5] Raymond Wai-Yin Sun, Rong Chen, Nancy P.-Y. Chung, Chi-Ming Ho, Chen-Lung Steve Lin, Chi-Ming Che,Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells[J], Chem. Commun., 2005: 5059-5061.
    [6] X. Zhai, S. Efrima, Silver colloids and macroemulsions of metal interfacial colloidal films: Interaction with dithizone [J], J. Phys. Chem., 1996, 100 (24):10235-10242.
    [7] N. R. Jana, L. Gearheart, C. J. Murphy,Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J], Chem. Commun., 2001, (7): 617-618.
    [8] J. L. Gardea-Torresdey, J. G. Parsons, E. Gomez, J. Peralta-Videa, H. E. Troiani, P. Santiago, M. Jose Yacaman,Frmation and growth of Au nanoparticles inside live Alfalfa plants [J], Nano Lett., 2002, 2(4): 397-401.
    [9] C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, S. I. Shah, Synthesis and antibacterial properties of silver nanoparticles[J], J. Nanosci. Nanotechnol., 2005, 5(2):244-249.
    [10] M. Mazur, Electrochemically prepared silver nanoflakes and nanowires [J], Electrochem. Commun., 2004, 6(4):400-403.
    [11] H. Yin, Y. Wada, Large-scale and size-controlled synthesis of silver nanoparticlesunder micowave irradiation [J], Mater. Chem. Phys., 2004, 83:66-70.
    [12]雷忠利,范友华,聚合物存在下纳米银复合材料的制备与表征[J],物理化学学报, 2006, 22(8): 1021-1024.
    [13] X. X.Sun, S. J. Dong, E. K. Wang, One-Step Preparation and Characterization of Poly(propyleneimine) Dendrimer-Protected Silver Nanoclusters[J], Macromolecules, 2004, 37:7105-7108
    [14] Limin Qi, Helmut C?lfen, and Markus Antonietti,Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers[J], Nano Lett., 2001, 1(2): 61-65
    [15] H. J. Niu, Z. W. Zhang, M. Y. Gao, Y. M. Chen, Amphiphilic ABC triblock copolymer-assisted synthesis of core/shell structured CdTe nanowires[J], Langmuir, 2005, 21(9): 4205-4210
    [16]王婧,苑会林,马沛岚,聚乙烯醇薄膜的生产及应用现状与展望[J],塑料, 2005, 34(2): 12-17.
    [17] A. D. Russell, W. B. Hugo, Antimicrobial Activity and Action of Silver [J], Prog. Med. Chem., 1994, 31:351-370.
    [18] Panagiotis C. Zachariadis, Sotiris K. Hadjikakou, Nick Hadjiliadis, Stavroula Skoulika, Adonis Michaelides, Jan Balzarini, Erik De Clercq, Synthesis, characterization and in vitro study of the cytostatic and antiviral activity of new polymeric silver(I) complexes with ribbon structures derived from the conjugated heterocyclic thioamide 2-mercapto-3,4,5,6-tetra- hydropyrimidine[J], Eur. J. Inorg. Chem., 2004, (7): 1420-1426.
    [19] M. A. Hollinger, Toxicological aspect of topical silver pharmaceuticals [J], Crit. Rev. Toxicol., 1996, 26(3): 255-260.
    [20] Wen-Ji Jin, Hyun Jeong Jeon, Jung Hyun Kim and Ji Ho Youk, A study on the preparation of poly (vinyl alcohol) nanofibers containing silver nanoparticles [J]. Synth. Metals, 2007, 157(10-12): 454-459.
    [21] A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M.ávalos-Borja, F. F. Castillón-Barraza, A. Posada-Amarillas., Synthesis of silver nanoparticles in apolyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol[J], Mater. Res. Bull., 2008, 43(1): 90-96.
    [22] Aleksandra N. Krklje?, Milena T. Marinovi?-Cincovi?, Zorica M. Kacarevic-Popovic, Jovan M. Nedeljkovi?, Radiolytic synthesis and characterization of Ag-PVA nanocomposites[J], European Polymer, 2007, 43(6): 2171-2176.
    [23] Wen-Ji Jin, Hyun Jeong Jeon, Jung Hyun Kim, Ji Ho Youk, A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles[J], Synth. Metals, 2007, 157(10-12): 454-459.
    [24] Da-Guang Yu, Wen-Ching Lin, Chien-Hong Lin, Li-Mei Chang, Ming-Chien Yang, An in situ reduction method for preparing silver/poly(vinyl alcohol) nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates[J], Mater. Chem. Phys., 2007, 101(1): 93-98.
    [25] A. Gautam, G. P. Singh, S. Ram, A simple polyol synthesis of silver metal nanopowder of uniform particles[J], Synth. Metals, 2007, 157(1): 5-10.
    [26] (a)Min Zheng, Zuo-shan Wang, Ya-wei Zhu, Preparation of silver nanoparticle via active template under ultrasonic[J], Trans. Nonferrous Metals Soc. China, 2006, 16(6): 1348-1352; (b) P. K. Khanna, Narendra Singh, Shobhit Charan, V.V.V.S. Subbarao, R. Gokhale, U.P. Mulik., Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method[J], Mater. Chem. Phys., 2005, 93(1): 117-121.
    [27] P.K. Khanna, Narendra Singh, Shobhit Charan, A. Kasi Viswanath, Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism[J], Mater. Chem. Phys., 2005, 92(1): 214-219.
    [28] B. Karthikeyan, Spectroscopic studies on Ag–polyvinyl alcohol nanocomposite films [J], Physica B: Condensed Matter, 2005, 364(1-4): 28-332
    [29] Manmohan Kumar, Lalit Varshney, Sanju Francis, Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix [J], Radiation Phys. Chem., 2005, 73(1): 21-27
    [30] Xuelu Gao, Guohua Gu, Zhengshui Hu, Yu Guo, Xun Fu, Jinming Song, A simple method for preparation of silver dendrites[J], Colloids and Surfaces A: Physicoche. Eng. Aspects, 2005, 254(1-3): 57-61.
    [31] Jin-Woong Kim, Jung-Eun Lee, Su-Jin Kim, Jong-Suk Lee, Jee-Hyun Ryu, Junoh Kim, Sang-Hoon Han, Ih-Seop Chang, Kyung-Do Suh, Synthesis of silver/polymer colloidal composites from surface-functional porous polymer microspheres[J], Polymer, 2004, 45(14): 4741-4747.
    [32] Qunqiang Feng, Zhimin Dang, Na Li, Xiaolong Cao, Preparation and dielectric property of Ag–PVA nano-composite[J], Mater. Sci. Eng. B, 2003, 99(1-3): 325-328.
    [33] Kan-Sen Chou, Chiang-Yuh Ren, Synthesis of nanosized silver particles by chemical reduction method [J], Mater. Chem. Phys., 2000, 64(3): 241-246.
    [34] A. N. Krklje?, M. T. Marinovi?-Cincovi?, Z. M. Ka?arevi?-Popovi?, J.M. Nedeljkovi?, Dynamic thermogravimetric degradation of gamma radiolytically synthesized Ag–PVA nanocomposites[J], Thermochim. Acta, 2007, 460(1-2): 28-34.
    [35] J. X. Li, J. Wang, L. R. Shen, Z. J. Xu, P. Li, G. J. Wan, N. Huang, The influence of polyethylene terephthalate surfaces modified by silver ion implantation on bacterial adhesion behavior[J], Surf. Coatings Technol., 2007, 201(19-20): 8155-8159.
    [36] Z. Ka?arevi?-Popovi?, S. Tomi?, A. Krklje?, M. Mi?i?, E. Suljovruji?., Radiolytic synthesis of Ag-poly(BIS-co-HEMA-co-IA) nanocomposites [J]. Radiation Physics and Chemistry, 2007, 76(8-9): 1333-1336.
    [37] Aleksandra N. Krklje?, Milena T. Marinovi?-Cincovi?, Zorica M. Kacarevic-Popovic, Jovan M. Nedeljkovi?, Radiolytic synthesis and characterization of Ag-PVA nanocomposites[J], European Polym. J., 2007, 43(6): 2171-2176.
    [38] Georg Gosheger, Jendrik Hardes, Helmut Ahrens, Arne Streitburger, Horst Buerger, Michael Erren, Andreas Gunsel, Fritz H. Kemper, Winfried Winkelmann, Christof von Eiff, Silver-coated megaendoprostheses in a rabbitmodel—an analysis of the infection rate and toxicological side effects[J], Biomaterials, 2004, 25(24): 5547-5556.
    [39] S. L. Percival, P. G. Bowler, D. Russell, Bacterial resistance to silver in wound care [J], J. Hosp. Infect., 2005, 60(1): 1-7.
    [40] H. Friedenthal, Absolute und relative Desinfek-. tionskraft yon Elementen und chemischen Verbin-. Dungen [J], Biochem. Z., 1919, 94: 47-68.
    [41] C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, S. I. Shah, Synthesis and antibacterial properties of silver nanoparticles[J]. J. Nanosci. Nanotechnol., 2005, 5(2): 244-249.
    [42] Cyril Aymonier, Ulf Schlotterbeck, Lydie Antonietti, Philipp Zacharias, Ralf Thomann, Joerg C. Tiller, Stefan Mecking, Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties[J], Chem. Commun., 2002:3018-3019.
    [43] Abdulkareem Melaiye, Zhaohui Sun, Khadijah Hindi, Amy Milsted, Daniel Ely, Darrell H. Reneker, Claire A. Tessier, Wiley J. Youngs, Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity[J], J. Am. Chem. Soc., 2005, 127(7): 2285-2291.
    [44] Ivan Sondi, Branka Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria [J], J. Colloid Interface Sci., 2004, 275(1):177-182.
    [45] V. Alt, T. Bechert, P. Steinrucke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, R. Schnettler, An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement[J], Biomaterials, 2004, 25: 4383-4391.
    [46] Tae-Gon Kim, Young Woon Kim, Jong Soon Kim, Byungwoo Park ,Silver-nanoparticle dispersion from the consolidation of Ag-attached silica colloid[J], J. Mater. Res., 2004, 19(5): 1400-1407.
    [47] I. Pastoriza-Santos, L. M. Liz-Marzan, Silver nanoprisms in DMF[J], Nano Lett., 2002, 2(8):903-905
    [48] X. L. Li, W. Q. Xu, J. H. Zhang, H. Y. Jia, B. Yang, B. Zhao, B. F. Li, Y. Ozaki, Self-assembled metal colloid films: Two approaches for preparing new SERS active substrates[J], Langmuir, 2004, 20(4): 1298-1304..
    [49] Maurizio Muniz-Miranda, SERS-active Ag/SiO2 colloids: photoreduction mechanism of the silver ions and catalytic activity of the colloidal nanoparticles [J], J. Raman Spectrosc., 2004, 35(10): 839-842.
    [50] Z. H. Mbhele, M. G. Salemane, C. G. C. E. van Sittert, J. M. Nedeljkovi?, V. Djokovi?, A. S. Luyt, Fabrication and characterization of silver– polyvinyl alcohol nanocomposites[J], Chem. Mater., 2003,15: 5019-5024
    [51] Y. Zhou, S. H. Yu, C. Y. Wang, X. G. Li, Y. R. Zhu, Z. Y. Chen, A novel ultraviolet irradiation photo-reduction technique for preparation of single crystal Ag nanorods and Ag dendrites[J], Adv. Mater., 1999, 11(10): 850-852
    [52] K. S. Chou, C. -Y. Ren, Preparation of nanosized silver particles by chemical reduction method [J], Mater. Chem. Phys., 2000, 64: 241-246.
    [53] Z. Zhang, B. Zhao, L. Hu, PVP protective mechanism of ultrafine silver powder synthesize by chomical Reduction processes[J], J. Solid State Chem., 1996, 121:105-110.
    [54] R. He, X. Qian, J. Yin, Z. Zhu, Formation of silver dendrites under microwave irradiation[J], Chem. Phys. Lett., 2003, 369(3-4): 454-458.
    [55] D. Wu, X. Ge, Y. Huang, Z. Zhang, Q. Ye,γ- irradiation preparation of nanocomposite microspheres[J], Mater. Lett., 2003, 57(22-23): 3549-3553
    [56] Oliver L. A. Monti, John T. Fourkas, David J. Nesbitt, Diffraction-limited photogeneration and characterization of silver nanoparticles[J], J. Phys. Chem. B, 2004, 108(5): 1604–1612.
    [57] Fussell Garland, Thomas Jonathan, Scanlon Justin, Lowman Anthony, Marcolongo Michele, The effect of protein-free versus protein- containing medium on the mechanical properties and uptake of ions of PVA/PVP hydrogels [J], J. Biomater. Sci. Polym. Ed., 2005, 16(4):489-503.
    [58] Shatabdi Porel, Shashi Singh, S. Sree Harsha, D. Narayana Rao, T. P. Radhakrishnan, Nanoparticle-embedded polymer: In Situ synthesis, free-standingfilms with highly monodisperse silver nanoparticles and optical limiting, Chem. Mater., 2005, 17(1): 9-12.
    [59] A. Heilmann, Polymer Films with Embedded Metal Nanoparticles, Springer-Verlag: New York, 2002.
    [60] D. P. Dowling, A. J. Betts, C. Pope, M. L. McConnell, R. Eloy, M. N. Arnaud, Anti-bacterial silver coatings exhibiting enhanced activity through the addition 3of platinum[J], Surf. Coat. Technol., 2003, 163-164:637-640.
    [61] J. Affinito, P. Martin, M. Gross, C. Coronado, E. Greenwell, Vacuum deposited polymer/metal multilayer films for optical application[J], Thin Solid Films, 1995, 270:43-48.
    [62] Dowling, D. P.; Donnelly, K.; McConnell, M. L.; Eloy, R.; Arnaud, M. N. Anti-bacterial silver coatings on polymeric substrates, Thin Solid Films 2001, 398-399, 602-606.
    [63] H. Jiang, S. Manolache, A. C. L. Wong, F. S. Denes, Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics[J], J. Appl. Polym. Sci., 2004, 93(3): 1411-1422.
    [64] P. Favia, M. Vulpio, R. Marino, R. d'Agostino, R. P. Mota, M. Catalano, Plasma-deposition of Ag-containing polyethyleneoxide-like coatings[J], Plasmas Polym., 2000, 5(1): 1-14.
    [65] L. Longenberger, G. Mills, Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers[J], J. Phys. Chem., 1995, 99(2): 475-478
    [1] Nicola Cioffi, Luisa Torsi, Nicoletta Ditaranto, Giuseppina Tantillo, Lina Ghibelli, Luigia Sabbatini, Teresa Bleve-Zacheo, Maria D'Alessio, P. Giorgio Zambonin, Enrico Traversa, Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties[J], Chem. Mater., 2005, 17(21): 5255-5262.
    [2] G. Freddi, T. Arai, G. M. Colonna, A. Boschi, M. Tsukada, Preparation of metal-containing protein fibers and their antimicrobial properties[J], J. Appl. Polym. Sci., 2003, 89: 638-644.
    [3] Ryo Maeyama, Il Keun Kwon, Yoshimitsu Mizunoe, James M. Anderson, Masao Tanaka, Takehisa Matsuda, Novel bactericidal surface: Catechin-loaded surface-erodible polymer prevents biofilm formation [J], J. Biomed. Mater. Res. 2005, 75A(1): 146-155.
    [4] Mohammad Changez, Veena Koul, Amit Kumar Dinda, Efficacy of antibiotics- loaded interpenetrating network (IPNs) hydrogel based on poly(acrylic acid) and gelatin for treatment of experimental osteomyelitis: in vivo study[J], Biomater., 2004, 26(14): 2095-2104.
    [5] Bekir Dizman, Mohamed O. Elasri, Lon J. Mathias,Synthesis, Characterization, and antibacterial activities of novel methacrylate polymers containing norfloxacin[J], Biomacromol., 2005, 6(1): 514-520.
    [6] S. M. Iconomopoulou, G.A. Voyiatzis,The effect of the molecular orientation on the release of antimicrobial substances from uniaxially drawn polymer matrixes [J],J. Controlled Release, 2005, 103(2): 451-464.
    [7] Yuyu Sun, Gang Sun, Novel refreshable N-halamine polymeric biocides: N-chlorination of aromatic polyamides [J], Ind. Eng. Chem. Res., 2004, 43: 5015-5020.
    [8] Brian J. Nablo, Ta-Yung Chen, Mark H. Schoenfisch,Sol-gel derived nitric-oxide releasing materials that reduce bacterial adhesion[J],J. Am. Chem. Soc., 2001, 123(39): 9712-9713.
    [9] B. J. Nablo, A. R. Rothrock, M. H. Schoenfisch, Nitric oxide-releasing sol-gels as antibacterial coatings for orthopedic implants[J], Biomater., 2005, 26:917-924.
    [10] Mary E. Robbins, Erin D. Hopper, Mark H. Schoenfisch,Synthesis and characterization of nitric oxide-releasing sol-gel microarrays[J], Langmuir, 2004, 20(23): 10296-10302.
    [11] Panagiotis C. Zachariadis, Sotiris K. Hadjikakou, Nick Hadjiliadis, Adonis Michaelides, Stavroula Skoulika, Jan Balzarini, Erik De Clercq, Synthesis, characterization and in vitro study of the cytostatic and antiviral activity of new polymeric silver(I) complexes with ribbon structures, derived from the conjugated heterocyclic thioamide 2-mercapto-3,4,5,6-tetrahydro-pyrimidine[J],Eur. J. Inorg. Chem., 2004, 7: 1420-1426.
    [12] Varun Sambhy, Megan M. MacBride, Blake R. Peterson, Ayusman Sen,Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials [J], J. Am. Chem. Soc., 2006, 128(30): 9798-9808.
    [13] A. D. Russell, W. B. Hugo, Antimicrobial activity and action of silver [J], Prog. Med. Chem., 1994, 31: 351-370.
    [14] Fan, F.-R. F.; Bard, A. J. Chemical, electrochemical, gravimetric, and microscopic studies on antimicrobial silver films [J], J. Phys. Chem. B, 2002, 106(2), 279-287.
    [15] L. Balogh, D. R. Swanson, D. Tomalia, G. L. Hagnauer, A. T. McManus, Dendrimer-silver complexes and nanocomposites as antimicrobial agents[J], Nano Lett., 2001, 1(1): 18-21.
    [16] G. Gosheger, J. Hardes, H. Ahrens, A. Streitburger, H. Buerger, M. Erren, A. Gunsel, F. H. Kemper, W. Winkelmann, C. von Eiff, Silver-coated megaendoprostheses in a rabbit model– an analysis of the infection rate and toxicological side effects[J], Biomater., 2004, 25(24): 5547-5556.
    [17] S. L. Percival, P. G. Bowler, D. Russell, Bacterial resistance to silver in wound care [J], J. Hosp. Infect. , 2005, 60(1): 1-7.
    [18] A. E. Rosato, S. M. Tallent, M. B. Edmond, G. M. L. Bearman, Susceptibility of coagulase-negative staphylococcal nosocomial bloodstream isolates to the chlorhexidine/silver sulfadiazine impregnated central venous catheter[J], Am. J. Infect. Control, 2004, 32:486-488.
    [19] K.Yoshida, M.Tanagawa, M. Atsuta, Characterization and inhibitory effect ofantibacterial dental resin composites incorporating silver-supported materials [J], J. Biomed. Mater. Res., 1999, 47: 516-522.
    [20] M. E. Rupp, S. J. Lisco, P. A. Lipsett, T. M. Perl, K. Keating, J. M. Civetta, L. A. Mermel, D. Lee, P. Dellinger, M. Donahoe, D. Giles, M. A. Pfaller, D. G. Maki, R. Sherertz, Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infections: A randomized, controlled trial [J], Ann. Int. Med., 2005, 143:570-580.
    [21] H. J. Kim, E. Y. Choi, J. S. Oh, H. C. Lee, S. S. Park, C. S. Cho, Possibility of wound dressing using poly(l-leucine)/poly(ethylene glycol)/poly(l-leucine) triblock copolymer - regulative drug release from poly(ethylene oxide) and poly(tetramethylene oxide)-based segmented polyurethanes[J], Biomater., 2000, 21(2):131-141.
    [22] C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, S. I. Shah, Synthesis and antibacterial properties of silver nanoparticles[J], J. Nanosci. Nanotechnol., 2005, 5(2): 244-249.
    [23] Cyril Aymonier, Ulf Schlotterbeck, Lydie Antonietti, Philipp Zacharias, Ralf Thomann, Joerg C. Tiller, Stefan Mecking,Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties[J], Chem. Commun., 2002: 3018- 3019.
    [24] Abdulkareem Melaiye, Zhaohui Sun, Khadijah Hindi, Amy Milsted, Daniel Ely, Darrell H. Reneker, Claire A. Tessier, Wiley J. Youngs,Silver(I)-imidazole cyclophane gemd-diol complexes encapsulated by electrospun tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity[J], J. Am. Chem. Soc., 2005, 127(7): 2285-2291.
    [25] Ivan Sondi, Branka Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria [J], J. Colloid Interface Sci., 2004, 275(1):177-182.
    [26] V. Alt, T. Bechert, P. Steinrucke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, R. Schnettler, An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement [J], Biomater., 2004, 25:4383-4391.
    [27] J. B. Wright, K. Lam, A. G. Buret, M. E. Olson, R. E. Burrell, Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing[J], Wound Repair Regen., 2002 10(3): 141-151.
    [28] Raymond Wai-Yin Sun, Rong Chen, Nancy P.-Y. Chung, Chi-Ming Ho, Chen-Lung Steve Lin, Chi-Ming Che,Silver nanoparticles fabricated in hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells[J], Chem. Commun., 2005: 5059-5061.
    [29] Chengcai L, Yuhong Z, Xiaowei Z, Yuewu Z, Yanguang W, The role of poly(ethyleneglycol) in the formation of silver nanoparticles[J],J. Colloid Interface Sci., 2005, 288: 444–448.
    [30] Wenjin Yan, Rui Wang, Zhaoqing Xu, Jiangke Xu, Li Lin, Zhiqiang Shen, Yifeng Zhou, A novel,practical and green synthesis of Ag nanoparticles catalyst and its application in three-component coupling of aldehyde,alkyne,and amine[J], J. Mol. Catal. A: Chem., 2006, 255(1-2):81–85.
    [31] Monica Popa, Trinitat Pradell, Daniel Crespo, JoséM. Calderón-Moreno, Stable silver colloidal dispersions using short chain polyethylene glycol[J], Colloids Surf. A: Physicochem. Eng. Aspects, 2007, 303(3):184–190.
    [32] Hyeon Suk Shin, Hyun Jung Yang, Seung Bin Kim Mu Sang Lee,Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone inγ-irradiated silver nitrate solution[J],J. Colloid Interf. Sci., 2004, 274(1): 89-94.
    [33] Pavel Dibrov, Judith Dzioba, Khoosheh K. Gosink, and Claudia C. H?se, Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae , antimicrob[J], Agents Chemother., 2002, 46: 2668-2670.
    [34] Chun-Nam Lok, Chi-Ming Ho, Rong Chen, Qing-Yu He, Wing-Yiu Yu, Hongzhe Sun, Paul Kwong-Hang Tam, Jen-Fu Chiu, Chi-Ming Che, Proteomic analysis of the mode of antibacterial action of silver nanoparticles[J], J. Proteome Res., 2006, 5(4): 916-924
    [1] Y. Kobayashi, V. Salgueirino-Maceiraa, L. M. Liz-Marzan,Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating[J],Chem. Mater., 2001, 13:1630-1633.
    [2]丁敬,任湘菱,唐芳琼,单分散金属介电复合粒子制备及表征研究[J],无机化学学报, 2003,19(9): 993-996.
    [3] V. G. Pol, D. N. Srivastava, O. Palchik, V. Palchik, M. A. Slifkin, A. M. Weiss, A. Gedanken, Sonochemical deposition of silver nanoparticles on silica spheres, Langmuir, 2002,18(8):3352-3357.
    [4] Tan Pham, Joseph B. Jackson, Naomi J. Halas, and T. Randall Lee, Preparation and characterization of gold nanoshells coated with self-assembled monolayers, Langmuir, 2002,18(12):4915-4920.
    [5] M. D. Dvorak, B. L.. Justus, D. K. Gaskill, D. G. Hendershot, Nonlinear absorption and refraction of quantum confined InP nanocrystals growth in porous glass [J], Appl. Phys. Lett., 1995, 66(7):804-806.
    [6] V. Vendange, Ph. Colomban, Elaboration and thermal stability of (alumina, aluminosilicate/iron, cobalt, nickel) magnetic nanocomposites prepared through a sol-gel route [J], Mater. Sci. Eng. A, 1993, 168(2):199-203.
    [7] Juan Yguerabide, Evangelina E. Yguerabide, Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory [J], Anal. Biochem., 1998,262(2):137-156.
    [8] Suchita A. Kalele, Anita A. Kundu, Suresh W. Gosavi, Dileep N. Deobagkar, , Deepti D. Deobagkar, , Sulabha K. Kulkarni, Optical detection of antibody using silica-silver core-shell particles[J], Chem. Phys. Lett., 2005,404:136-141.
    [9] A. E. Neeves, M. H. Birnboim, Composite structures for the enhancement of nonlinear-optical susceptibil ity[J], J. Opt. Soc. Am. B, 1989,6:787-796.
    [10] Daniel Fornasiero, Franz Grieser, The kinetics of electrolyte induced aggregation of carey lea silver colloids [J], J. Colloid Interf. Sci., 1991, 141(1):168-179.
    [11] Luis M. Liz-Marzán, Michael Giersig, Paul Mulvaney, Synthesis of nanosized gold-silica core-shell particles [J], Langmuir, 1996,12(18):4329-4335.
    [12] Vishwas V. Hardikar, Egon Matijevi , Coating of nanosize silver particles with silica [J], J. Colloid Interf. Sci., 2000, 221(1):133-136.
    [13] Wei Wang, Sanford A. Asher, Photochemical Incorporation of Silver Quantum Dots in Monodisperse Silica Colloids for Photonic Crystal Applications[J], J. Am. Chem. Soc., 2001,123(50):12528-12535.
    [14]齐朔,陈东,唐芳琼,任湘菱,谢辅洲,纳米银掺杂二氧化硅复合颗粒的制备及表征[J],无机化学学报,2006,22(1):161-165.
    [15]陈秀华,胡永茂,李茂琼等,掺银二氧化硅抗菌陶瓷的烧结热性质研究[J],云南大学学报, 2002,24(1A):11-13.
    [16]迟广俊,姚素薇,张卫国等,沉淀二氧化硅载银抗菌剂的制备及其抗菌性能[J],天津大学学报, 2002,35(2):247-249.
    [17] Jie-xin Wang,Li-xiong Wen,Zhi-hui Wang,etal, Facile synthesis of hollow silica nanotubesand their application as supports for immobilization of silver nanoparticles[J], Scripta Mater.,2004,51:1035-1039.
    [18] D. B. Zhang, H. M. Cheng, J. M. Ma, Synthesis of silver-loaded silica nanoparticles in nonionicreverse micelles [J], J. Mater. Sci. Lett., 2001, 20:439-440.
    [19]蒋仲杰,刘春艳,刘云,银离子在二氧化硅表面上的成核反应[J],感光科学与光化学, 2003,21(3):169-175.
    [20] Zhong-jie Jiang, Chun-yan Liu, Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere[J], J. Phys. Chem. B, 2003,107:12411-12415.
    [21] J. B. Jackson, N. J. Halas, Silver nanoshells: variations in morphologies and optical properties [J], J. Phys. Chem. B., 2001, 105:2753-2746.
    [22] Yoshio Kobayashi, Verónica Salgueirińo-Maceira, et al, Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating [J], Chem. Mater., 2001, 13:1630-1633.
    [23] Z. Chen, Z. L. Wang, P. Chan, J. H. Zhang, et al, Preparation of metallo-dielectric compositeparticles with multishell structure[J], Langmuir, 2004, 20: 3042-3046.
    [24]蔡伟平,谭铭,汪国忠,张立德,银/二氧化硅介孔复合体的制备[J],科学通报, 1997, 42(2):150-153.
    [25] Shaochun Tang, Shaopeng Zhu, Haiming Lu, Xiangkang Meng, Shape evolution and thermal stability of Ag nanoparticles on spherical SiO2 substrates[J], J. Solid State Chem., 2008,181, 3:587-592.
    [26] Melanie T. Schaal, Anna C. Pickerell, Christopher T. Williams, John R. Monnier, Characterization and evaluation of Ag–Pt/SiO2 catalysts prepared by electroless deposition[J], J. Catal., 2008,254, 1:131-143.
    [27] Li Jin, Kun Qian, Zhiquan Jiang, Weixin Huang, Ag/SiO2 catalysts prepared viaγ-ray irradiation and their catalytic activities in CO oxidation[J], J. Mol. Catal. A: Chem., 2007, 274(1-2): 95-100.
    [28] Stéphanie Lambert, Caroline Cellier, Eric M. Gaigneaux, Jean-Paul Pirard, Beno?t Heinrichs, Ag/SiO2, Cu/SiO2 and Pd/SiO2 cogelled xerogel catalysts for benzene combustion: Relationships between operating synthesis variables and catalytic activity [J], Catal. Commun., 2007,8(8):1244-1248.
    [29] Virginie Hornebecq, Markus Antonietti, Thierry Cardinal, et al, Stable silver nanoparticles immobilized in mesoporous silica [J], Chem. Mater., 2003, 15: 1993-1999.
    [30]陈渊,曹静,唐芳琼,任俊,在SiO2表面合成光滑纳米银壳的新方法-热裂解-熔流法[J],无机化学学报, 2005,21(6):792-795.
    [31] C. N. R. Rao,, G. U. Kulkarni, P. J. Thomas, P. P. Edwards, Metal nanoparticles and their assemblies[J], Chem. Soc. Rev., 2000,29:27-35.
    [32]童云,纳米SiO2载银抗菌剂的研究[J],纳米科技,2005(6):27-29.
    [1] Kresge C T, Leonowlcz M E, Roth W J, et al, Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism [J],Nature, 1992, 359:710- 712.
    [2] Huo Q, Margolese D I, Ciesa U, et al, Generalized synthesis of periodic surfactant/inorganic composite materials [J],Nature, 1994, 368: 317- 321.
    [3]Beck J S, Vartuli J C, Roth W J,Leonowiez M E,Kresge C T,Sehmitt K.D.,Chu C.T.W.,Olsou D.H.,Sheppard E.W. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J] J. Am. Chem. Soc., 1992,114:10834-10843.
    [4] Beck J S, Vartuli J C, Recent advances in the synthesis characterization and application of mesporous molecular sieves [J], Current Opinion in Solid State Mater. Sci., 1996, 1:76-87.
    [5] Casci J L, The Preparation and potential applications of ultra-large pore molecular sieves [J], Stud. Surf. Sci. Catal.,1994,85:329-356.
    [6] Sayari A, Catalysis by crystalline mesoporous molecular sieves [J], Chem.Mater.,1996,8:1840-1852.
    [7] Comra A, Form microporous to mesporous molecular sieve materials and their use in catalysis [J], Chem. Rev.,1997, 97:2373-2420.
    [8] Yang H,Kuperma A,Coombs N,Mamiche-Afara S,OZin G A, Synthesis of oriented films of mesoporous silica on mica[J], Nature,1996,379:703-705.
    [9] Feng X.,Fryxell G E.,Wang L.Q.,Kim A.Y,Liu J.,Kemner K.M. Functionalized monolayrts on ordered mesoporous supports [J]. Science,1997,276:923-926.
    [10]Huo Q,Margolese D I,Stucky G D,Feng P,Gier T E,Sieger P, Generalized synthesis of periodic surfactant/inorganic composite materials[J], Nature,1994,368: 317-321.
    [11]Tanev P T,Chibwe M,Pinnavaia T J, Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds[J], Nature,1994,368:321-323.
    [12]Tanev P T,Pinnavaia T J, A neutral templating route to mesoporous molecularsieves[J], Science,1995,267:865-867.
    [13]Bagshaw S A,Pinnavaia T J, Mesporous alumina molecular sieves[J], Science,1995,268:1102-1105.
    [14]Attard G S,Glyde J C,Goltner C G, Liquid-crystalline phase as templates for the synthesis of mesporous silica[J], Nature,1995,378:366-368.
    [15]Huo Q,Magrolese D I,Ciesla U,Feng P,Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Chem. Mater.,1994,6:317-321.
    [16]Huo Q,Leon R,Petroff P M,Suteky G D,Mesostructure design with Gemini surfactant: supercage formation in a three-dimensional hexagonal array[J],Science,1995,268:1324-1327.
    [17]Edler K J,White J W, Room-temperature formation of molecular sieve MCM-41[J],J Chem. Soc Chem. Commun.,1995:155- 156.
    [18]Chatterjee M,Iwasaki T,Hayashi H,Onoclera Y,Ebina T, Room-temperature formation of the thermally stable aluminium-rich mesoporous MCM-41[J], Catal.Lett.,1998,52:21-23.
    [19]Wu C G,Bein T, Microwave synthesis of molecular sieve MCM-41[J], J. Chem. Soc. Chem. Commun.,1996:925-926.
    [20] Lin W,Chen J,Sun Y,Pang W, Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel[J], J. Chem. Soc. Chem. Commun.,1995:2367-2368.
    [21]Fyfe C A,Fu G, Structure orfanization of silicate polanions with surfactants: a new approach to the syntheses, structure transformations, and formation mechaniams of mesostructureal materials[J], J. Am. Chem. Soc., 1995,117: 9709-9714.
    [22]Gallis K W,Landry C C, Synthesis of MCM-48 by a phase transformation proeess[J], Chem. Mater.,1997,9:2035-2038.
    [23]Yang P,Zhao D,Margolese D I,Chmelka B E,Ebina T, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J], Nature,1998,396:152-155.
    [24] Ya-Ping Hsieh, Ji-Wei Chen, Chi-Te Liang, Yang-Fang Chen, Ai-Qin Wang, Chung-Yuan Mou, Influence of the incorporation of metals on the optical properties of MCM-41[J], J. Lumin., 2008,128, 3: 553-558.
    [25] Sangyun Lim, Chuan Wang, Yanhui Yang, Dragos Ciuparu, Lisa Pfefferle, Gary L Haller, Evidence for anchoring and partial occlusion of metallic clusters on the pore walls of MCM-41 and effect on the stability of the metallic clusters[J], Catal. Today, 2007, 123(1-4): 122-132.
    [26]ágnes Szegedi, Margarita Popova, Vesselina Mavrodinova, Mónika Urbán, Imre Kiricsi, Christo Minchev, Synthesis and characterization of Ni-MCM-41 materials with spherical morphology and their catalytic activity in toluene hydrogenation[J], Micropor. Mesopor. Mater., 2007,99(1-2): 149-158.
    [27] Derylo-Marczewska A, Gac W, Popivnyak N, Zukocinski G, Pasieczna S, The influence of preparation method on the structure and redox properties of mesoporous Mn-MCM-41 materials[J], Catal. Today, 2006, 114(2-3): 293-306.
    [28] Katok K V, Tertykh VA, Brichka S Ya, Prikhod’ko G P, Pyrolytic synthesis of carbon nanostructures on Ni, Co, Fe/MCM-41 catalysts[J]. Mater. Chem. Phys., 2006, 96(2-3): 396-401.
    [29] Selvaraj M, Pandurangan M, Seshadri K S, Sinha P K, Lal K B, Synthesis, characterization and catalytic application of MCM-41 mesoporous molecular sieves containing Zn and Al[J], Applied Catal. A: Gen., 2003, 242(2): 347-364.
    [30] Natacha Lang, Pierre Delichere, Alain Tuel, Post-synthesis introduction of transition metals in surfactant-containing MCM-41 materials[J], Micropor. Mesopor. Mater., 2002,56(2): 203-217.
    [31] Hernández Vélez M, Sánchez Garrido O, Bueno Barbeyto R M, Shmytko I M, García Poza M M, Vázquez Burgos L, Martínez-Duart J M, Ruíz-Hitzky E, Synthesis and characterization of porous silica thin films deposited from MCM-41 evaporation[J], Thin Solid Films, 2002, 402(1-2): 111-116.
    [32] Wellmann H, Rathousky J, Wark M, Zukal A, Schulz-Ekloff G, Formation of CdS nanoparticles within functionalized siliceous MCM-41[J], Micropor. Mesopor.Mater., 2001, 44-45:419-425.
    [33] Smet P, Riondato J, Pauwels T, Moens L, Verdonck L, Preparation and characterization of a titanium (IV) silsesquioxane epoxidation catalyst anchored into mesoporous MCM-41[J], Inorg. Chem. Commun., 2000, 3(11): 557-562.
    [34] Marcella Trombetta, Guido Busca, Maurizio Lenarda, Loretta Storaro, Massimo Pavan, An investigation of the surface acidity of mesoporous Al-containing MCM-41 and of the external surface of ferrierite through pivalonitrile adsorption[J], Applied Catal. A: Gen., 1999, 182(2): 225-235.
    [35] Elvira Armengol, Avelino Corma, Vicente Fornés, Hermenegildo García, Jaime Primo, Cu2+-phthalocyanine and Co2+-perfluoro phthalocyanine incorporated inside Y faujasite and mesoporous MCM-41 as heterogeneous catalysts for the oxidation of cyclohexane[J], Applied Catal. A: Gen., 1999, 181(2): 305-312.
    [36] van Bekkum H, Kloetstra K R, New organic chemical conversions over MCM-41-type materials [J], Studies Surf. Sci. Catal., 1998, 117: 171-182.
    [37] Gac W, Derylo-Marczewska A, Pasieczna-Patkowska S, Popivnyak N, Zukocinski G, The influence of the preparation methods and pretreatment conditions on the properties of Ag-MCM-41 catalysts[J], J. Mol. Catal. A: Chem., 2007, 268(1-2): 15-23.
    [38] Kumar N, Konova P, Naydenov A, Salmi T, Murzin D Yu, Heikill? T, Lehto V P, Ag-modified H-Beta, H-MCM-41 and SiO2: Influence of support, acidity and Ag content in ozone decomposition at ambient temperature [J], Catal. Today, 2007, 119(1-4): 342-346.
    [39] Shalini Rodrigues, S Uma, Martyanov Igor N, Klabunde K J, AgBr/Al-MCM-41 visible-light photocatalyst for gas-phase decomposition of CH3CHO [J], J. Catal., 2005, 233, 2: 405-410.
    [40] Xue-Guo Zhao, Jian-Lin Shi, Bin Hu, Ling-Xia Zhang, Zi-Le Hua, In situ formation of silver nanoparticles inside pore channels of ordered mesoporous silica [J], Mater. Lett., 2004,58(16): 2152-2156.
    [41] Adhyapak P V, Karandikar P, Vijayamohanan K, Athawale A A, Chandwadkar A J, Synthesis of silver nanowires inside mesoporous MCM-41 host[J], Mater. Lett., 2004, 58(7-8): 1168-1171.
    [1] Lei Zhao, Yuxia Wang, Zheng Chen, Youming Zou, Preparation, characterization, and optical properties of host–guest nanocomposite material SBA-15/AgI[J], Physica B: Condensed Matter, 2008, 403(10-11): 1775-1780.
    [2] Chun-Kuo Min, Tai-Bor Wu, Wei-Ta Yang, Chi-Lun Chen, Functionalized mesoporous silica/polyimide nanocomposite thin films with improved mechanical properties and low dielectric constant [J], Composites Science and Technology, 2008, 68(6):1570-1578.
    [3] Manuel Baca, Emmanuel de la Rochefoucauld, Emmanuelle Ambroise, Jean-Marc Krafft, Redouane Hajjar, Pascal P. Man, Xavier Carrier, Juliette Blanchard, Characterization of mesoporous alumina prepared by surface alumination of SBA-15[J], Microporous and Mesoporous Materials, 2008, 110(2-3): 232-241.
    [4] Hongchao Liu, Hua Wang, Jianghan Shen, Ying Sun, Zhongmin Liu, Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia[J], Applied Catalysis A: General, 2008, 337(2): 138-147.
    [5] Zhensong Lou, Ruiheng Wang, Hui Sun, Yuan Chen, Yanhui Yang, Direct synthesis of highly ordered Co-SBA-15 mesoporous materials by the pH-adjusting approach[J], Microporous and Mesoporous Materials, 2008, 110(2-3): 347-354.
    [6]ágnes Szegedi, Margarita Popova, Vesselina Mavrodinova, Christo Minchev, Cobalt-containing mesoporous silicas—Preparation, characterization and catalytic activity in toluene hydrogenation [J], Applied Catalysis A: General, 2008, 338(1-2): 44-51.
    [6] Fei Gao, Yanhua Zhang, Haiqin Wan, Yan Kong, Xingcai Wu, Lin Dong, Baiqin Li, Yi Chen, The states of vanadium species in V-SBA-15 synthesized under different pH values[J], Microporous and Mesoporous Materials, 2008,110(2-3): 508-516.
    [7] Thi Phuong Binh Nguyen, Jae-Wook Lee, Wang Geun Shim, Hee Moon, Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA[J], Microporous and Mesoporous Materials, 2008, 110(2-3):560-569.
    [8] Ganapati V. Shanbhag, S.M. Kumbar, S. B. Halligudi, Chemoselective synthesis ofβ-amino acid derivatives by hydroamination of activated olefins using AlSBA-15 catalyst prepared by post-synthetic treatment[J], Journal of Molecular Catalysis A: Chemical, 2008, 284(1-2):16-23.
    [9] Oscar A. Anunziata, Marcos B. Gómez Costa, María L. Martínez, Interaction of water and aniline adsorbed onto Na-AlMCM-41 and Na-AlSBA-15 catalysts as hosts materials [J], Catalysis Today, 2008, 133-135:897-905.
    [10] J. Aguado, G. Calleja, A. Carrero, J. Moreno, One-step synthesis of chromium and aluminium containing SBA-15 materials: New phillips catalysts for ethylene polymerization[J], Chemical Engineering Journal, 2008, 137(2):443-452.
    [11] Jiansheng Li, Xiaotong Wei, Y.S. Lin, Dong Su, Synthesis of ordered mesoporous silica membranes containing iron oxide nanocrystallites[J], Journal of Membrane Science, 2008,312(1-2): 186-192.
    [12] Karol Szczodrowski, Bénédicte Prélot, Sébastien Lantenois, Jerzy Zajac, Marc Lindheimer, Deborah Jones, Anne Julbe, Arie van der Lee, Effect of synthesis conditions on the pore structure and degree of heteroatom insertion in Zr-doped SBA-15 silica-based materials prepared by classical or microwave-assisted hydrothermal treatment[J], Microporous and Mesoporous Materials, 2008, 110(1): 111-118.
    [13]Yinfeng Zhao, Yue Qi, Yangyang Zhang, Shigang Zhang, Zhongmin Liu, Nano-Au/silica composite synthesized using nitrided SBA-15 as a host[J], Materials Letters, 2008, 62(8-9): 1197-1199.
    [14]M. Santhosh Kumar, De Chen, John C. Walmsley, Anders Holmen, Dehydrogenation of propane over Pt-SBA-15: Effect of Pt particle size[J], Catalysis Communications, 2008,9(5): 747-750.
    [15] Won Young Jung, Seung Hee Baek, Jin Sup Yang, Kwon-Taek Lim, Man Sig Lee, Gun-Dae Lee, Seong Soo Park, Seong-Soo Hong, Synthesis ofTi-containing SBA-15 materials and studies on their photocatalytic decomposition of orange II[J], Catalysis Today, 2008,131(1-4): 437-443.
    [16] Guoan Du, Sangyun Lim, Mathieu Pinault, Chuan Wang, Fang Fang, Lisa Pfefferle, Gary L. Haller, Synthesis, characterization, and catalytic performance of highly dispersed vanadium grafted SBA-15 catalyst [J], Journal of Catalysis, 2008, 253(1): 74-90.
    [17] Lihui ZHOU, Jun HU, Songhai XIE, Honglai LIU, Dispersion of Active Au Nanoparticles on Mesoporous SBA-15 Materials [J], Chinese Journal of Chemical Engineering, 2007, 15(4):507-511.
    [18] Yu Bai, Hua Yang, Weiwei Yang, Yancai Li, Changqing Sun, Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction[J], Sensors and Actuators B: Chemical, 2007, 124(1):179-186.
    [19] J. A. Melero, J. Iglesias, J. M. Arsuaga, J. Sainz-Pardo, P. de Frutos, S. Blazquez, Synthesis, characterization and catalytic activity of highly dispersed Mo-SBA-15[J], Applied Catalysis A: General, 2007, 331:84-94.
    [20]Sang-Cheol Han, Nanzhe Jiang, Sujandi David Raju Burri, Kwang-Min Choi, Seung-Cheol Lee, Sang-Eon Park, Microwave synthesis of SBA-15 mesoporous silica material for beneficial effect on the hydrothermal stability[J], Studies in Surface Science and Catalysis, 2007, 165: 25-28.
    [21] Y. Pei, P.-J. Guo, L.-J. Zhu, S.-R. Yan, M.-H. Qiao, K.-N. Fan, Selective hydrogenation of crotonaldehyde over Au nanoparticles confined in APTS-functionalized mesoporous silicas [J], Studies in Surface Science and Catalysis, 2007, 170(2): 1174-1181.
    [22] Huanling Xie, Ranbo Yu, Dan Wang, Jianxi Yao, Xianran Xing, Wenguo Xu, Size and morphology control in the synthesis of SBA-15[J], Studies in Surface Science and Catalysis, 2007,165: 603-606.
    [23] Dieqing Zhang, Ying Wan, Guisheng Li, Jing Zhang, Hexing Li, Synthesis of silver nanowire/mesoporous silica composite as a highly active antiseptic[J], Studies in Surface Science and Catalysis, 2007, 165:841-846.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700