菊芋发酵生产L-乳酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国内外对L-乳酸的需求日趋增加,而我国L-乳酸的生产技术比较落后。菊芋作为一种生长能力强、抗盐碱、耐沙漠的作物,其在我国中西部地区的种植面积正以基地的形式逐年加大。菊芋深加工的研究引起了国内外学者的广泛关注,然而开展菊芋发酵生产L-乳酸的研究尚未见报道。由于乳酸菌自身不能利用菊粉,本研究采用一株菊粉酶活力较强的黑曲霉为产酶菌株,以乳酸杆菌G-01为L-乳酸生产出发菌株,对以菊芋为原料的L-乳酸的发酵法生产进行了研究。主要内容及结果如下:
     ⑴通过对黑曲霉产菊粉酶培养基组成的优化,得到最佳培养基组成:葡萄糖40 g/L,蛋白胨30 g/L和蔗糖脂4 g/L。并在该优化条件下于30℃,140 r/min下进行摇瓶发酵,96 h后菊粉酶酶活力达到230 U/mL。进一步研究表明菊粉酶是一种诱导酶,从诱导效果上看,蔗糖酯相对于菊粉是一种更有效的合成诱导剂,该物质可以激活用于生产菊粉酶的mRNA的合成。同时由于蔗糖酯在溶液中相对于菊粉,更难水解,所以有着更强的和持续的诱导作用。研究还发现在使用葡萄糖作为碳源,蔗糖酯作为合成促进剂时,更有利于菌丝体的生长和酶的合成。通过对该株菌的基因和形态学分析,确定其为黑曲霉。
     ⑵菊粉酶的提取,先采用30%饱和度的硫酸铵盐析,沉淀除杂,然后采用70%饱和度盐析,经透析除盐,聚乙二醇20000浓缩,得到总酶活25253U,单位酶活1262 U/mL,比酶活64.37 U/mg,回收率83%,纯化倍数2.36。进一步纯化表明黑曲霉产菊粉酶是由两种分子量相差较小的内切酶和外切酶组成,前者分子量在165~210 kDa,而后者的分子量在160~170 kDa。比较转化酶和菊粉酶在30℃的催化动力学发现:转化酶的Km=34.9 mmol/L,Vm=909μmol/min,菊粉酶的Km=68.3 mmol/L,Vm=476.2μmol/min,这表明转化酶的最大反应速率接近菊粉酶的2倍,然而达到最大反应速率所需底物的浓度却接近菊粉酶的一半。
     ⑶通过DES和NTG对乳酸杆菌G-01进行诱变,并进行耐渗透驯化,使菌株以葡萄糖为底物产酸达到92.8 g/L,提高了近1倍。乳酸菌G-02菌株经过多次传代接种,表现出较好的传代稳定性。通过对该菌株的基因、形态学及代谢产物分析,确定其为干酪乳杆菌(Lactobacillus casei),乳酸同型发酵,而且产物中L-乳酸的光学纯度达到95%以上,为一株较为理想的L-乳酸生产菌株。
     ⑷为了消除菊粉酶合成体系中的产物抑制现象,降低发酵液中黑曲霉菌丝体密度,同时避免在同步糖化与发酵菊芋产乳酸工艺中的染菌问题,使乳酸杆菌在菊芋糖化酶液中提前形成优势菌群,本研究采用在黑曲霉产酶培养基中适时接入乳酸菌的混合培养工艺,并对混合培养工艺条件进行了优化。结果表明,在产酶培养开始12 h接入乳酸杆菌,可以显著提高黑曲霉后期产菊粉酶的活性,在优化的培养基中,经过60 h的培养,菊粉酶活力将达到250 U/mL,较参照水平(50 U/mL)提高了近4倍。进一步研究发现,乳酸菌的接入显著地降低了发酵液中可发酵性糖的浓度,发酵液中黑曲霉菌丝体浓度降低到参照的一半,而且黑曲霉的菌丝体形态发生了明显的改变,从而更有利于生存在竞争的环境中。
     ⑸对采用同步糖化与发酵工艺利用菊芋生产L-乳酸的工艺进行了探索,研究发现最适发酵工艺为菊粉酶活量50 U/mL,接种量为35%,菊芋粉抑制浓度为230 g/L,碳酸钙浓度50 g/L。为了进一步提高乳酸发酵活力,将柠檬酸代谢引入乳酸发酵工艺,结果表明:柠檬酸代谢可以显著提高乳酸杆菌的抗酸胁迫能力和乳酸发酵活性,最适柠檬酸添加浓度为10 g/L。在最佳工艺条件下,通过采用50℃初始水解1h的补料发酵工艺,经40℃,30 h发酵,L-乳酸浓度达到141.5 g/L,得率为52.4g乳酸/100g菊芋粉。
Recently, the sharply enlarged manufacture of the bio-degradable polylactide polymer has increased the global interest in the production of L-lactic acid by using fermentative route. Jerusalem artichoke can grow well in poor land and shows a high tolerance to frost and various plant diseases. However, there have been few studies on the L-lactic acid production from Jerusalem artichoke, which was not fermentable for Lactobacillus sp. In this dissertation, Aspergillus niger SL-09, an active inulinase producer was used to form the inulinase, and Lactobacillus sp. G-01 as a parent L-lactic acid production strain were used to investigate the production of L-lactic acid from Jerusalem artichoke. Its contents and results are as follows:
     ⑴The optimization of medium contents and fermentation conditions for Aspergillus niger SL-09 to form inulinase was conducted. The optimum medium contains glucose 40g/L, peptone 30g/L, sucrose ester 4g/L. Under the optimum fermentation conditions, inulinase activity of 230U/mL was obtained at 30℃on reciprocating shaker with 140 rpm in 96 h. Further studies found that sucrose ester was a more effective inducer than inulin for inulinase production, which can promote the synthesis of mRNA for the formation of inulinase. Meanwhile, as sugar ester was more resistant to hydrolysis than inulin, so that sucrose ester acts as a persistent signal to initiate a response in the cell to provoke the transcription of mRNA available for fructanohydrolase synthesis. Moreover, it was found that the medium with glucose and sucrose ester as carbon source and inducer respectively, were more favorable for the growth and enzymes synthesis of this strain. The strain SL-09 was identified as Aspergillus niger by genetic and morphological analysis.
     ⑵In the process of inulinase purification, salt out with 30% and 70% of ammonium sulfate were used respectively. Through the salting out by dialysis and concentrate, the enzymes were obtained. Further studies found that the enzyme form by Aspergillus niger was composed by inulinase and invertase, and the difference of molecular weight between the both enzyme was not significant. The molecular weight of the inulinase was around 165~210 kDa,and the invertase was 160~170 kDa. The Michaelis-Menten constant of the inulinase and invertase at 30℃were Km=34.9 mmol/L, and vm=909μmol/min for invertase, and Km=68.3 mmol/L, vm=476.2μmol/min for inulinase, respectively. Those results signified that the maximum reaction rate of invertase was near 2-fold higher than that of the inulinase, however, the substrate concentration required for maximum rate was only half of the inulinase.
     ⑶The parent strain of Lactobacillus sp. G-01 was treated by diethyl sulfate (DES), N-methyl-N’-nitro-N- nitrosoguanidine (NTG), and domesticated with high concentration of fructose and lactic acid. A strain G-02 which could accumulate 92.8 g/L L-lactic acid using glucose as carbon source was obtained. The strains of G-02 also presented favorable genetics stability after several times of transfers. Strains G-02 was identified as Lactobacillus casei, homofermentation, and can produce L(+)-lactic acid with an optical purity of over 95%. Therefore, this strain was a favorable strain for L-lactic acid production.
     ⑷To avoid the product repress in the inulinase production system and decrease the biomass of Aspergillus niger in the enzyme production medium, and to remove the contamination in the simultaneous saccharification and fermentation process for production of lactic acid from Jerusalem artichoke, the Lactobacillus sp. G-02 was inoculated to the enzyme production medium to form superiority bacterium before lactic acid fermentation and the compose of the medium was optimized. The results signified that when the Lactobacillus sp. strain was inoculated at 12 h of the culture, the enzyme activity was enhanced significantly. After 60 h of co-culture, inulinase activity reached 250 U/mL, which was 4-fold higher than that of the control (50 U/mL) with single strain. Further studies found that the inoculation of Lactobacillus sp. decreased the fermentable sugar in the medium dramatically, and the biomass of Aspergillus niger was decreased to half of the value in the control. The mycelial configuration of the Aspergillus niger changed obviously, which was more favorable to survive in the competitive environment.
     ⑸The simultaneous saccharification and fermentation process for L-lactic acid production from Jerusalem artichoke was investigated. It was found that the optimized condition was inulinase activity 50 U/mL, inoculation volume 35%, Jerusalem artichoke concentration 230 g/L. It was also found that the citrate metabolism endowed cells with extra ability to counteract the acid toxicity, and then enhance the lactic acid productivity. The optimized citrate concentration was 10 g/L. Under the optimized condition in the fed-batch culture, the L-lactic acid with the concentration of 141.5 g/L was obtained at 40℃in 30 h, with a yield of the 52.4g lactic acid/100g Jerusalem artichoke flour.
引文
[1]陈晓明,金征字.菊粉降解生产低聚果糖[J].饲料工业, 2000,21(11):29-31.
    [2] Edelmen J. The mechanism of fructose metabolism in higher plants as exemplified in Helianthus tuberosus[J]. New Phytologist, 1968,67:517-531.
    [3] Emst M. Carbohydrate changes in chicory during growth and storage[J]. Scientia Gorticultmae, 1995,63:251-261.
    [4] Carpita N C, Kanabus J, Housley T L. Linkage structure of fructans and fructan oligomem from Triticum aestizrum and Festuca arundinacea leaves[J]. J Plant Physiol, 1989, 134: 162-168.
    [5]严慧如,黄绍华,余迎利.菊糖的提取、性质和应用[J].西部粮油科技, 2001, 26(5): 31-33.
    [6]王启为,季明.菊芋中菊粉提取工艺的研究.宁夏工程技术[J]. 2002,1(2):144-145.
    [7]顾天成,吕跃钢,许春兰,等.菊粉酶产酶菌株的诱变选育及产酶条件的研究[J].食品与发酵工业, 1999,25(1):5-9.
    [8]朱宏吉,王晓静,金鼎五,等.动态膜分离式连续酶解装置生产果糖的研究[J].化学工业与工程, 1995,12(4):1-513.
    [9]叶淑红,张福琪,张苓花,等.菊粉酶酶源菌株的筛选及其发酵条件[J].大连轻工业学院学报, 2001,20(1),33-36.
    [10] Parekh S, Margaritis A. Inulinase production by Kluyeromyces marxianus in batch culture[J]. Appl Microbiol Biotechnol, 1985,22(44):6-8.
    [11]王艳,金征宇,徐学明,等.酵母菌C10产菊粉酶酶学性质的研究[J].上海水产大学学报, 2004,13(1):56-59.
    [12]魏文铃,刘三震,叶剑敏,等.青霉菌(Penicillium sp.91-4)合成菊粉酶的调节[J].厦门大学学报, 1998,37(4):582-588.
    [13]杨慧敏,孙秋,张炳火,等.微生物菊粉酶发酵的研究[J].贵州农业科学, 2004,32(3):83-84.
    [14] Prabhjeet S, Prabhjot K G. Production of Inulinases: Recent Advances[J]. Food Technol Biotechnol, 2006,44(2):151–162.
    [15]王光远,宋爱荣,陈冠军.产菊粉酶酵母菌株的筛选及菌种鉴定[J].微生物学杂志, 2006,26(4):39-41.
    [16] Wang J. Production and separation of exo- and endoinulinase from Aspergillus ficuum[J]. Proc Biochem, 2003(39):5-11.
    [17]何国庆, Mokhtar A M,陈启和,等.点青霉MH1发酵热稳定性外切菊粉酶的培养基优化及酶学性质研究[J].中国食品学报, 2006,6(3):19-25.
    [18]王艳,金征宇,徐学明,等.酵母产内切型菊粉酶水解菊芋生产饲用低聚果糖的研究[J].饲料工业, 2001,22(1):44-46.
    [19]陈雄.内切型菊粉酶高活力菌株的筛选[J].湖北农业科学, 2003,3:93-94.
    [20]王静,金征宇,江波,等. Aspergillus ficuum菊粉酶的分离纯化与鉴定[J].食品科学, 2007,28(6):188-192.
    [21] Moussa E, Jacques C, Barattti. Purification, properties and comparison of invertase, exoinulinases and endoinulinases of Asperyillus ficuum[J]. Appl Microbiol Biotechnol, 1987,26:13-20.
    [22] Guillermo R C, Mario D B, Faustino S. A plate technique for screening of inulin degrading microorganisms[J]. J Microbiol Methods, 1995,22:51-56.
    [23] Shama A D, Gill P K, Sukhdev S, et a1. Improvement in inulinase production by simultaneous action of physical and chemical mutagenesis in Pecicillium purpurogenum[J]. World J Microbiol Biotechnol, 2005,21(6):929-932.
    [24]罗英,李俊刚.菊芋的酶将解及其综合利用[J].四川师范大学学报, 1999, 22(6):747-751.
    [25]王建华,刘艳艳,姚斌,等.高产菊粉酶酵母筛选、发酵和酶学性质研究[J].生物工程学报, 2000,16(1):60-64.
    [26] Ohta K, Akimoto H. Productionof high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccaro- mycescerevisiae[J]. Appl Enviroment Microbiol, 1993,59:729-733.
    [27] Nakamura T, Yasuko O, Hamada S, et a1. Ethanol production from Jerusalem artichoke tubers by Aspergillus niger and Sccharomyces cerevisiae[J]. J Ferment Bioeng, 1996, 81(6):564-566.
    [28]葛向阳,张伟国.同步糖化发酵菊芋生产酒精中黑曲霉菌株的选育[J].食品与生物技术学报, 2006,25(2):83-87.
    [29]金其荣,张继民,徐勤.有机酸发酵工艺学[M].第一版,北京:中国轻工业出版社, 1989, 339-406.
    [30] PeiminY, Naoki N,Yuuko K, et al. Enhenced production of L (+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift Bioreactor[J]. J Ferment Bioeng, 1997, 84:249-253.
    [31] David P M. Plastics from Microbes[M]. Hanser/Gardner Publications, Inc, Cincinnatic Munich Vienna New York, 1994.93-137.
    [32] Hofvendahl K, Hahn-Hagerdal B. Factors affecting the fermentative lactic acid production from renewable resources[J]. Enzyme Microbial Technol, 2000,26:87-107.
    [33]曹本吕,徐建林,匡群. L-乳酸研究综述[J].食品与发酵工业, 1993,3:56-61.
    [34]齐宏秀.乳酸的应用及生产情况[J].辽宁化工, 1996,1:20-21.
    [35]杨萍. L-乳酸的生产及其应用研究[J].科技信息, 2008,17:30-31.
    [36]汪多仁. L-乳酸的开发与应用进展[J].粮食加工, 2009,34:44-47.
    [37]乐晓洁,王昌禄,顾晓波,等.细菌发酵生产L-乳酸高产菌株的选育[J].中国食品添加剂, 2004,1:67-70.
    [38]贺东亮,李久长.乳杆菌产L-乳酸发酵条件的研究[J].农产品加工, 2005,8:43-44.
    [39]赵寿经,朱克卫,齐红彬,等.利用玉米浸泡水发酵生产L(+)乳酸[J].生产与科研经验, 2006,32:55-57.
    [40]王玉华,李岩,裴晓林,等.基因组改组提高干酪乳杆菌耐酸性生产L-乳酸[J].中国生物工程杂志, 2006,26(2):53-58.
    [41]张婵婵,潘丽军,赵丹丹.细菌发酵产L-乳酸优良菌株的选育[J].农产品加工, 2006,10:23-26.
    [42]郑艳,刘长江,薛景珍. L-乳酸高产菌株发酵条件的优化[J].沈阳农业大学学报, 2007, 35(2):235-237.
    [43]黄谷亮,秦菊霞,李楠,等.干酪乳杆菌产L-乳酸发酵条件的研究[J].广西大学学报(自然科学版), 2007,32:376-379.
    [44]李明阳,吴晖,刘冬梅,等.干酪乳杆茵非连续发酵生产L-乳酸的研究[J].中国酿造, 2007,12:9-12.
    [45]徐伟,王鹏,张兴.微波辐照对干酪乳杆菌高产L-乳酸的诱变效应[J].辐射研究与辐射工艺学报, 2007,25:316-320.
    [46] Yu L, Pei X L, Wang Y H, et al. Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus[J]. J Biotechnol, 2008,134 (1-2) :154-159.
    [47] Akerberg C, Hofvendahl K, Zacchi G. Modeling the influence of pH, temperature, glucose and lactic acid concentration on the kinetics of lactic acid production by Lactobacillus lactis spp. lactisATCC1 9435 in whole wheat flour[J]. Appl Microbiol Biotechnol, 1998, 49:682-690.
    [48]白冬梅. L-乳酸高产菌株的诱变选育及其代谢通量分析[D]: [博士学位论文].天津:天津大学, 2001.
    [49]古绍彬.离子注入L(+)-乳酸产生菌菌种选育的研究[D]: [硕士学位论文].北京:中国科学院等离子体物理研究所, 2002.
    [50]肖阳.米根霉R1021L(+)-乳酸发酵工艺研究[D]: [硕士学位论文].天津:天津大学, 2003.
    [51]余赟.适于甘薯淀粉高产L-乳酸米根霉菌株的选育[D]: [硕士学位论文].合肥:合肥工业大学, 2004.
    [52] Yun J S, Wee Y J, Kim J N, et al. Fermentative production of DL-lactic acid from amylase-treated rice and wheat brans hydrolyzate by a novel lactic acid bacterium Lactobacillus sp.[J]. Biotechnol lett, 2004,26:845-848.
    [53] Dumbrepatil A M, Adsul S, Chaudhari, et al. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation[J]. Appl Environ Microbiol, 2007,74:333-335.
    [54] Romani A R, Yanez G, Alonso J L. SSF production of lactic acid from cellulosic biosludges[J]. Bioresour Technol, 2008,99:4247-4254.
    [55] Gao L J, Yang H Y, Wang X F, et al. Rice straw fermentation using lactic acid bacteria[J].Bioresour Technol, 2008,99:2742-2748.
    [56] Gao M T, Kaneko M, Hirata M, et al. Utilization of rice bran as nutrient source for fermentative lactic acid production[J]. Bioresour Technol, 2008, 99:3659-3664.
    [57] Maas R H W, Bakker R R, Jansen M L A, et al. Lactic acid production from lime-treated wheat straw by Bacillus coagulans, neutralization of acid by fed-batch addition of alkaline substrate[J]. Appl Microbiol Biotechnol, 2008,78:751-758.
    [58] Agarwal L, Dutt K, Meghwanshi G K, et al. Anaerobic fermentative production of lactic acid using cheese whey and corn steep liquor[J]. Biotechnol Letter, 2008,30: 631-635.
    [59] Kato K, Araki T, Kitamura T, et al. Purification and properties of a thermostable inulinase (β-D-fructan fructohydrolase) from Bacillus stearothermophilus KP1289[J]. Starch, 1999, 51:253–258.
    [60] Pandey A, Soccol C R, Selvakumar P, et al. Recent developments in microbial inulinases[J]. Appl Biochem Biotechnol, 1999,81:35-52.
    [61] Pessoni R A B, Figueiredo-Ribeiro R C I, Braga M R. Extracelluar inulinase from Penicillium janczewskii, a fungus isolated from the rhizosphere of Vernonia herbacea[J]. J Appl Microbiol, 1999,87:141-147.
    [62] Shaheen I, Bhatti H N, Ashraf T. Production, purification and thermal characterisation of invertase from a newly isolated Fusarium sp under solid-state fermentation[J]. Intl J Food Sci Technol, 2008,43:1152-1158.
    [63] Skowronek M, Fiedurek J. Optimization of inulinase production by Aspergillus niger using simplex and classical method[J]. Food Technol Biotechnol, 2004,42:141-146.
    [64] Lu M, John D B, Maddox I S. Citric acid production by solidstate fermentation in a packed-bed reactor using Aspergillus niger[J]. Enzyme Microbial Technol, 1997, 21: 392-397.
    [65] Prescott Lansing M, John P, Klein Donald A. Microbiology[M] 4th edn. McGraw-Hill Companies,Inc,USA, 1999. pp.942–943.
    [67] Hames B D, Hooper N M, Houghton J D. Instant Notes in Biochemistry[M]. BIOS Scientific Publishers Limited,UK,1999. pp.97–120.
    [68]清华大学生化系编.生物化学实验指导[M].北京:高等教育出版社, 1979,50-56.
    [69]章克昌.酒精工业手册[M].北京:中国轻工业出版社, 1997,140-151.
    [70] Pessoni R A B, Figueiredo-Ribeiro R C I, Braga M R. Extracelluar inulinase from Penicillium janczewskii, a fugus isolated from the rhizosphere of vernonia herbaces[J]. J Appl Microbiol, 1999,87:141-147.
    [71]沈萍,范秀荣,李广武.微生物学实验[M].北京:高等教育出版社, 1999,214-222.
    [72] Bernardo O, Yépez S S, Francisco M F. Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus[J]. Enzyme Micrbial Technol, 2005, 36:717-724.
    [73] Turner P C, Mclennan A G, Bates A D, et al. Instant Notes in Molecular Biology[M]. UK: BIOS Scientific Publishers Limited, 2002. pp.79-182.
    [74] Hames B D, Hooper N M, Houghton J D. Instant Notes in Biochemistry[M]. UK:BIOSScientific Publishers Limited, 1999. pp.97-126.
    [75] Rajoka M, Yasmeen A. Induction, and production studies of a novel glucoamylase of Aspergillus niger[J]. World J Microbiol Biotechnol, 2005,21:179-187.
    [76] Maldonado M C, Strasser de Saad A M. Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems[J]. J Industrial Microbiol Biotechnol, 1998,20:34-38.
    [77] Tang X J, He G Q, Chen Q H, et al. Medium optimization for the production of thermal stableβ-glucanase by Baccillus subtilis ZJF-1A5 using response surface methodology[J]. Bioresource Technol, 2004,93:175-181.
    [78] Prabhjeet S, Prabhjot K J. Production of Inulinases:Recent Advances[J]. Food Technol Biotechnol, 2006,44(2):151–162.
    [79] Vandamme E J, Derycke D J. Microbial inulinase: Fermentation process, properties, and application[J]. Adv Appl Microbiol, 1983,29:139–176.
    [80]李建武.生物化学实验原理和方法[M].北京:北京大学出版社, 1994. 174-176.
    [81]杨安刚,毛积芳.生物化学与分子生物学实验技术[M].北京:高等教育出版社, 1996. 69-75.
    [82]钟琦,关怡新,姚善泾.米曲氨基酰化酶的提取及其酶学性质的表征[J].食品与发酵工业, 2004,30(3):36-41.
    [83]张星元.发酵原理[M].无锡:无锡轻工大学生物工程学院, 1997. 10-16.
    [84]张星元.微生物生物工程的三个基本观点[J].无锡轻工大学学报, 2001,20(4):436-439.
    [85]施巧琴,吴松刚.工业微生物育种学(第二版)[M].北京:科学出版社, 2003. 56-78.
    [86]许益清,张伟国. L-组氨酸产生菌株的选育[J].食品与发酵工业, 2005,31(1): 83-85.
    [87]张维铭.现代分子生物学实验手册[M].电子工业出版社, 2003.173-179.
    [88] Kazumi A, Setsuko S. Histidine production by Corynebacterium glutamicum mutants, multiresistant to analogs of Histidine, Tryptophan, Purine and Pyrimidine [J]. Agr Biol Chem, 1974,38(4):837-846.
    [89]周德庆.微生物学教程[M].北京:高等教育出版社, 2003. 150-152.
    [90]诸葛健,李华钟.微生物学[M].北京:科学出版社, 2004. 201-203.
    [91]储炬,李友荣.现代工业发酵控制学[M].北京:化学工业出版社, 2001. 6-10.
    [92]陈世忠,顾乃达,尚维.改良湿法粉碎对生料发酵生产酒精的影响[J].酿酒, 2003, 30: 65-66.
    [93] Maldonado M C, Strasser de Saad A M. Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems[J]. J Indus Microbiol Biotechnol, 1998,20:34-38.
    [94] Maldonado M C, Strasser de Saad A M, Callieri D. Catabolite repression of the synthesis of inducible polygalacturonase and pectinesterase by Aspergillus niger SP[J]. Curr Microbiol, 1989,18:303-306.
    [95] Abu E A, Ado S A, James D B. Raw starch degrading amylase production by mixed culture of Aspergillus niger and Saccharomyces cerevisae grown on sorghum pomace[J]. African JBiotechnol, 2005,4:785-790.
    [96] Glatter O, Orthaber D, Stradner A, et al. Sugar-ester nonionic microemulsion structural characterization[J]. J Colloid Interface Sci, 2001,241:215–225.
    [97] Puterka G J, Farone W, Palmer T, et al. Structurefunction relationships affecting the insecticidal and miticidal activity of sucrose esters[J]. J Econ Entomol, 2003,96:636–644.
    [98] Hayashida S, Ohta K. High concentration ethanol fermentation of raw ground corn[J]. Agric Biol Chem, 1982,46(7):1947-1950.
    [99] Parkin K L. Putting kinetic principles into practice.In: Marangoni AG. (ed). Enzyme kinetics[M]. John Wiley & Sons, Inc. USA, 2003. pp.181-191.
    [100]谭天伟.生化工程[M].北京:化工出版社, 2008. pp.15-30.
    [101] Russell J B, Diez-Gonzalez F. The effects of fermentation acids on bacterial growth [J]. Adv Microb Physiol, 1998,39:205–234.
    [102] Cook G M, Russell J B. The effect of extracellular pH and lactic acid on pH homeostasis in Lactococcus lactis and Streptococcus bovis[J]. Curr Microbiol, 1994,28:165–168.
    [103] Magni C, de Mendoza D, Konings W N, et al. Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH[J]. J Bacteriol, 1999, 181:1451-1457.
    [104] Sánchez C, Neves A R, Cavalheiro J, et al. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH[J]. Appl Environ Microbiol, 2008,74:1136-1144.
    [105] Bio-Chemistry Department of Peking University. Directions of Bio-Chemistry Experi- ments [M]. Beijing:High Education Press;1979.pp.22-24.
    [106] Wim de Koning, Karel van Darn. A method for the determination of changes of gtycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH[J]. Analytical Biochemistry, 1992,204:118-123.
    [107] Lopez de Felipe F, Hugenholtz J. Purification and characterization of the water forming NADH-oxidase from Lactococcus lactis[J]. Int Dairy J, 200l,11:37-44.
    [108]陈昆飞,夏玲.乳酸发酵中的碳酸[J].食品工业科, 1993,4:45-46.
    [109] Cook G M, Russell J B. The effect of extracellular pH and lactic acid on pH homeostasis in Lactococcus lactis and Streptococcus bovis[J]. Curr Microbiol, 1994,28:165–168.
    [110] Even S, Lindley N D, Loubiere P, et al. Dynamic response of catabolic pathways to autoacidification in Lactococcus lactis: transcript profiling and stability in relation to metabolic and energetic constraints[J]. Mol Microbiol, 2002,45:1143–1152.
    [111] Gaudu P K, Vido B, Cesselin S, et al. Respiration capacity and consequences in Lactococcus lactis[J]. Antonie Leeuwenhoek, 2002,82:263–269.
    [112] Kashket E R. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance[J]. FEMS Microbiol Rev, 1987,46:233–244.
    [113] Lee Z W, Kwon S M, Kim S W, et al. Activation of in situ tissue transglutaminase by intracellular reactive oxygen species[J]. Biochem Biophys Res Commun, 2003, 305: 633–640.
    [114] Magni C, de Mendoza D, Konings W N, et al. Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH[J]. J Bacteriol, 1999, 181:1451–1457.
    [115] Garc?′a-Quinta′ns N, Magni C, de Mendoza D, et al. The citrate transport system of Lactococcus lactis subsp. lactis biovar diacetylactis is induced by acid stress[J]. Appl Environ Microbiol, 1998,64:850–857.
    [116] Augagneur Y, Garmyn D, Guzzo J. Mutation of the oxaloacetate decarboxylase gene of Lactococcus lactis subsp. lactis impairs the growth during citrate metabolism[J]. J Appl Microbiol, 2008,104:260-268.
    [117] Mart?′n M G, Sender P D, Peiru′S, et al. Acid-inducible transcription of the operon encoding the citrate lyase complex of Lactococcus lactis biovar diacetylactis CRL264[J]. J Bacteriol, 2004,186:5649–5660.
    [118] Sánchez C, Neves A R, Cavalheiro J, et al. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH[J]. Appl Environ Microbiol, 2008, 74:1136-1144.
    [119] Gobbetti M, Corsetti A. Co-metabolism of citrate and maltose by Lactobacillus brevis subsp lindneri CB1 citrate-negative strain: Effect on growth, end-products and sourdough fermentation[J]. Zeitschrift fur lebensmittel-untersuchung und-forschung, 1996,1:82-87.
    [120] Palles T, Beresford T, Condon S, et al. Citrate metabolism in Lactobacillus casei and Lactobacillus plantarum[J]. J Appl Microbiol, 1998,85:147-154.
    [121] Torino M I, Taranto M P, Font de Valdez G. Citrate catabolism and production of acetate and succinate by Lactobacillus helveticus ATCC 15807[J]. Appl Microbiol Biotechnol, 2005,69:79–85.
    [122] Koebmann B J, Westerhoff H V, Snoep J L, et al. The glycolytic flux in Escherichia coli is controlled by the demand for ATP[J]. J Bacteriol, 2002,184(4):3909-3916.
    [123] Liu L M, Li Y, Du G C, et al. Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation [J]. J Appl Microbiol, 2006,100:1043-1053.
    [124] Stephanopoulos G N, Aristidou A A, Nielsen J. Metabolic Engineering[M]. Academic Press, New York,1998. 60-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700