海排灰在道路基层及底基层中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来修筑道路和制作水泥大量使用了粉煤灰,使得这种工业废渣日趋紧缺,价格一路攀升。辽宁省委、省政府实施的“五点一线”沿海经济带的道路建设需要大量的粉煤灰,仅辽宁(营口)沿海产业基地的道路建设就需要600万吨粉煤灰。当地满足规范的普通粉煤灰非常短缺,而附近的营口鲅鱼圈电厂用海水冲排的粉煤灰(亦称海排灰)就有1000万吨,至今无人使用,正污染着周围的环境。如果能把这种海排灰成功地应用于产业基地道路建设中,将变废为宝,既能节约资源,又能保护环境,真正做到可持续发展。
     由于至今国内外没有关于把海排灰材料应用于道路建设的任何报道,更没有相关技术规范可以参照,为了系统研究海排灰应用于道路路面基层的可行性,本研究以辽宁(营口)沿海产业基地的道路建设为依托,主要从室内试验、理论分析、试验路段验证等三个方面来进行研究。主要研究内容与成果如下:
     1.对海排灰的物理力学性质进行了研究。鲅鱼圈海排灰各样本中有效成分SiO_2加Al_2O_3的含量均大于76%,烧失量最大为3.16%,满足《粉煤灰石灰类道路基层施工及验收规程》CJJ4-97规定。经过筛分试验发现海排灰粒度偏粗,不满足上述规范的规定,属于低活性粉煤灰。经化学分析,海排灰的氯盐含量一般为0.80%左右。
     2.对基于海排灰的水泥海排灰碎石基层及三灰碎石底基层材料配合比进行了研究。包括:确定了水泥海排灰稳定碎石基层材料的集料级配范围;从海排灰、水泥、石灰的品质入手,对水泥、石灰与海排灰最优比例的影响因素进行分析,并通过试验确定了水泥海排灰中水泥、海排灰的最佳比例和三灰中水泥、石灰、海排灰的最佳比例。根据配合比试验,采用鲅鱼圈海排灰做水泥海排灰基层,最佳配合比为水泥:海排灰:碎石=5:10:85;三灰底基层的最佳配合比为水泥:石灰:海排灰:碎石为2:10:43:45。最后通过水泥海排灰碎石和水泥石灰海排灰碎石混合料的路用性能试验,得到抗压强度、劈裂强度和回弹模量等路用性能随养生时间的变化规律。
     3.通过X-射线衍射分析和扫描镜法(SEM)微观分析法,研究了海排灰和普通粉煤灰按同样配比制成水泥海排灰、三灰结合料,在不同的龄期,材料的微观变化,包括孔隙变化,生成物的变化,从而在微观方面为海排灰应用于道路基层提供理论依据。本文还研究不同氯盐含量的海排灰组成的水泥海排灰、三灰结合料,在不同龄期的微观变化,得到了氯盐含量对水泥海排灰、三灰结合料微观影响规律。本文对海排灰中粉煤灰与水泥、石灰基结合料的化学反应进行分析;对粉煤灰-水泥体系对海排灰中氯离子的固化机理进行探讨。
     4.经研究分析,影响海排灰特性的主要因素是其中含有氯离子,其它成分对海排灰特性影响非常小。为了研究海排灰中含盐量对水泥海排灰碎石、三灰碎石路用性能的影响,本文从基层和底基层混合料的抗压强度、抗冻性能、干缩、温缩性能及冲刷性能等方面进行系统研究,得到如下重要结论:
     (1)氯离子对水泥海排灰混合料、三灰混合料有早强剂的作用。水泥海排灰碎石中海排灰的最佳氯离子含量在1.3%左右时,早期强度最高。三灰碎石中海排灰的最佳氯离子含量在1.8%左右时,早期强度最高。三灰碎石中水泥加石灰的含量比水泥海排灰碎石中水泥含量大,固化能力比较强。
     (2)根据冻融性能试验,氯盐含量变化对水泥海排灰基层材料抗冻性能影响不大;但对底基层材料的抗冻性能影响较大。通过抗冻性试验,当氯盐含量超过1.5%时,三灰碎石抗冻性能达不到规范要求。因此,要求用做底基层的海排灰氯盐含量不要大于1.5%。
     (3)随着粉煤灰中氯离子的增加,基层、底基层混合料试件干缩应变增长较快,干缩系数增加,因此海排灰基层。底基层施工时更要注意洒水养生。海排灰中氯盐含量对基层、底基层混合料温缩影响不大。
     (4)不同氯盐含量的基层和底基层材料在受到冲刷时,冲刷量不一样,氯盐含量越大,冲刷量越大。通过试验海排灰的水泥海排灰碎石抗冲刷性能比三灰碎石料差,因为水泥海排灰中结合料比较少,氯盐溶解后,水泥海排灰集料更容易被冲刷。
     5.通过海排灰碎石基层、底基层的多层弹性层状体系力学分析,验证基于海排灰基层、底基层的路面结构在标准荷载作用下,满足设计要求。
     6.通过试验路段施工和检测,对辽宁(营口)沿海产业基地海排灰基层、底基层施工的关键技术和技术指标进行研究。通过试验路段压实度、弯沉、无侧限抗压强度检测,以及对试验路段的长期使用情况(包括路面状况和弯沉)观测,路面的各项性能都满足规范要求,说明海排灰用于道路基层及底基层建设非常成功。在此基础上提出基于海排灰基层及底基层的典型路面结构。
Recently, the fly ash having been built in road construction and having been made in cement largely, caused this industry waste residue to be day by day scarce, and it's price group climbed. Liaoning (Yingkou) Coastal Industrial Base's road construction needs 6,000,000 tons fly ash. The local fly ash which meet the standard requirement,is short.But there are 10,000,000 tons fly ash flushed by seawater (also to call fly-ash-flushed-by-seawater) in storage pool in Bayuquan power plant of Yingkou. It has never been used for road construction. If the fly-ash-flushed-by-seawater can be applied successfully in road construction, the resources will be saved and the environment will be protected.
     Because there is no report about appling this material for road construction in domestic and foreign until now, and no technology standard can be refered to, this paper, taking the road construction of Liaoning (Yingkou) Coastal Industrial Base as a backing, has researched the fly-ash-flushed-by -seawater how to be applied in pavement roadbase. The main research content and the achievement are as follows:
     1 .The study about physics mechanical properties of the fly-ash-flushed-by-seawater.The chemical composition of the fly-ash-flushed-by-seawater in Bayuquan is:SiO_2+Al_2O_3 content is greater than 76% and the ignition loss is 3.16%, satisfing the road construction specification.It's grain size can not satisfied the road construction specification and the fly-ash belongs to the low active fly ash. The chloride ion content of the fly-ash-flushed-by-seawater is about 0.80%
     2.The mixture ratio design of the Lime fly-ash-flushed-by-seawater stabilized crushed-stones includes: (1)the aggregate's grading envelope, (2)the proportion of cement to fly-ash-flushed-by-seawater and the proportion of lime to fly-ash-flushed-by-seawater; (3)the proportion of bound materials to aggregate.This research recommends the best mixture ratio of the roadbase for Yingkou Coast Industry Base as following :the two ash stabilized roadbase,the cement: fly-ash-flushed-by-seawater: stone =5: 10:85; the three ash stabilized subbase, cement:Lime: fly-ash-flushed-by-seawater: stone is 2:10:43:45.
     3.The hydration reactions theory research of cement and fly-ash-flushed-by-seawater includes following two aspects: chemical reaction analysis of fly ash and cement, and of chloride ion in fly-ash-flushed-by-seawater. Through the microscopic analysis by SEM and XRD, the mix material's strength change regular for different chlorine salt content can be disclosure.
     4.In order to study the salt content in fly-ash-flushed-by-seawater how to influence the road performance of the two ash stabilized roadbase and three ash stabilized roadbase, this article has done the experiments of roadbase and the subbase as follow: compressive deformation strength experiments, anti-freeze performance experiments ,dry shrinkage performance experiments, temperature shrinkage performance experiments and anti-erosion property experiments.
     (1) In compressive deformation strength aspect, the chloride ion content in the two ash stabilized roadbase and the three ash stabilized roadbase has an agent function to the early strength, and reject the later period intensity growth. When chlorine salt content in two ash stabilized crushed stones is not big, it is advantageous to the intensity.when the salt content in fly-ash-flushed-by-seawater is big, it is disadvantageous to two ash stabilized crushed-stones's early strength.
     (2) In anti-freeze performance aspect, the salt content do not change too big to the roadbase material.If the salt content in fly-ash-flushed-by-seawater is big, the subbase material's anti-freeze performance can be affected. Through the anti-freeze performance experiments,we found that if the chlorine salt content surpassesl.5%,.the anti-freeze performance of the three ashes stabilized crushed-stones can't meet the standard requirement.
     (3) In dry shrinkage and temperature shrinkage performance aspect, it is not big influence in the salt content to the base and subbase blends.
     (4) In anti-erosion property experiments, the rate of mass loss grows quickly than the salt content grows. This show the anti-erosion performance of the roadbase and subbase material.is sensitive to the salt content in fly-ash-flushed-by-seawater.
     5.Through the mechanics analysis of fly-ash-flushed-by-seawater stabilized roadbase and subbase with multi-layered elasticity layered system,we can proved that the fly-ash-flushed-by-seawater stabilized roadbase and subbase, under the standard axial loading, can satisfy the design request.
     6.Through the construction and examination to the experiment road, the key technologies and the technical specification is summarized for Liaoning (Yingkou) Coastal Industrial Base fly-ash-flushed-by -seawater stabilized road construction. And through detection to the experiment road, the fly-ash-flushed-by -seawater stabilized roadbase and subbase are proved to meet the standard requirements.Lastly ,the typical pavement structure for the fly-ash-flushed-by -seawater is recommended in this paper.
引文
[1]沙爱民.半刚性路面材料结构与性能[M].北京:人民交通出版社,1998:1-25
    [2]张嘎吱.水泥粉煤灰稳定碎石基层材料的级配范围[J].长安大学学报,2003 23(4):1-4
    [3]Bakkar.W.T.Production of Properties of Fly Ash.Utilization of Ash Workgroup.University of North Dakota Grand forks[J].North Dakota.May 1987:13-15
    [4]U.S.Department of Transportation.Fly Ash facts fore Highway Engineers[J].Rep.No.FHWS-SA-94-081.Federal Highway Administration.Washington.D.C.1995:1055-1059
    [5]Bergeson.K.L.Iowa Fly Ash Affiliates Research Program[J].Annual Report.ISU-ERI Ames 99501.Iowa State University,Ames,December 1998:875-882
    [6]徐江萍.水泥粉煤灰稳定碎石基层沥青路面抗裂性能研究[D].西安:长安大学,2006
    [7]American Coal Ash Association International.Soil and Pavement Base Stabilization with Self-Cementing Coal Fly Ash[J].Alexandria.Virginia.May 1999:732-735
    [8]杨锡武,梁富权.水泥(石灰)粉煤灰碎石混合料半刚性路面基层设计参数研究[J].中国公路学报,1996(3):43-46
    [9]杨锡武,梁富权.水泥(石灰)粉煤灰混合料的最佳配合比研究[J].公路,1995(9):38-40
    [10]萧赓等,水泥粉煤灰级配碎石基层混合料的路用性能研究[J].重庆交通学院学报,2001(11):61-64
    [11]杨锡武,凌天清,梁富权.水泥(石灰)粉煤灰混合料路面基层研究[J].重庆交通学院学报,1997(2):48-51
    [12]俞建荣,栗学铭,窦有年.粉煤灰水泥稳定粒料的路用性能研究[J].中国公路学报,1998(8):30-34
    [13]萧赓等.水泥粉煤灰级配碎石基层混合料微观机理研究[J].重庆交通学院学报,2002(2):49-52
    [14]杨锡武,梁富权.水泥(石灰)粉煤灰混合料路面基层成延型迟时间研究[J].重庆交通学院学报,1995(4):36-39
    [15]徐江萍等.水泥—粉煤灰碎石早强特性的研究[J].中南公路工程,1999(2):4-6
    [16]张嘎吱.水泥粉煤灰稳定碎石基层配合比设计和路用性能研究[D].西安:长安大学,2004
    [17]胡红梅.矿物功能材料对混凝土氯离子渗透性影响的研究[D].武汉:武汉理工大学,2002
    [18]M.AbdEI.Aziz,S.Abd El.Aleem,M.Heikal,H.E1.Didmaony.Hydration and durability of sulphate-resisting and slag cement blends in Caron's Lake water[J].Cement and concrete Research,2005.35(8):1592-1600
    [19]Y.Xu.The influence of sulphates on chloride binding and pore solution chemisrty[J].cement and concrete Researeh 27(1997) No.12,1841-1850
    [20]U.A.Birnin-Yauri,F.P.Glasser.Frede's salt,CaAl(OH)_6(Cl,OH).2H_2O:its solid solutions and their role in chloride binding[J].Cement and Concrete Research 28(1998) 1713-1723
    [21]Yonezawa,T.,Ashworth,V.,Procter,R.P.M.The Mechanism of Fixing Cl-by Cement Hydrates Resulting in the Transformation of NaC1 to NaOH[J].8th International Conference on Alkali-Aggregate Reaction.1989.153-160
    [22]Surgavanshi,A.K.,Swamy,R.N.Stability of Friedel's salt in Carbonated Concrete Structural Elements[J].Cement and Concrete Researeh.1996.26 (5):729-741
    [23]M.R.Jones,D.E.Macphee,J.A.Chudek.Studies using 27Al MAS NMR of AFm and Aft phases and the formation of Friedel's salt[J].Cement and Concrete Research33 (2003):177-182
    [24]F.P.Glasser,A.Kindness.Stability and solubility relationships in AFm phases part I,chloride,sulfate and hydroxide[J].Cement and Concrete Researeh29(1999):861-866
    [25]管学茂.水泥基材料在氯盐环境中的服役行为及机理研究[R].北京:中国建筑材料科学研究院,2005
    [26]关贺.低活性粉煤灰基层沥青路面结构与路面使用性能研究[D].沈阳:沈阳建筑大学,2007
    [27]蒋晓曙,许仲梓.Ⅲ级粉煤灰用于道路混凝土[J].南京化工大学学报,1998(增刊):21-23
    [28]L.D.Nicolescu,Criterion of Estimation the Efficiency of Fly-Ash in Cement and Concrtet[J].Ash Utilization Proceedings.ShtAsh Utilization Symposium,1982 (28):93-98
    [29]R.C.Joshi and V.M.Malhotra.Relationship Between Pozzolanic Activity and Chemical and Physical of Selected Canadian Fly Ashes [J].Materials Research Society Symposia Proceedings,1997(86):91-97
    [30]V.K.Gupta,Saurabh Sharma,I.S.Yadav and Dinesh Mohan.Utilization of Bagasse Fly Ash Generated in the Sugar Industry for the Removal and Recovery of Phenol and p-Nitrophenol from Waste Water [J].J.Chem.T echnol.Biotechnol.1998,(71):180-186
    [31]Lav,A.Hilmi.Microstructure Development of Stabilized Fly Ash as Pavement Base Material [J].Journal of Materials in Civil Engineering,2000 (2):157-163
    [32]沙爱民,胡力群.半刚性基层材料抗冲刷性能试验方法研究[J].中国公路学报,2002(4):4-7
    [33]盛萍.路用粉煤灰品质合理评价指标的研究[D].西安;长安大学硕士论文,2005
    [34]胡力群.水泥石灰粉煤灰稳定碎石材料级配优化研究[D].西安;长安大学,2004
    [35]王莎.水泥石灰粉煤灰稳定碎石材料级配优化研究[D].西安;长安大学,2005
    [36]JTJ051-1993公路工程土工试验规程[S].北京:人民交通出版社,1993
    [37]JTJ057-1994公路工程无机结合科稳定材料试验规程[S].北京:人民交通出版社,1994
    [38]JTG D50-2006公路沥青路面设计规范[S].北京:人民交通出版社,2006
    [39]JTJ034-2000公路路面基层施工技术规范[S].北京:人民交通出版社,2000
    [40]K.Mohan and H.F.W.Taylor(1981).Pastes of tricalcium silicate with fly ash-analytical electron microscopy,trimethylsilylation and other studies[J].In:Effects of Flyash Incorporation in Cement and Concrete (S.Diamond Ed.).Proceedings,Symposium N Annual Meeting,November 16-18,1981,54-59
    [41]I.Jawed and J.Skalny(1981).Hydration of tricalcium silicate in the presence of fly ash[J].In:Effects of Flyash Incorporation in Cement and Concrete (S.Diamond Ed.).Proceedings,Symposium N Annual meetings,November 16-18,1981:60-70
    [42]A.L.A.Fraay,J.M.Bijen and Y.M.de Haan(1989).The reaction of fly ash in concrete[J].A critical examination.Cement and Concrete Research.Vol.19:235-246
    [43]Cross,S.A.,and Fager,Cz.A.Fly ash in cold ridged bituminous pavement[J],Transportation Research Record,Transportation Record Board,Washington,D.C.1995(1486):49-56
    [44]Gray, D.H., Tons,E.,and Thiruvengadarn,T. R. Performance evaluation of a cement-stabilized fly ash base[J],Transportation Research Record,Transportation Research Board,Washington,D.C.1994 (1440):8-15
    [45]Mari Paz Lorenzo,Sara Gori.ect.Activation of Pozzolanic Reaction of Hydrated Portland Cement Fly Ash Pastes in Sulfate Solution[J],Journal of the American Ceramic Society.2002.85 (12):66-70
    [46]H.A.W.Cornelissen,R E.Hellewaard and J.L.T.Vissers,Processed fly ash for high performance concrete,In:Fly Ash[J],Silica Fume,Slag&Natural Pozzolans in Concrete,Proceedings Fifth International Conference,Milwaukee,Wisconsin,USA,April 21-25,1995:67-79
    [47]Joanne Hill and John H.Sharp.Encapsulation of Sn(ll) and Sn(Ⅳ) Chlorides in Composite Cements[J].J.Am.Ccram.Soc.88 [3] 560- 565 (2005)
    [48]J.G.Cabrera and S.O.Nwaubani(1998).The microstructure and chloride ion diffusion characteristics of cements containing metakaolin and fly ash[J].In:Fly ash,silica fume,Slag&Natural Pozzolans in concrete,Proceedings sixth CANMET/ACI International conference,May31-June 5,1998,Bangkok Thailand:385-400
    [49]高向东,王新友.低水胶比粉煤灰混凝土的钢筋锈蚀性能与抗冻性的研究[J].混凝土,2000(1):48-51
    [50]王绍东,王智.水泥组分对混凝土固化氯离子能力影响.硅酸盐学报[J].2000 9(6):570-573
    [51]PW.Brown,Steven Bdager.The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl,MgSO_4,Na_2SO_4 attack[J].Cement and Concrete Research 30(2000):1535-1742
    [52]苏志强.半刚性基层沥青路面结构设计方法研究[J].中南公路工程,1997,(2):15-19
    [53]萧赓,梁乃兴等.水泥粉煤灰级配碎石基层试验路研究[J].公路,2002.7:101-103
    [54]张敏江,孙菲.影响低活性粉煤灰基层强度因素的分析[J].沈阳建筑大学学报:自然科学版,2006,22(4):553-556
    [55]杨群,黄晓明.基层模量对路面性能的影响分析[J].东南大学学报(自然科学版),2001年(4):81-83
    [56]李国强,蒋志仁.沥青路面使用性能指标研究[J].重庆交通学院学报,1995(1):47-54
    [57]梁新权.水泥粉煤灰碎石基层沥青路面的应用研究[D].长沙:湖南大学,2004
    [58]许洁.水泥粉煤灰碎石混合料组成设计与路用性能研究[D].大连:大连理工大学,2003
    [59]藤旭秋.水泥粉煤灰碎石混合料配合比设计及路用性能研究[D].西安:长安大学,2003
    [60]朱照宏,王秉纲,郭大智.路面力学计算[M].北京:人民交通出版社,1985.
    [61]Burmister,D.M.,The Theory of Stresses and Displacements in Layered Soil Systems,Journal of Applied Physics,Vol.16,1945:230-239
    [62]J.Verstraeten.Stresses and Displacements in Elastic Layered Systems:General Theroy-Numercial Stress Calculation in Four-Layered Systems with Continuous Interfaces.The University of Michigan.Ann Arbor.Michigan.August—11.1967:223-238
    [63]Oscar Hugo Giovanon and Marta Beatriz Pagoia Mechanistic performance model to design flexible pavements.30(2006):1435-1442
    [64]Semmelink,C J and Beer,M,“Rapid determination of elastic and shear properties of road building materials with the K-Mould”,Unbound aggregates in roads,ed.Dawson and Jones,Univ.of Nottingham,,1995 (2):151-161
    [65]邓学钧,黄晓明.路面设计原理与方法[M].北京:人民交通出版社,2001
    [66]郝大力.轮面性能的评价与分析研究[D].西安:西安公路交通大学,2000,9
    [67]田波,姚祖康.承受特重车辆作用的水泥混凝土路面应力分析[J].中国公路学报,2000.4,第13卷第2期:16-18
    [68]黄文元.沥青路面超重车轴载换算初步研究[J].公路交通科技,2000.2,第17卷第1期:5-9
    [69]黄勇.按疲劳等效原理确定重车轴载换算公式[J].公路,1993(12):47-50
    [70]魏连雨.车辆超载运输对沥青路面的破坏作用.1996年中国公路学会道路工程学会论文集[C].北京:人民交通出版社,1996
    [71]张肖宁,潘大林,朱希岭.沥青混合料一维非线性粘弹性本构关系[J].力学学报,1996(6):728-734
    [72]CJJ4-97,粉煤灰石灰类道路基层施工及验收规程[S].北京:人民交通出版社,1997
    [73]Rgeson.K.L.Iowa Fly Ash Affiliates Research Program.Annual Report.ISU-ERI Ames 99501.Iowa State University,Ames,December 1998:1151-1160
    [74]R.C.Joshi and V.M.Malhotra.Relationship Between Pozzolanic Activity and Chemical and Physical of Selected Canadian Fly Ashes [J].Materials Research Society Symposia Proceedings,1997(86):91-97
    [75]张超.石灰粉煤灰类材料施工特性研究[D].西安:长安大学,2003
    [76]陈忠达,武建民等.干线公路沥青路面典型结构的研究[J].公路交通科技,2001.4:9-12
    [77]王新波.重载交通沥青路面结构分析与性能评价[D].沈阳:沈阳建筑大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700