可再生纤维素原料生物转化产乳酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是地球上最丰富、最廉价的可再生资源。利用生物技术将纤维素转化成乳酸,具有重要的社会及经济意义。本文对纤维素酶的生产、纤维二糖酶的生产及固定化、纤维原料的酶法糖化、固定化乳酸杆菌的发酵、纤维二糖酶和乳酸杆菌的共固定化,以及利用串联式生物反应器协同酶解纤维素发酵乳酸等方面进行了研究。
     采用液体深层发酵工艺,对纤维素酶生产过程中的主要工艺参数进行了优化,以廉价的木糖渣和豆饼粉作为里氏木霉(Trichoderma reesei ZU-04)的碳源和氮源,大幅度降低了生产成本,并在30 m~3发酵罐中成功地完成了放大试验,纤维素酶活力高达8.16 FPIU/mL(331.7 FPIU/g纤维素),为纤维素酶的工业化应用打下了良好的基础。
     筛选到一个纤维二糖酶高产菌株(黑曲霉Asperillus niger LR-12),对其固态发酵条件进行了优化,纤维二糖酶活力达到了国际先进水平(438.3 CBIU/g干曲)。研究发现,该菌的孢子中富含纤维二糖酶,采用海藻酸钙凝胶包埋孢子可将纤维二糖酶有效固定。包埋后的黑曲霉孢子在酶解温度(50℃)下不会萌发,但可以在凝胶珠内缓慢地释放纤维二糖酶,与直接固定酶蛋白的传统方法相比,这种新型的固定化技术具有操作经济简便、对酶活力无破坏、固定化酶的半衰期长等优点。该固定化酶在纤维素酶的协同降解过程中具有明显的促进作用。
     对纤维素酶解过程中底物性质、底物浓度、纤维素酶用量及酶系组成等关键因子进行了研究。由于里氏木霉纤维素酶系中纤维二糖酶活力很低(CBA/FPA为0.03),对经稀酸预处理后的玉米芯纤维底物的酶解得率仅为67.4%。通过添加纤维二糖酶,将CBA/FPA增加到0.42,酶解得率可提高至83.6%。进一步利用里氏木霉纤维素酶和固定化纤维二糖酶的协同作用,纤维原料的酶解得率可高达88.2%。这方面的研究结果对于深入了解纤维素酶的协同降解机制具有重要意义。
     采用海藻酸钙凝胶包埋固定德氏乳酸杆菌,固定化细胞与游离细胞相比,发酵时间缩短,乳酸得率提高,并能有效地利用纤维原料水解液进行乳酸发酵,乳酸得率可达90.7%。
     将纤维原料的酶解、固定化纤维二糖酶和固定化乳酸杆菌的作用有机耦联,构建成新型的三级串联式生物反应器,该反应器可有效解除纤维二糖和葡萄糖对纤维素酶的反馈抑制作用,促进纤维原料的酶水解,乳酸浓度达55.2g/L,纤维素对乳酸的转化率高达90.6%。该反应器性能稳定,反应效率高,固定化酶和固定化细胞可以重复使用,便于自动化控制,对于优化反应工艺,降低操作成本等具有重要意义。采用分批添料式协同酶解发酵工艺,可提高纤维底物的终浓度和产物乳酸的终浓度(达105.2g/L),有效提高了酶的利用率和乳酸生产效率。
    
    浙江大学博士学位论文
    摘要
    定在海藻酸钙凝胶珠中,并将这种共固定化体系与纤维原料的酶解过程相祸合,
    构建成新型的串联式生物反应器。在共固定化体系的协同作用下,纤维原料对乳
    酸的转化率可达91.5%。本研究工作有利于简化工艺流程,减少设备投资,提高
    反应效率,国内外至今尚未见到相同的研究报道。
     在纤维素酶基因的克隆与表达方面做了一些探索性的研究工作:将纤维素酶
    ES基因在克隆质粒pDS引上酶切分离后,连接到表达质粒pSE420上,进一步将
    含有目的基因的表达质粒转入宿主细胞E.coll’JM109中,发酵液中的CMC酶活
    力达到了31.6U/mL,成功地实现了基因的表达和胞外分泌。这一工作为进一步
    构建高效产酶菌株打下了坚实的基础。
     本文在固定化纤维二糖酶的制备、利用固定化纤维二糖酶协同降解纤维原
    料、利用三级串联式生物反应器优化纤维原料协同糖化发酵过程、共固定化反应
    体系的构建,以及利用共固定化体系组建串联式生物反应器协同降解纤维原料发
    酵生产乳酸等方面的研究工作具有明显的特色与创新,有关研究结果不仅有重要
    的学术价值,而且在促进可再生纤维素资源的转化利用、推动国民经济的可持续
    发展等方面具有深远意义。
Cellulosic material is the most abundant renewable carbon source in the world. Cellulose may be hydrolyzed using cellulase to produce glucose, and glucose can be used for lactic acid production. The utilization of renewable biomass can not only save the foodstuff but also reduce the environmental pollution.
    Since the production of cellulase was the major contribution to the bioconversion process, the submerged fermentation by Trichoderma reesei ZU~04 was studied. Using corn cob residue from xylose factory as the carbon source, the obtained cellulase activity was comparable with that using purified cellulose on the same cellulose basis. The bean cake was used as nitrogen source instead of peptone or yeast extract with the C/N ratio 10.0. The fermentation was scaled up in a 30 m3 stirred fermenter, and the activity of cellulase reached 8.16 FPIU/ml (331.7 FPIU/g cellulose) after 4 days. This research work greatly reduced the production cost, and laid a good foundation for industrial application.
    A high yield cellobiase producing strain (Aspergillus niger LR-12) was screened. Using solid-state fermentation, the activity of cellobiase could reach 438.3 CBIU/g dry koji under optimized conditions, and this result was very attractive compared with those reported in recent literature. It was found that the spores of this strain were rich in cellobiase. By entrapping the spores into calcium alginate gels, the cellobiase was immobilized efficiently. The entrapped spores would not germinate at hydrolysis temperature (50 C), but could release cellobiase slowly into the gel beads. Comparing with the traditional immobilization of pure enzyme protein, this new method was more convenient and economical. The activity of enzyme was not destroyed, and the immobilized cellobiase were quite stable with a long half-life. The immobilized cellobiase could accelerate the synergetic hydrolysis process of cellulosic biamass.
    During the saccharification of cellulosic material, the main influence factors including character and concentration of substrate, enzyme dosage, and composition of cellulase system were studied. Since the cellulase system from T. reesei was poor in cellobiase (CBA / FPA was 0.03), the hydrolysis yield of corn cob residue was only 67.4%. When cellobiase was added into the system to increase CBA/FPA to 0.42, the hydrolysis yield could be improved to 83.6%. Under the synergetic reaction of T. reesei cellulase and immobilized cellobiase, the yield of hydrolysis was raised to 88.2%.
    Lactic acid is an important organic acid and applied in broad fields. Using cellulose instead of starch for lactic acid production was significant for development of national economy. In this work, Lactobacillus delbrueckii was immobilized by
    
    
    entrapping the cells into calcium alginate gels. Comparing with free cells, the fermentation term of immobilized cells was shortened, and the yield of lactic acid was improved. The immobilized cells could utilize cellulosic hydrolysate to produce lactic acid efficiently, the yield of lactic acid reached 90.7%.
    A three-step coupling bioreactor was set up by coupling the cellulose hydrolysis, the immobilized cellobiase and the immobilized L. delbrueckii cells together. In this coupling bioreactor, the feedback inhibition to cellulase reaction caused by the accumulation of cellobiose and glucose was eliminated, the hydrolysis of cellulosic material was promoted, and the yield of lactic acid from cellulose reached 90.6%. The new reactor was stable and efficient, and the immobilized cellobiase and cells could be repeatedly used for a long time. Under fed-batch process, the final concentration of cellulosic substrate and lactic acid were increased to 200 g/L and 105.2 g/1, respectively. The utilization of cellulase and the productive efficiency of lactic acid were both unproved.
    Further, the spores of A. niger containing cellobiase and the cells of L. delbrueckii were entrapped together into calcium alginate gels to form a coimmobilized system. The coupling bioreactor with coimmobilized system showed a good p
引文
1. Teeri T T, et al. Biotechnol of filamentous fungi, 1992:417~445.
    2. Abuja P M, et al. Biochem Biophys Res Commun, 1988, 156:180~185.
    3. Claeyssens M, Tomme P. The Royal Society of Chemistry (Edited by Kubicek C P, et al), London: 1~11.
    4. Pilz I, et al. Biochem J, 1990, 271: 277~280.
    5. Irwin D C, et al. Biotech Bioeng, 1993, 42: 1002~1013.
    6. Claeyssens M, et al. Biochem J, 1989, 261:819~826.
    7. 阎伯旭等.生物化学与生物物理进展,1999,26(3):233~237.
    8. Wood T M, et al. Biochemistry and Genetics of Cellulase Degradation (Edited by Aubert J P, et al), Academic Press, New York, 1988: 31~52.
    9. Nieves R A, et al. Appl Environ Microbiol, 1990, 56:1103~1108.
    10. Sattler W, et al. Biotechnol Bioeng, 1989, 33: 1221~1234.
    11. Reuvinen J, et al. Science, 1990, 249: 380~386.
    12. Woodward J, et al. Biochem J, 1988, 255: 895~899.
    13.宋桂经.微生物学通报,1997,24(6):364~367.
    14.阎伯旭,高培基.生命科学,1995,7(5):22~25.
    15. Yah B X, et al. J Protein Chem, 1997, 16: 59.
    16.汪天虹等.生物工程进展,2000,20(2):37~40.
    17. Kraulis J, et al. Biochemistry, 1989, 28: 7241~7257.
    18. Poole D, et al. FEMS Microbiol Lett, 1993, 106: 77~84.
    19. Srisodsuk M, et al. J Biotechnol, 1997, 57: 49~57.
    20.高培基.自然科学进展,2003,13(1):21~29.
    21. YanBX, et al. J Protein Chem, 1999, 18: 511.
    22. Gilkes N R. Bioresource Technol, 1991, 5 (3): 21~35.
    23.张树政主编.酶制剂工业,科学出版社,北京,1984:595~624.
    24.林风,生命科学,1994,6(1):19~23.
    25. Wood T M, Mccrae S I. Adv Chem Ser, 1979, 181: 181~209.
    26. Rodionoba N A, et al. In: Proc 2nd Int Symp Bioconv Biochem Eng, ⅡT Delhi, March, 1980.
    27. Berghem L E R, Petersson L G. Eur J Biochem, 1976, 61 (2): 621~630.
    28. Selby K, Maitland C C. Biochem J, 1965, 104 (3): 716~724.
    
    
    29.宋波等.上海环境科学,2003,22(7):491~494.
    30.肖春玲,徐常新.微生物学杂志,2002,22(2):33~35.
    31. Li X, Gao P. J Appl Microbiol, 1997, 83: 59~66.
    32.孟雷等.纤维素科学与技术,2002,10(2):47~55.
    33. Esterbauer H, et al. Bioresource Technol, 1991, 36: 51~57.
    34. Stockton B C, et al. Biotechnol Lett, 1991, 13: 57~63.
    35. Duff S J B, et al. Enzyme Microb Technol, 1987, 9: 47~52.
    36.夏黎明.食品与发酵工业,1999,25(2):1~5.
    37. Grajek W. Enzyme Microb Technol, 1987, 9: 744~749.
    38.荒开基夫.日本酿造协会杂志,1998,83(3):177~182.
    39.余晓斌等.食品与发酵工业,1998,24(1):20~25.
    40.梁霆等.生物技术,1997,7(6):22~26.
    41. Xia L M, Cen P L. Process Biochem, 1999, 34: 909-912.
    42. Simous HA, et al. DSS Contract 43SS. KN107-1-4416, 1985: 65.
    43. Mandles M, et al. Biotchnol Bioeng, 1989: 33, 1358~1356.
    44. Persson I, et al. Process Biochem, 1991, 26: 65~74.
    45.曲音波等.食品与发酵工业,1993,3:62~65.
    46. Nelly C. Enzyme Microb Technol, 1991, 13: 104~109.
    47. Brown J A, et al. Enzyme Microb Technol, 1987, 9:176~201.
    48. Srivastava K C, Dasilva R S S F. Biotechnol Bioeng Symp, 1985, 15: 491~495.
    49. Sanmartin R, et al. Biotechnol Bioeng, 1986, 28: 564~568.
    50. Saddler J N, Mes-Hartree M. Biotech Advs, 1984, 2 (2): 161~165.
    51.刘家建,陆怡.林产化工通讯,1998,1:6~9.
    52. Knowles J, et al. Trends Biotechnol, 1987, 5: 255~261.
    53. Sims P, et al. Gene, 1988, 74: 411~422.
    54. Wilson D B, Irwin D C. Advances in Biochemical Eng/Biotech, 1999, 65: 1~21.
    55. Himmel M E, et al. ACS Symposium Series, American Chemical Society, Washington, DC, 1994.
    56. Teeri T T, et al. Gene, 1987, 51: 43~52.
    57. Tolan J S, Foody B. Advances in Biochemical Eng/Biotech, 1999, 65: 1~21.
    58. Nevalainen H, et al. European Patent, 1987, 244: 234.
    59.吴显荣,穆小民.生物工程进展,1994,14(4):25~27.
    60. Moo- Young M. Biotechnol and Renewable Energy, 1986, 101-111.
    61. Phillpidis P G, et al. Biotechnol Bioeng, 1993, 41: 846~853.
    62. Barnett C C, et al. Bio/Technol, 1991, 9: 562~567.
    63. Stangl H, et al. Curr Genet, 1993, 23:115~122.
    
    
    64. Patterson J A. Enzyme Microb Technol, 1989, 11: 187~189.
    65. Nevalainen H, et al. Biotechnol of the Pulp and Paper Manufacture, Butterworths Publishers, Boston, 1990: 577~583.
    66. Nevalainen H, et al. Molecular Industrial Mycology, Marcel Dekker, New York, 1990: 129~148.
    67.上海植生所纤维素酶组.微生物学报,1978,18(1):27~38.
    68.曲音波等.真菌学报,1984,3(4):238~243.
    69.王丹敏等.微生物学通报,1997,24(5):278~280.
    70. Toyama H K, et al. Appl Environ Microbiol, 1984, 47 (2): 363~368.
    71. Kirimura K, et al. Agrec Biol Chem, 1990, 54 (5): 1281~1283.
    72. Ceres Corporation. Enzyme Microbiol Technol, 1985, 7 (2): 94~95.
    73.蔡勉等.微生物学通报,1999,36(1):40~44.
    74. Gardner K H, Blackwell J. Biopolymer, 1974, 13: 1975.
    75.王汝聪等.生物有机化学专论,济南:山东科学技术出版社,1990.
    76. Grimson M J, et al. J Cell Sci, 1996, 109 (13): 3079~3087.
    77.夏黎明.林产化工通讯,1999,33(1):23~28.
    78.陈育如等.化工进展,1999,18(4):24~29.
    79. Hsu T A. Handbook on Biotechnol: Production and Utilization (Edited by Wyman C E), Taylor & Francis, Washington DC, 1996: 179-212.
    80.上久保正等.应用微生物,1984,4:31~35.
    81.陈育如等.高校化工学报,1999,13(2):135~140.
    82. Beltrame P L, et al. Bioresource Technol, 1992, 39: 165~171.
    83. Grethieim H E, Converse A O. Bioresorece Technol, 1991, 36: 77~82.
    84. Ramos L P, et al. Appl Biochem Biotechnol, 1992, 34/35: 37~43.
    85. David J G., Saddller J N. Biotechnol and Bioeng, 1996, 51: 375~383.
    86. Nunes A P, Pourquie J. Bioresource Technol, 1996, 57 (2): 107~110.
    87.王淑军.微生物学通报,1995,22(6):354~357.
    88. Ricardo D S, et al. J Sci Food Agric, 1990, 53 (1): 85~92.
    89. Kallithraka S, et al. Colloqinst Natl Rech Agron, 1995, 69 (94): 227~228.
    90. Revilla E, et al. Chromatographia, 1992, 31 (9~10): 465~468.
    91. Prieur C, et al. Phytochemistry, 1994, 36 (3): 781~784.
    92. Thompson D N, et al. Bioresource Technol, 1991, 39: 155~161.
    93.卢学梅等.纤维素科学与技术,1994,2(3/4):24~30.
    94.张朝晖等.浙江大学学报,1999,33(2):132~136.
    95. Wei J, et al. Enzyme Microb Technol, 1994, 16: 1002~1007.
    96. Holtzapple M T, et al. Biotechnol Bioeng, 1994, 44: 1122~1127.
    97. Vladimir M, et al. Enzyme Microb Technol, 1988, 10: 503~507.
    
    
    98. Beldman G., et al. Biotechnol Bioeng, 1987, 30: 251~257.
    99. Ooshima H, et al. Biotechnol Bioeng, 1990, 36: 446~452.
    100. Himmel M E, et al. Handbook on Biotechnol: Production and Utilization (Edited by Wyman C. E.), Taylor & Fancis, Washington DC, 1996: 143~161.
    101. Nidetzky B, et al. Biochem J, 1994, 29: 705~711.
    102. Beguin P. Annual Rev in Microb, 1990, 44: 219~248.
    103. Tomme P, et al. Biotechnol Lett, 1990, 12: 525~530.
    104. Tolan J S, Foody B. Adv Biochem Eng Biotechnol, 1999, 65: 41~67.
    105. Esterbauer H, et al. Bioresource Technol, 1991, 36: 51~65.
    106. Reese E, et al. J Bacteriol, 1950, 59:485~490.
    107. Enari T W, et al. CRC Critical Rev in Biotechnol, 1987, 5 (1): 67~72.
    108. Beguin P, et al. TEMS microbial Rev, 1994, 13: 25.
    109. Post C B. Biochemistry, 1995, 34: 15881.
    110. Klyosov AA. Biochemistry, 1990, 29: 10577.
    111. FIeyn A N. J Cell Biol, 1966, 29: 181.
    112. Gregg D J, Saddler J N. Biotechnol Bioeng, 1996, 51: 375~383.
    113. Thompson D N, et al. Bioresouce Technol, 1992, 39: 155~163.
    114. Gharpuray M M, et al. Biotechnol Bioeng, 1983, 25: 157~172.
    115. Sinitsyn A P, et al. Appl Biochem Biotechnol, 1991, 8: 25~29.
    116. Schwald W, et al. Appl Biochem Biotechnol, 1989, 20/21: 29~44.
    117. Holtzapple M, et al. Biotechnol Bioeng, 1990, 36: 275~287.
    118. Ladish M R, et al. Enzyme Micro Technol, 1983, 5: 8~160.
    119. Saddler J N. Microbiol Sci, 1986, 3: 84~87.
    120.夏黎明.林产化学与工业,1998,18(4):23~26.
    121. Breuil C, et al. Bioresouce Technol, 1992, 39: 139~142.
    122. Breuil C, et al. Biotechnol, 1986, 34: 31~35.
    123. Tan U L, et al. Appl Biochem Biotechnol, 1987, 26: 21~27.
    124. Ishihara M, et al. Biotechnol Bioeng, 1991, 37: 948~954.
    125. Tan U L, et al. Appl Biochem Biotechnol, 1986, 25: 256~261.
    126. Mes-Hartree M, et al. Biotechnol Bioeng, 1987, 30: 558~564.
    127. Saddler J N, et al. Biotechnol Bioeng, 1982, 24: 1389~1402.
    128. Moritz J W, Duff S J B. Biotechnol Bioeng,1996, 49, 504~511.
    129. Eklund R, Zacchi G. Enzyme Microb Technol, 1995, 17: 255~259.
    130. Zhao X, et al. Enzyme Microb Technol, 1993, 15: 62~65.
    131. Abe S, Takgagi M. Biotechnol Bioeng, 1991, 37: 93~96.
    132. Venkatesh K V. Bioresource Technol, 1997,62: 91~98.
    
    
    133. Luo J, et al. Biotechnol Progress, 1997, 13 (6): 762~767.
    134.金其荣等.有机酸发酵工艺学,中国轻工业出版社,北京,1989:347.
    135.陈陶声等.有机酸发酵生产技术,化学工业出版社,北京,1991.
    136.齐宏秀.辽宁化工,1996,1:20.
    137.章思规.精细有机化学品技术手册(下),科学出版社,1992.
    138.章思规.有机合成事典(下),1994:1187~1188.
    139. Roukas T, Kotzekidou P. Enzyme Microb Technol, 1998, 22: 199~204.
    140. Zakaria Z, et al. Process Biochem, 1998, 33: 1~6.
    141. Audet P, et al. Appl Environ Microbiol, 1989, 55: 185~189.
    142. Stenroos S L, et al. Biotechnol Lett, 1982, 4: 159~164.
    143.汪多仁.化学工业与工程技术,1999,20(1):27~29.
    144.钱志良等.工业微生物,2001,31(2):49~53.
    145.王放.食品工业技术,1993,77:44.
    146.金静英.化工物资,1997,6:23.
    147.叶蓓蓉.化工商品科技情报,1996,3:7.
    148.何冰崎.塑料开发,1998,1:851.
    149.牛玉兰.宁波化工,1997,1:25.
    150. Lipinsky E S. Science, 1981,212: 1465.
    151. Roy D, et al. J Dairy Sci, 1987, 70: 506~513.
    152. Ghose T K. Pure & Appl Chem, 1987, 59: 257~268.
    153. Ooshima H, et al. Biotechnol Bioeng, 1990, 36: 446~452.
    154.张龙翔.生化实验方法和技术.北京:人民教育出版社,1986,9~11.
    155. Mandels M, et al. Biotechnol Bioeng, 1981, 23: 2009~2026.
    156. Li F, King K W. Arch Biochem Biophys, 1965,111: 439~445.
    157. Wilke C R, et al. Biotech Bioeng Symp, 1976, 6:155~161.
    158.朱雨生,谭常.微生物学报,1978,18:320~331.
    159.舒远才等.纤维素科学与技术,1994,2(3~4):83~87.
    160. Esterbauer H, et al. Bioresource Technol, 1991, 36: 51~65.
    161. Persson I, et al. Process Biochem, 1991, 26: 65~74.
    162. Domingues F C, et al. Enzyme and Microbial Technol, 2000, 26: 394~401.
    163. Doppelbauer R, et al. Appl Microbiol Biotechnol, 1987, 26: 485-494.
    164. Abd E N, et al. Polymer Degradation and Stability, 1997, 55: 249~255.
    165. Kawamori M, et al. Appl Microbiol Biotechnol, 1986, 24: 454~458.
    166. Aiello C, et al. Bioresource Technol, 1996, 57: 13~18.
    167. Reczey K, et al. Bioresource Technol, 1996, 57: 25~30.
    168. San M R, et al. Biotechnol Bioeng, 1986, 28: 564~569.
    
    
    169. Maheshwari D K, et al. Carbohydrate Polymers, 1994, 23: 161~163.
    170. Chen S, Wayman M. Process Biochem, 1991, 26: 93~100.
    171. Kubicek C P, et al. Enzme Microb Techol, 1993, 15: 90~99.
    172. Abdel-Fattah A F, et al. Chem Eng J, 1997, 68: 189~196.
    173.北京造纸所编.造纸工业化学分析,北京:中国轻工业出版社,1979.
    174.天津轻工业学院等.工业发酵分析,北京:轻工业出版社,1980.
    175. Lin E, Wilson D B. J Bacteriol, 1988, 170 (9): 3838~3842.
    176. Lin E, Wilson D B. J Bacteriol, 1988, 170 (9): 3843~3846.
    177. You-Ji Hu, Wilson D B. Gene, 1988, 71: 331~337.
    178. Lao G F, et al. J Bacteriol, 1991, 173 (11): 3397~3407.
    179.金冬雁等译.分子克隆实验指南(第二版),科学出版社,1993.
    180.彭秀玲等.基因工程实验技术(第二版),湖南科学技术出版社,1998.
    181.齐义鹏.基因及其操作原理,武汉大学出版社,1998.
    182.吴冠芸等.生物化学与分子生物学实验常用数据手册,科学出版社,2000.
    183. Canrwell BA, Mcconnell D J. Gene, 1983, 23: 211~219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700