酪蛋白—胰酶水解动力学模型及反冲与膜表面改性提高酶膜反应器性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对酪蛋白-胰酶体系间歇和连续水解动力学进行了研究;并分别针对连续酶解过程中浓差极化和蛋白吸附两类主要膜污染现象,考察和优化了反冲技术和表面改性两种方法对膜性能的改善。具体研究内容如下:
     胰酶失活及其操作稳定性:通过检测不同浓度胰酶失活速率,获得了不同温度下胰酶热失活及自水解表观速率常数;无底物保护时,热失活和自水解将导致间歇操作和连续操作酶失活严重;但在底物酪蛋白的保护下,两种操作中胰酶在5个小时内都表现出较高活性,残余酶活始终接近初始酶活。
     酪蛋白的胰酶间歇水解动力学研究:研究证明胰酶间歇水解酪蛋白过程存在底物抑制和产物抑制现象,获得动力学常数Km=0.227g l-1,K+2=0.127min-1, Ks=64.1 g l-1和KP= 72.6g l-1,并建立间歇水解动力学方程;依此方程对水解过程进行模拟和优化,实验值和模拟值吻合较好,并得到最优初始底物浓度随水解度变化方程;根据此动力学研究,证明底物酪蛋白对胰酶存在着极强保护作用。
     酪蛋白连续酶解过程动力学模型:在对酶解机制作出合理假设的前提下,建立了酪蛋白连续酶解过程动力学模型,获得动力学常数Km=19.7g l-1、Vmax=0.284min-1;理论分析该模型可得:高初始底物浓度、高渗透通量是获得高水解效率(S0*J*X)的条件,该结果在恒压操作实验中得到验证。
     反冲技术的应用:设计了一套简单且易于操作的反冲装置应用于胰酶连续水解酪蛋白过程以降低浓差极化的影响;水被选择为合适的反冲介质;反冲操作条件优化为:反冲压力0.1MPa,反冲时间10s,反冲间隔时间10min;其中反冲压力是影响反冲效率的最主要因素。
     神经网络在反冲技术模拟中的应用:确定BP神经网络为模拟集反应-分离-反冲于一体的非线性系统的强有力工具;采用一个三层BP网络模型,模拟了反冲时间和反冲间隔时间对反冲效果的影响,并证明反冲时间对反冲效果的影响程度高于反冲间隔时间;利用已训练网络,优化选择了反冲时间和反冲间隔时间;采用简单网络分别对最优反冲条件下的Je和Jb随时间变化趋势进行了模拟。
     亲水化改性聚砜超滤膜:确定了最优改性条件为:丙烯酸与磷酸体积比3:1,丙烯酸与四氯化锡摩尔比1:0.05,30oC,反应60min;对改性膜的红外检测表明羧基已被接枝到膜表面;扫描电镜分析证明膜骨架和膜面都未受到损坏,但膜孔有所减少;通过超滤不同浓度的BSA溶液,表明改性膜比未改性膜具有良好的抗蛋白吸附性能;应用改性膜分离酪蛋白酶解液过程中,其截留分子量和渗透通量都比未改性膜的略有降低。
The kinetics for casein hydrolysis by pancreatin in batch and continuous equipments were studied, and the backflushing technology and surface modification were applied in enzymatic membrane reactor (EMR) for improving the separation efficiency by decreasing the effect of concentration polarization and protein absorption respectively. The detailed results are as follows: The inactivity and operation stability of pancreatin: The apparent kinetic constants of heat inactivation and autolysis for pancreatin at different temperature were obtained by measuring the inactive velocity at different pancreatin concentrations. When pancreatin was not protected by substrate, serious loss of its activity caused by heat inactivation and autolysis was observed in batch and continuous equipments. But if protected by casein, no obvious loss of its activity was observed.
     Kinetic studies for batch hydrolysis of casein by pancreatin: Substrate and product inhibition were testified, and the kinetic constants of Km, K+2, Ks and KP were obtained with the values of 0.227g l-1, 0.127min-1, 64.1 g l-1, and 72.6g l-1 respectively. As a result, a kinetic model was built. According to this model, the hydrolysis process was modeled, and the initial substrate concentration was optimized. Also, it was approved that casein could protect pancreatin from inactivation to a high degree based on the kinetic studies.
     A kinetic model for continuous enzymatic hydrolysis of casein: By making some suitable hypothesis, a kinetic model for the hydrolysis process was built. The kinetic constants, Km of 19.7g l-1 and Vmax of 0.284min-1, were obtained. By analysing the kinetic model, it can be concluded that a high hydrolysis efficiency can be achieved when operated at high initial substrate concentration and high permeation flux. This was approved in the experiments with constant ultrafiltration pressure.
     The application of backflushing technology: An easily-realized backflushing technology was applied in the continuous hydrolysis of casein for decreasing the effect of concentration polarization. Water was selected as the right backflushing material. The backflushing pressure, interval and duration were optimized as 0.1 MPa, 10 min and 10 s respectively, and the backflushing pressure was considered as the most important factor of affecting backflushing efficiency.
     The application of neural network in modeling backflushing: The system of reaction-separation-backflushing was determined as a nonlinear one. The neural network approach was found to be capable of modeling this complex process accurately. With a three-layered network model, the effect of duration and interval on backflushing efficiency was modeled, and duration was approved as a more important factor of affecting backflushing efficiency. Also, backflushing conditions were optimized based on this model. In succession, the variations of Je and Jb with time under the optimized conditions were modeled by using simple networks.
     Hydrophilic modification of polysulfone membrane: The modification conditions were optimized as: the ratio of acrylic acid to phosphoric acid, 3:1 (v/v); the ratio of acrylic acid to stannic chloride, 1:0.05(mol/mol); reaction time, 60 min and 30oC. The grafting of carboxyl group to the membrane surface was proved by infrared spectroscopy, and no degradation of the membrane skin and framework but with fewer pores than before were validated by scanning electronic microscopy. The experiments of separating BSA solution indicated that the function of resisting protein absorption for modified membrane was much better than that for unmodified membrane. In the process of separating casein hydrolysate, the permeate molecular weights and permeation flux of modified membrane were little lower than those of unmodified membrane.
引文
1. Meisel H, Biochemical properties of regulatory peptides derived from milk proteins, Biopolymers, 1997, 43 (2): 119~128
    2. 赵利, 王璋, 许时婴, 牛乳酪蛋白活性肽的研究进展, 江苏农业科学, 2002, 6: 71~75
    3. 秦宜德, 邹思湘, 乳蛋白的主要成分及其研究现状, 生物学杂志, 2003, 20 (2): 5~7
    4. Kitts D D, Yuan Y V, Caseinophosphopeptides and calcium bioavailability, Trends of Food Science and Technology, 1992, 3: 31~35
    5. 邹思湘, 酪蛋白源活性肽, 生命的化学, 1993, 13 (1): 19~21
    6. Vorobev M M, Dalgalarrondo M, Chobert J M, et al., Kinetics of β–casein hydrolysis by wild-type and engineered trypsin, Biopolymers, 2000, 54 (5): 355~364
    7. 孙浩, 蔡兴旺, 碱性蛋白酶对酪蛋白水解的最适宜条件, 大连轻工业学院学报, 2003, 22 (1): 25~27
    8. Gopalkrishnan M V, Prakash J, Optimu time requirement for enzymic hydrolysis of food proteins, Journal of Food Science and Technology, 2000, 37 (3): 319~322
    9. Carlson A, Hill C G, Olson N, Kinetics of milk coagulation: 1. The kinetics of kappa casein hydrolysis in the presence of enzyme deactivation, Biotechnology and Bioengineering, 1987,
    9 (5): 582~589
    10. 杨耀中, 欧伶, 葛轶群等, 酪蛋白磷酸肽的制备及性质, 华东理工大学学报, 1999, 25 (6):
    4~577
    11. 黄文涛, 胡学智译, 酶应用手册, 上海: 上海科学技术出版社, 1989, 108~109
    12. Shahina N, Rahmanullah S, Syed A S, In vitro study of the inhibitory effect of Fe(II), Fe(III) and Zn(II) ions on the activity of trypsin, Food Chemistry, 2001, 73: 381~384
    13. 洪法水, 王玲, 吴康等, 铅离子对胰蛋白酶活性影响的作用机理研究, 无机化学学报, 2003, 19 (2): 129~132
    14. 侯廷军, 章威, 郭森立, 一组胰蛋白酶抑制剂结合自由能的预测, 计算机与应用化学, 2002, 19 (1): 1~3
    15. 赵洪锟, 李启云, 王玉民等, 大豆 Kunitz 型胰蛋白酶抑制剂(SKTI)研究进展, 大豆科学, 2002, 21 (3): 218~222
    16. Yamada K, Nakasone T, Nagano R, et al., Retention and reusability of trypsin activity by covalent immobilization onto grafted polyethylene plates, Journal of Applied Polymer Science, 2003, 89 (13): 3574~3581
    17. Kulik E A, Kato K, Lvanchenko M I, et al., Trypsin immobilization on to polymer surface through grafted layer and its reaction with inhibitors, Biomaterials, 1993, 14 (10): 763~769
    18. 王朝旭, 赵丹, 王小雪, 酶法水解骨蛋白最佳条件的研究, 食品科学, 2001, 22 (2): 48~49
    19. Tchorbanov B, Lliev L, Limited enzymic hydrolysis of casein in the presence of ethanol, Enzyme and Microbial Technology, 1993, 15 (11): 974~978
    20. Taylor M M, Cabeza L F, Marmer W N, et al., use of tryptic enzyme preparations in treatment of chrome shavings, Journal of the American Leather Chemists Association, 2000, 95 (7): 243~252
    21. 方海红, 胡好远, 黄红英等, 微生物碱性蛋白酶的研究进展, 微生物学通报, 2002, 29 (2); 57~59
    22. 薛林贵, 我国碱性蛋白酶的应用及研究进展, 微生物学通报, 1997, 24 (6): 370~371
    23. 邱秀宝, 袁影, 嗜碱性芽孢杆菌碱性蛋白酶的研究: II. 诱变株选育及产酶条件, 微生物学通报, 1990, 30 (2): 129~133
    24. 郑铁曾, 涂提坤, 提高 C1213 菌碱性蛋白酶活力的研究, 食品与发酵工业, 1993, 1: 25~31
    25. 冯清平, 薛林贵, 复合诱变原生质选育耐热碱性蛋白酶高产菌, 微生物学报, 1996, 36 (6): 453~459
    26. 张树政, 酶制剂工业(下), 北京: 科学出版社, 1984, 431-438
    27. 赵小兰, 胰酶制备工艺研究, 青海医药杂志, 2000, 30 (4): 56-57
    28. 许学书, 吴南, 翟汉迁等, 胰酶水解干酪素的动力学行为, 华东理工大学学报, 2000, 26 (4): 346-349
    29. 张德桐, 邵坤范, 胰酶水解脱脂大豆粕制造氨基酸保健饮料, 粮油食品科, 1991, 6: 32-33
    30. Nau F, Kerherve F, Leonit J, et al., Selective separation of tryptic β-casein peptides through ultrafiltration membranes: influence of ionic interactions, Biotechnology and bioengineering, 1995,46: 246~253
    31. Garem, Daufin G, Maubois J L, et al., Ionic interations in nanofiltration ofβ-casein peptides, Journal of engineering and applied science, 1998, 57(1): 109-117
    32. David M, richard J F, Production of caseinophosphopeptides(CPPs) from sodium caseinate using a range of commercial protease preparations, International Dairy Journal, 1998, 8: 39-45
    33. Clare D A, Swaisgood H E, Bioactive milk peptides: a prospect, Journal of dairy science, 2000, 83 (6): 1187~1195
    34. Anne-marie F, Daniele M S, Pierre J, et al. Biologically active peptides from milk proteins with emphasis on two examples concerning activities, Journal of Dairy Science, 1993, 76 (1): 301-310
    35. 李全阳, 夏文水, 张国农, 牛乳酪蛋白源活性肽制备及结构研究现状, 中国乳品工业,2002, 20 (5): 8-11
    36. 王秋韫, 庞广昌, 陈庆森, 牛乳酪蛋白来源的生物活性肽, 天津商学院学报, 2001, 21(3): 6-9
    37. Miglioke-Samour D, Floc’h F, Jolles P, Biologically active casein peptides implicated in immunomodulation, Journal of Dairy Research, 1989, 56: 357-362
    38. Peterson R, Nawman L, McMeekin T, The separation and amino acid composition of a pure phosphopeptede from β–casein by the action of trypsin, Journal of America chemical society, 1958,80: 95~99
    39. Adamson N, Reynolds E, Characterization of tryptic casein phosphopeptides prepared under industrially relevant conditions, Biotechnology and bioengineering, 1995,45: 196~204
    40. Ono T, Ohoawa T, Takagi Y, Complex of casein phosphopeptides and calcium phosphate prepared from casein micelles by tryptic digestion, Bioscience biotechnique and biochemistry, 1994,58(8): 1376~1380
    41. FitzGerald R J, Potential uses of caseinophosphopeptides, International Dairy Journal, 1998, 8: 451-457
    42. 冯风琴, 许时婴, 王璋, 酪蛋白磷酸肽功能性质的体外研究, 食品与发酵工业, 1997, 13 (1): 70-73
    43. 庞广昌, 陈庆森, 生物活性肽—酪蛋白磷酸肽(CPPs)的研究、应用及展望, 食品科学, 1999, 20 (6): 25-29
    44. 牟光庆, 鹿保鑫, 王新等, 酪蛋白磷酸肽对铁吸收影响的研究, 黑龙江八一农恳大学学报, 2001, 13 (1): 70-73
    45. Bresollier P, Petit J M, Julien R, Enzyme hydrolysis of plasma proteins in a CSTR ultrafiltration reactor: performances and modeling, Biotechnology and Bioengineering, 1988, 31 (7): 650-658
    46. 彭立凤, 谭天伟, 脂肪酶的膜固定化和酶膜反应器, 中国油脂, 1998, 23 (4): 48-51
    47. Xenakis A, papadinitiou V, Lianos P, Enzyme-induced percolation of w/o microemulsions, Progress in Colloid & Polymer Science, 1993, 93: 370-372
    48. Chiang C L, Tsai S W, Application of a recycle dialysis system in a reversed micellar reactor, Journal of Chemical Technology and Biotechnology, 1992, 54: 27-32
    49. 姜忠义, 贾琦鹏, 刘家祺等, 多相酶膜反应器合成生物活性二肽, 应用化学, 2001, 18 (1): 56-58
    50. Tomoyuki F, Osato M, Toshimasa Y, Modeling of hollow-fiber capillary reactor for the production of L-alanine with coenzyme regeneration, Biotechnology and Bioengineering, 1991, 38: 1166-1172
    51. Prazeres D M F, Cabral J M, Enzymatic membrane bioreactors and their applications,Enzyme Microbiology and Technology, 1994, 16: 738-750
    52. 董春华, 何志敏, 酶膜反应器的应用及展望, 化学工程, 2001, 19 (4): 25-27
    53. Pouliot Y, Gauthier S F, Bard C, Fractionation of casein hydrolysates using polysulfone ultrafiltration hollow fiber membranes, Journal of Membrane Science, 1993, 80: 257-264
    54. Prata-Vidal M, Bohallab S, Henry G, et al., An experimental study of caseinomacropeptide hydrolysis by trypsin in a continuous membrane reactor. Biochemical Engineering Journal, 2001, 8: 195-202
    55. Mannheim A, Cheryan M, Continuous hydrolysis of milk protein in a membrane reactor, Journal of Food Science, 1990, 55 (2): 381-385
    56. David D W, Cheryan M, A CSTR-Hollow-Fiber system for continuous hydrolysis of proteins. Factors affecting long-term stability of the reactor, Biotechnology and Bioengineering, 1982, XXIV: 69-82
    57. Boudrant J, Cheftel C, Continuous proteolysis with a stabilized protease. II. Continuous experiments, Biotechnology and Bioengineering, 1976, XVIII: 1735-1749
    58. 王志, 伍艳辉, 任延等, 糖类和蛋白类物质污染聚砜膜的不同特性和微观机制, 水处理技术, 2000, 26 (5): 273-276
    59. Converti A, Del Borghi M, Ferraiolo G, et al., Mechanical mixing and biological deactivation: the role of shear stear stress application time, Chemical Engineering Journal and Biochemical Engineering Journal, 1996, 62 (3): 155-167
    60. Gunjikar T P, Sawant S B, Joshi J B, Shear deactivation of cellulase, exoglucanase, endoglucanase, and β-glucosidase in a mechanically agitated reactor, Biotechnology Progress, 2001, 17 (6): 1166-1168
    61. 胡金榜, 宫强, 解建光等, 在膜分离式酶解反应器中单基质酶受叶轮剪切失活的实验研究, 化学反应工程与工艺, 1999, 15 (1): 19-24
    62. Charm S E, Wong B L, Shear degradation of fibrinogen in the circulation, Biotechnology and Bioengineering, 1970, 12: 1103-1109
    63. Lin S B, Chiang W, Christopher T C, et al., Functional and immunoological properties of casein hydrolysate produced from a two-stage membrane system, Journal of Food Science, 1997, 62 (3): 480-483
    64. Belhocine D, Mokrane H, Grib H, et al., Mameri N, Optimization of enzymatic hydrolysis of haemoglobin in a continuous membrane bioreactor, Chemical Engineering Journal, 2000, 76: 189-196
    65. Bressollier, Petit J M, Julien R, Enzyme hydrolysis of plasma proteins in a CSTR ultrafiltration reactor performances and modeling, Biotechnology and Bioengineering, 1988, 31: 650-658
    66. Bodalo A, Gomez J L, Gomez E, et al., Ultrafiltration membrane reactors for enzymatic resolution of amino acids: design model and optimization, Enzyme and Microbial Technology, 2001, 28: 355-361
    67. 冯凤琴, 许时婴, 王璋, 酪蛋白磷酸肽性质的体外研究, 食品与发酵工业, 1997, 23 (6): 1-5
    68. 冯凤琴, 许时婴, 王璋, 酪蛋白磷酸肽(CPPs)的分子量及持钙功能分析, 食品与发酵工业, 1997, 23 (2): 18-21
    69. 杨曜中, 欧伶, 葛轶群等, 酪蛋白磷酸肽的制备和性质, 华东理工大学学报, 1999, 25 (6): 574-577
    70. 冯凤琴, 王博诚, 倪莉等, 酪蛋白磷酸肽的分离纯化及分子结构鉴定, 无锡轻工大学学报, 1999, 18 (4): 33-37
    71. 刘忠洲, 续曙光, 李锁定, 微滤、超滤过程中的膜污染与清洗, 水处理技术, 1997, 23 (4): 187—193
    72. 薛怀德, 超滤膜法简要介绍(二), 膜科学与技术, 1992, 12 (1): 64—68
    73. 环国兰, 张宇峰, 杜启云, 膜污染分析及防治, 水处理技术, 1003, 29 (1): 1-4
    74. 邱运仁, 张启修, 超滤过程膜污染控制技术研究进展, 现代化工, 2002, 22 (2): 18-21
    75. 尹国, 彭超英, 朱国洪等, 膜生物反应器中膜污染研究进展, 环境保护科学, 2000, 26 (101): 10-13
    76. 刘昌胜, 邬行彦, 潘德维等, 膜的污染及其清洗, 膜科学与技术, 1996, 16 (2): 25-30
    77. 刘茉娥, 超滤膜污染机理的研究及控制, 水处理技术, 1989, 15 (3): 163-168
    78. Marshall A D, Munro P A, Tragardh G, The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review, Desalination, 1993, 91: 65-108
    79. Hanemaaijer J H, Robbertsen T, Boomgaard T, et al., Fouling of ultrafiltration membranes. The role of protein adsorption and salt precipitation, Journal of Membrane Science, 1989, 40: 199-217
    80. Bian R, Yamamoto K, Watanabe Y, The effect of shear rate on controlling the concentration polarization and membrane fouling, Desalination, 2000, 131: 225-236
    81. 王志, 甄寒非, 王世昌, 膜过程中防治膜污染强化渗透通量技术进展(Ⅰ)操作策略, 膜科学与技术, 1999, 19 (1): 1-6
    82. 续曙光, 柳贤, 刘忠洲, 超滤膜污染和清洗方法的研究, 环境化学, 1998, 17 (4): 404-407
    83. 孙培松, 吴惠珍. 蛋白质和蛋白质混合物在超滤膜上的污染. 水处理技术, 1993, 19(6): 340-344
    84. Akon H, Noboru I, Masayuki T, et al., Surface-modified polysulfone hollow fibers, Journal ofApplied Polymer Science, 1988, 36:1753-1767
    85. Akon H, Noboru I, Tsutomu N, Surface-modified polysulfone hollow fibersII. Fibers having CH2CH2CH2SO3- segments and immersed in HCl solution, Journal of Applied Polymer Science, 1990, 40: 709-717
    86. Ma H M, Christopher N B, Robert H D, Membrane fouling reduction by backpulsing and surface modification, Journal of membrane science, 2000, 173: 191-200
    87. Maria K, Soo-Myung K, Isaac M, et al., Intermittent crossflushing of hollow fiber ultrafiltration systems, Desalination, 1998, 118: 175-188
    88. Mameri N, Oussedik S M, Khelifa A, et al., Eldctric fields applied in the ultrafiltration process, Desalination, 2000, 138: 291
    89. 李雁, 郭祀远, 李琳等, 电场强化酶解反应超滤膜分离一体化的研究(一), 郑州粮食学院学报, 1999, 20 (4): 28-31
    90. 刘昌胜, 邬行彦, 林剑等, 膜通量衰减, 中国抗生素杂志. 1997, 22 (4): 264-267
    91. 郑成, 膜的污染及其防治, 膜科学与技术, 1997, 17 (2): 5-14
    92. Nader A B, Abderrahim A, Use of fluid instabilities to enhance membrane performance: a review, Desalination, 2001, 136: 255-262
    93. 邢卫红, 童金忠, 徐南平等, 微滤和超滤过程中浓差极化和膜污染控制方法研究, 化工进展, 2000, 1: 44-48
    94. 李巍青, 吴苏喜, 大豆蛋白对超滤膜的污染机理及反冲法控制污染的研究, 长沙电力学院学报(自然科学版), 2000, 15 (2): 91-94
    95. 杨宏志, 梁志, 田伟, 中空纤维超滤澄清果汁时浓差极化现象的产生原理和对策, 黑龙江八一农恳大学学报, 2000, 12 (3): 90-93
    96. 刘昌胜, 邬行彦, 潘德维等. 膜的污染及其清洗. 膜科学与技术, 1996, 16(2): 25-30
    97. Malsumoto K, Kawahara M, Ohya H, Studies on the separation propertion of ceramic membrane, Journal of Ferment Technology, 1988, 66:199
    98. Sanjeev R, Vinod K, Robert H D, Modeling of concentration polarization and depolarization with high-frequency backpulsing, Journal of Membrane science, 1996, 121: 229-242
    99. Noshay A, Robeson L M, Sulfonated polysulfone, Journal of applied polymer science, 1976, 20: 1885-1903
    100. Akon H, Tsutomu N, Surface-modified polysulfone hollow fibers Ⅲ. Fibers having a hydroxide group, Journal of Applied Polymer Science, 1990, 41: 1973-1979
    101. Kim K S, Lee K H, Cho K, et al., Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment, Journal of Membrane Science, 2002, 199: 135-145
    102. Irena G, Gryzelda P, Marek B, Modification of polysulfone membranes 1. CO2 plasmatreatment, European Polymer Journal, 1999, 35: 1419-1428
    103. Irena G, Gryzelda P, Marek B, Modification of polysulfone membranes 3. Effect of nitrogen plasma, European Polymer Journal, 2000, 36: 1563-1569
    104. Marek B, Irena G, Gryzelda P, et al., Modification of polysulfone membranes 4. Ammonia plasma treatment, European Polymer Journal, 2002, 38: 717-726
    105. Song Y Q, Sheng J, Wei M, et al., Surface modification of polysuffone membranes by low-temperature plasma-graft poly(ethylene glycol) onto polysulfone membranes, Journal of Applied Polymer Science, 2000, 78: 979-985
    106. Bozena K, John P, Georges B, Photoinduced grafting of ultrafiltration membranes: comparison of poly (ether sulfone) and poly (sulfone), Journal of Membrane Science, 2001, 194: 245-261
    107. 从爽,面向 MATLAB 工具箱的神经网络理论与应用,合肥:中国科学技术出版社,1998,1~72
    108. 从爽,面向 MATLAB 工具箱的神经网络理论与应用(第二版),合肥:中国科学技术出版社,2003,1~60
    109. 王志奎,人工神经网络在化学工程中的应用,现代化工,1996,16(9):17~21。
    110. 周申范,黄俊,BP 神经网络及其在化工优化中的应用,江苏化工,2000,28(4):27~28。
    111. 申清,刘莹,人工神经网络及其在化工领域中的应用,广东化工,2001,29(2):32~34。
    112. Luke, B T, Comparison of three different QSAR/QAPR generation techniques, Journal of Molecular Structure: THEOCHEM, 1999, 468(1-2): 13~20
    113. Ulmer C W, Smith D A, Sumpter B G, et al., computational neural netwoiks and the rational design of polymeric materials: the next generation polycarbonates, computational and Theoretical Polymer Science, 1998, 8 (3-4): 311~321
    114. Curry B, Rumelhart D E, A neural network that classifies mass spectra, HP Laboratories Technical Report, 1990, 90-161: 1~31
    115. Barlow T W, Feed-forward neural networks for secondary structure prediction, Journal of Molecular Graphics, 1995, 13 (3): 175~183
    116. Crivelli S, Byrd R, Eskow E, et al., A global optimization strategy for predicting α–helical protein tertiary structure, Computers and Chemistry, 2000, 24 (3-4): 489~497
    117. Psaltis D, Sideris A, Yamamura A, Multilayered neural network controller, IEEE Control Systems Magazine, 1988, 8 (2): 17~21
    118. Nguyen D H, Widrow B, Neural networks for self-learning control systems, IEEE Control Systems Magazine, 1990, 10 (3) 18~23
    119. Psichogios D C, Ungar L H, Nonlinear internal model control and model predictive control using neural networks, Proc 5 IEEE Symp Intell Control 90, 1990, 1082~1087
    120. Cooper D J, Megan L, Hinde R F, A neural pattern analyzer for adaptive process control, Proceedings of the American Control Conference, 1991, 3: 2794~2799
    121. Hoskins J C, Himmelblau D M, Process control via artificial neural networks & reinforcement learning, Computers and Chemical Engineering, 1992, 16 (4): 241~251
    122. Venkatasubramanian V, Chan K, Neural network methodology for process fault diagnosis, AICHE Journal, 1989, 35 (12): 1993~2002
    123. Hoskins J C, Kaliyur K M, Himmelblau D M, Fault diagnosis in complex chemical plants using artificial networks, AICHE Journal, 1991, 37 (1): 137~141
    124. Venkatasubramanian V, Vaidyanathan R, Diagnosing noisy process data using neural networks, IFAC Symposia Series, 1992, 6: 547~552
    125. Delgrange N, Cabassud C, Cabassud M, et al., Neural networks for prediction of ultrafiltration transmembrane pressure-application to drinking water production, Journal of Membrane Science, 1998, 150: 111~123
    126. Delgrange N, Cabassud C, Cabassud M, et al., Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production, Desalination, 2000, 131: 353~362
    127. Delgrange N, Cabassud C, Cabassud M, et al., Modelling of ultrafiltration fouling by neural network, Desalination, 1998, 118: 213~227
    128. Carmen T, Octavian P, Matei M, Neural network models for ultrafiltration and backwashing, Water Research, 2000, 34(18): 4371~4380
    129. Dornier M, Decloux M, Trystram G., et al., Dynamic modelling of crossflow microfiltration using neural networks, Journal of Membrane Science, 1995, 98: 263~273
    130. Richard B W, Meirion G J, Haitham N S Y, Dynamic ultrafiltration of proteins-A neural network approach, Journal of Membrane Science, 1998, 146: 225~235
    131. 李兴, 林哲甫, 多元醇和糖类对菠萝蛋白酶热稳定性的影响, 中国生物制品学杂志, 2001, 14 (4): 243-244
    132. 王秀艳, 周慧, 葛玉斌等, 木瓜蛋白酶 PPA III 自水解作用, 生物化学杂志, 1996, 12(5): 626-628
    133. Fontana A, Structure and stability of thermophilic enzymes. Studies on thermolysin, Biophysical Chemistry, 1988, 29 (1-2): 181-193
    134. James T, kellies J R, Nyberg K, Contribution of hydrophobic interactions to protein stability, Nature, 1988, 333: 784-786
    135. Snyder P D, Finn W, Bernlohr R W, Stabilization to heat and protease degradation by complexing with antibody and by chemical modification, Biochimica et Biophysica Acta, 1974, 350 (2): 432-436
    136. Colaco C, Sen S, Thangavela M, Extraordinary stability of enymes dried in trehalose: simplified molecular biology, Biotechnology, 1992, 10: 1007-1010
    137. He Z M, Zhang Z D, He M X, Kinetic study of thermal inactivation for native andmethoxypolyethylene glycol modified trypsin, Process biochemistry, 2000, 35: 1235~1240
    138. 邹超, 高效促钙吸收因子酪蛋白磷酸肽的制备工艺开发, 硕士学位论文, 天津大学研究生院, 2002
    139. B D 黑姆斯, N M 胡泊, J D 霍顿, 生物化学, 北京: 科学技术出版社, 2000, 70
    140. 董春华, β-甘露聚糖酶水解葡萄甘露聚糖动力学及过程模型, 硕士学位论文, 天津大学研究生院, 2001
    141. Nikolov Z L, Michnel M M, Kinetics, Equilibria and Modelling of the Formation of Oligosaccharides from D-Glucose with Aspergillus niger Glucoamylases Ⅰ and Ⅱ , Biotechnology and Bioengineering, 1989, 34: 694-704
    142. 戚以政, 汪叔雄, 生化反应动力学与反应器, 北京:化学工业出版社, 1996, 10-40
    143. 邹承鲁, 赵康源, 自然科学进展——国家重点实验室通讯, 1991, 1: 26-39
    144. 黄守勤, 颜青, 林沁瑛等, 酶活性不可逆改变的底物保护动力学, 厦门大学学报(自然科学版), 1992, 31 (4): 425-429
    145. Kuruzovich J N, Riergiovanni P R, Yeast cell microfiltration: optimization of backflushing for delicate membranes, Journal of Membrane Science, 1996, 112: 241-247
    146. Ma H M, Luis F H, Christopher N B, et al., Factors affecting membrane fouling reduction by surface modification and backpulsing, Journal of Membrane Science, 2001, 189: 255-270
    147. Hoskins J C, Himmelblau B M, Artificial neural networks models of knowledge presentation in chemical engineering, Computers and Chemical Engineering, 1988, 12: 881-891
    148. 熊日华, 王世昌, 神经网络在膜技术中的应用, 膜科学与技术, 2003, 23 (6): 44-48
    149. Teodosiu C, Rastravanu O, Macoveanu M, Neural network models for ultrafiltration and backflushing, Water Research, 2000, 34 (18): 4371-4380
    150. Bowen W R, Jones M G, Yousef H N S, Prediction of the rate of crossflow membrane ultrafiltration of colloids: A neural network approach, Chemical Engineering Science, 1998, 53 (22): 3793-3802
    151. 王铮, 张惠心, 聚砜中空纤维超滤膜的制备及应用, 工程塑料应用, 2002, 30(8): 32-36
    152. 邵德益, 刘洪谦, 王平诺, 超滤膜的改性与清洗技术的研究, 现代化工, 1995, 8: 20-22
    153. Barry M T, Comprihensive organic synthesis (Vol. 3), Oxford OX3 0BW, England, Pergamon press, 1991, 293-337
    154. 恽魁宏, 有机化学(第二版), 北京: 高等教育出版社, 1992, 287-388
    155. 吴和融, 王彬芳, 高分子物理, 上海: 科学出版社, 1990, 44-45
    156. 于艳军, 酪蛋白酶促水解过程集总动力学研究, 硕士学位论文, 天津大学研究生院, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700