酶解—膜超滤改性小麦面筋蛋白功能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面筋蛋白是小麦淀粉生产过程中的副产品,由于在水中溶解性差,限制了在食品中的应用,本文旨在通过酶解-膜超滤改性,改善面筋蛋白功能特性以拓宽其应用范围。研究面筋蛋白酶解优化条件及内在规律,探讨酶解产物对酶解过程的抑制作用及机理,对改性面筋蛋白功能特性变化进行研究,通过超声辐射研究酶解面筋蛋白-多糖之间接枝反应,深入探讨了改性面筋蛋白组成、结构与功能特性之间的关系。
     选用Protamex、PTN 6.0S、Alcalase、Neutrase、Papain酶解面筋蛋白,优化酶解条件。酶解产物中可溶性氮、氨基氮、肽基氮含量变化表明,Protamex最适合产生不同分子量的肽,Papain次之,Neutrase最低;SDS-PAGE和SE-HPLC分析表明:酶解过程中,醇溶蛋白和可溶性麦谷蛋白易于降解,部分高分子麦谷蛋白亚基对酶解表现出“抗性”。
     加热、超声、挤压和还原剂等预处理改变了面筋蛋白的结构(SH/S-S、亲水性/疏水性等),使其酶解过程中DH和蛋白回收率增加,酶解前预处理对改善面筋蛋白酶解特性有明显的促进作用。
     酶解产物对酶解抑制率(IR)与DH之间的关系曲线表现出明显不同的两个动力学区域:DH依赖区和DH非依赖区;酶解产物中分子质量<5kDa的肽组分对酶解起主要的抑制作用,酶解-膜分离耦联可以明显改善面筋蛋白的酶解特性,酶活力下降速度减缓。
     利用不同截留分子量的膜超滤分离酶解产物得到改性面筋蛋白组分(50-K、30-K、10-K和P组分), SDS-PAGE和红外光谱分析表明不同面筋蛋白组分组成及结构有明显的差异。酶解产物溶解性、乳化性、起泡性、持水能力等较对照显著改善(P<0.05),但与DH有密切的关系,酶解产物黏度变化与其浓度和DH有关。
     改性面筋蛋白组分溶解性在pH3-10特别是在pH7.0时比对照显著提高(P<0.05),pI向碱性或酸性方向偏移,热(50-90°C)稳定性明显提高,低浓度KCl/Cys对改性面筋蛋白有增溶作用;乳化、起泡和持水能力显著(P<0.05)改善,30-K组分增加最大,改性后乳化稳定性和泡沫稳定性降低;改性面筋蛋白黏度下降,但随浓度升高而增加;表面疏水性增加且随肽段分子量降低而下降;初始化成胶温度升高但随离子强度增加而降低,50-K组分凝胶具有相对高的G’,而30-K组分G’降低。
     DH8.8%的Protamex酶解产物-阿拉伯胶在超声辐射条件下接枝时,接枝度(DG)最大;接枝物溶解性、热稳定性、乳化性和起泡性显著(P<0.05)提高,特别是ES增加更显著,溶解性曲线在pH3-10范围内平缓,没有明显的等电点;红外吸收光谱酰胺I带吸收峰发生部分偏移。
     改性面筋蛋白中游离SH/S-S比值升高,醇溶蛋白、可溶性麦谷蛋白及不溶性麦谷蛋白含量减少;改性面筋蛋白显微结构明显改变,β-折叠增加,α-螺旋/β-折叠比值下降,接枝物中α-螺旋/β-折叠比值最低,改性后面筋蛋白变性温度升高。分子分布及分子结构的改变引起蛋白分子柔韧性升高和表面性质改变,是改性面筋蛋白功能特性改善的重要原因。
Wheat gluten is a byproduct of the wheat starch industry. The use in food is limited by its water-insoluble characteristic. The aim of the present study was to modify wheat gluten by enzymatic hydrolysis-membrane ultrafiltration fractionation (UF) for improving its functional properties and extending utilization. Optimal conditions and some intrinsic mechanisms of enzymatic hydrolysis were studied. Inhibition of gluten hydrolysate for enzymatic hydrolysis was investigated. The Enhanced functional properties of the modified glutens were evaluated. Graft reaction of gluten hydrolysate and polysaccharide subjected to ultrasound treatment was also investigated. Moreover, relation of composition/structure of the modified glutens to functional properties was analyzed.
     Five proteases (protamex, PTN6.0S, alcalase, neutrase and papain) were used to hydrolyze gluten protein and hydrolytic conditions were optimized. The contents of soluble nitrogen, amino nitrogen and peptide-based nitrogen in gluten hydrolysates were compared. Protamex was suitable for preparing the peptides with various molecular weight followed by Papain. According to SDS-PAGE and SE-HPLC analysis, gliadin and soluble glutenin were prone to degradation during enzymatic hydrolysis. Some of HMW-GS had resistance to hydrolysis.
     Wheat gluten subjected to thermal, extrusion, ultrasound and reducing agent led to change in its structure such as SH/S-S, hydrophicity / hydrophobicity. These pretreatment resulted in increase in degree of hydrolysis and protein recovery compared to control.
     Inhibition rate (IR) of gluten hydrolysates for enzymatic hydrolysis showed two distinct dynamic regions, DH-dependent and DH-independent region. The IR of gluten hydrolysate fractions obtained after UF had significant (P<0.05) difference. The peptides with below 5 kDa played dominant role in inhibition of enzymatic hydrolysis. Removal of these peptides was favor for enzymatic hydrolysis and maintenance of proteinase activity.
     The gluten hydrolysates were fractionated into 50-K, 30-K, 10-K and P fractions by membranes with different molecular weight cut-off. These modified glutens had different structure based on SDS-PAGE and FT-IR analysis. The enhanced (P<0.05) functional properties (solubility, water-holding capacity, emulsifying and foaming properties) of the gluten hydrolysates were found compared to original gluten. The enhanced functional properties were associated with DH of hydrolysates. Moreover, viscosity of the hydrolysates was influenced by its DH and concentration.
     Significant (P<0.05) increase in nitrogen soluble index at range of pH3-10 was found in the modified glutens compare with control. The pI of modified glutens shifted into acid or alkalin region. Low concentration of KCl and Cys can improve solubilization of the modified glutens. In addition, the thermal stability greatly improved. The modified glutens had better emulsion activity index, foaming capacity and water-holding capacity than the control sample, 30-K fraction had the highest value among these fractions. However, emulsion and foam stability decreased compared to control. Viscosity of the modified glutens decreased and increased with concentration of these proteins. Surface hydrophobicity of the modified glutens increased. The initial gel temperature of the modified glutens increased and decreased as ion strength increases. 50-K fraction had the highest storage modulus.
     The conjugate with the highest degree of graft using DH8.8% of Protamex hydrolysate and arabian gum could obtained. Optimal conditions of gluten hydrolysate and arabian gum for graft reaction were obtained by surface response design. Solubility, thermal stability, emulsifying and foaming properties of the resultant conjugate were significantly (P<0.05) improved compared the hydrolysate. Solubility curve kept relatively plateau at pH3-10. No obvious pI was noticed.
     The ratio of free SH/S-S of the modified glutens increased compared to control. Microstructure of the modified glutens had great change based on SEM observation. In secondary structure, modification led to decrease inα-helix/β-sheet ratio. The conjugate had the lowestα-helix/β-sheet ratio. Change in molecular weight distribution and structure of the modified gluten proteins resulted in improvement of flexibility and surface properties. These changes play an important role in improvement of functional properties.
引文
[1] Adler-Nissen J. Proteases. In: Enzymes in Food Processing-3rd [M]. T. Nagodawithana and G. Reed (Ed.) Academic Press, Inc. London. 1993. p159-203.
    [2] Hamaguchi K. The Protein Molecular-Conformation, Stability and Folding [M]. Japan Scientific Societies Press. Tokyo. 1992. p252.
    [3] Hoseney R.C. Principles of Cereal Science and Technology-2rd [M]. AACC, Inc. St. Paul, Mn. 1994. p378.
    [4] Parkin K. General Characteristics of Enzymes. In: Enzymes in Food Processing-3rd [M]. T.Nagodawithana and G. Reed (Ed.) Academic Press, Inc. London. 1993. p7-37.
    [5] Kinsella J.E. Relationship between structure and functional properties of food proteins. In: Food Proteins [M]. Fox P.F., Condon J.J. (Ed.) Applied Science Publishers. London. 1982. p51-103.
    [6] Osborne T.B. The proteins of wheat kernel [M]. Publication of Washington DC, Carnegie Institution of Washington, 1907.
    [7] Pour-El A. Protein functionality: Classification, definition and methodology. In: Protein Functionality in Foods [M]. J.P. Cherry (Ed.). ACS Symposium Series 147. American Chemical Society. Washington D.C. 1981. p1-19.
    [8] Kinsella J.E. Functional properties of proteins in foods: a survey [J]. Critical Review in Food Science and Nutrition. 1976, 7: 219-280.
    [9] Paredes-Lopez O., Guzman-Maldonado H., Ordorica-Falomic C. Food Proteins from Emerging Seed Sources. In: New and Developing Sources of Food Proteins [M]. B.J.F. Hudson (Ed.) Chapman &Hall. London. 1994. p241-279.
    [10] Damodaran S. Structure-Function Relationship of Food Proteins. In: Protein Functionality in Food Systems [M]. N.S. Hettiarchchy and G.R. Ziegler (Ed.). IFT Basic Symposium Series, Chicago, IL. 1994. p1-37.
    [11] Kinsella J.E., Damodaran S., German J.B. Physicochemical and Functional Properties of Oilseed Proteins with Emphasis on Soy Proteins. In: New Protein Foods: Seed Storage Proteins [M]. A.M. Altshul and H.L. Wilcke (Ed.). Academic Press, New York. 1985. p108.
    [12] Ma C.Y., Liu W.S., Kwok K.C., et al. Isolation and characterization of proteins from soymilk residues (Okara) [J]. Food Research Interational. 1996, 29(8): 799-805.
    [13] Szuhaj B.F., Sipos E.F. Food emulsifiers from soybean. In: Food Emulsifiers-Chemistry, Technology, Functional Properties and Applications [M]. G. Charalambous and G. Doxastakis (Ed.). Elsevier Amsterdam. 1989. p113-186.
    [14] Gueguen J., Cerletti P. Proteins of some legume seeds: soybean, pea, fababean. In: New and Developing Sources of Food Proteins [M]. B.J.F. Hudson (Ed.). Chapman & Hall. London. 1994. p145-193.
    [15] Hamm R. Changes of muscle proteins during the heating of meat. In: Physical, Chemical and Biological Changes in Food Caused by Thermal Processing [M]. T.Toyem and O. Kvale (Ed.). Applied Science Publishers Ltd. London. 1977. p101-134.
    [16] Mangino M.E. Protein interactions in emulsions: Protein-lipid interactions. In: Protein Functionality in Food Systems [M]. N.S. Hettiarachchy and G.R. Ziegler (Ed.). IFT Basic Symposium Series, Chicago IL. 1994. p147-179.
    [17] Puski G. Modification of functional properties of soy proteins by proteolytic enzyme treatment [J]. Cereal Chemistry. 1975, 52: 655-660.
    [18] Adler-Nissen J., Erichsen S., Olsen H.S. Improvement of functionality of vegetable proteins by controlled enzymatic hydrolysis. In: Plant Proteins for Human Food. Proceedings of a European Congress held in Nantes, France, 5-7 October 1981. C.E. Bodwell and L.Petit (Ed.). Kluwer Academic Publishers Group. The Hagug. 1983. p207-219.
    [19] Yeshajahu D. Chapter 5 Proteins: General. In: Functional properties of food components (second Edition)[M]. Academic Press, Inc. 1985. p126-185.
    [20] 江志炜,沈蓓英,潘秋琴.蛋白质加工技术 [M].北京:化学工业出版社, 2003, p112.
    [21] Kinsella J.E., Whitehead D.M. Proteins in whey: chemical, physical and functional properties. In: Advances in Food and Nutrition Research[M]. Kinsella J.E. ed. Academic Press. 1989, p343-438.
    [22] Kang I.J. Gelation and gel properties of soybean glycicin in a transglutaminase-catalyzed system[J]. Journal of Agricultural and Food Chemistry. 1994, 42(1):159-165.
    [23] 杨晓泉.花生储藏蛋白的分离及部分性质研究[J].中国粮油学报.2001, 15(2): 32-37.
    [24] 杨晓泉.花生种子 2S 蛋白的分离及部分性质研究[J].华南理工大学学报.1998, 26(4):1-5.
    [25]肖凯军.大豆蛋白中 7S 和 11S 的功能特性研究[J].中国食品工业.1996(3):24-25.
    [26] 杨晓泉.花生胰蛋白酶抑制剂的纯化与钝化研究[J].营养学报.1998, 20(3):337-342
    [27]李汴生等.超高压处理对豆浆凝胶特性的影响[J].食品与发酵工业.1999, 25(1):10-15.
    [28] 刘通讯.可食性小麦面筋蛋白膜机械性能的研究[J].广东工业大学学报. 1998, 20(2): 45-51.
    [29] 陈新建.可食性小麦面筋蛋白膜的性质及作用研究(华南理工大学硕士论文) 1996.
    [30] 孙哲浩,赵谋明.蛋白质与多糖类交互作用对食品乳状液稳定性的影响[J].食品与发酵工业. 2000.16(2):5-9.
    [31] 孙哲浩,赵谋明.大豆分离蛋白与卡拉胶共凝胶体流变学特性的研究[J].食品与发酵工业. 2001, 27(1): 46-49.
    [32] Thompson L.U.; Reves E.S. Modification of heat coagulated whey protein concentration by succinylation[J]. Journal of Dairy Science. 1990, 63(5):715-721.
    [33] Vidal V.; Marchesseau S. Influence of chemical agents on casein interaction in dairy products: chemical modification of milk proteins[J]. Colloids and Surfaces B: Biointerfaces. 1998, 12:7-14.
    [34] Franzen K.L., Kinsella J.E. Functional properties of succinylated and acetylated soy protein[J]. Journal of Agricultural and Food Chemistry. 1976, 24: 788-795.
    [35] Achouri A., Wang Z., Xu S. Enzymatic hydrolysis of soy protein isolate and effect of succinylation on the functional properties of resulting protein hydrolysates[J]. Food Research International, 1998, 31(9): 617-623.
    [36] Kabirullah M., Wills R.B.H. Functional properties of acylated and succinylated sunflower protein isolate[J]. Journal of Food Technology. 1982, 17: 235-249
    [37] Messinger J.K., Rupnow J.H., Zeece M.G., et al. Effect of partial proteolysis and succinylation of corn germ protein isolate[J]. Journal of Food Science. 1987, 52: 1620-1624.
    [38] Dua S., Mahajan A., Mahajan A. Improvement of functional properties of rapeseed(Brassica campestris Var. Toria) preparations by chemical modification[J]. Journal of Agricultural and Food Chemistry. 1996, 44:706-710.
    [39] Wanasundara P., Shahidi F. Functional properties of acylated flax protein isolates[J]. Journal of Agricultural and Food Chemistry. 1997, 45:2431-2441.
    [40] Sundar R S, Rao D R. Functional properties of native and acylated peanut proteins prepared by different methods[J]. Lebensm-Wiss. Und Technol. 1978, 11: 188-198.
    [41] Johnson E.A., Brekker C.J. Functional properties of acylated pea protein isolates[J]. Journal of Food Science. 1983, 48: 722-725.
    [42] Choi Y.R., Lusas E.W., Rhee K.E. Succinylation of cottonseed flour: effect on the functional properties of protein isolates prepared by modified flour[J]. Journal of Food Science. 1981, 46: 954-955.
    [43] Matsudomi N. Conformation changes and functional properties of acid-modified soy protein[J]. Agricutural and Biological Chemistry. 1985, 49:1251-1256.
    [44] Ma C.Y., Khanzada G. Functional properties of deamidated oat protein isolates[J]. Journal of Food Science. 1987, 52: 1583-1587.
    [45] Chan W.M., Ma C.Y. Acid modification of proteins from soymilk residue(okara) [J]. Food Research International. 1999, 32: 119-127.
    [46] 卢寅泉,肖红媚,郑宗坤.花生蛋白加工功能特性的改善[J].食品科学.1995, 16(6): 9-13.
    [47] 吴向明,雕鸿荪,沈蓓英.大豆蛋白去酰胺该性的研究[J].中国油脂.1996, 21(5): 13-16.
    [48] 吴向明,雕鸿荪.大豆蛋白加工功能特性改善及应用[J]. 浙江工业大学学报.28(3): 256-259.
    [49] 卢寅泉. 磷酸化大豆蛋白功能特性的研究[J]. 食品与发酵工业. 1993, 1: 17-24.
    [50] Mitchell J.R., Hill S.E. The use and control of chemical reactions to enhance the functionality of macromolecules in heat-produced foods[J]. Trends in Food Science and Technology. 1995, 6: 219-224.
    [51]Aoki T., Hiidome Y. Improvement of heat stability and emulsifying activity of ovalbumin by conjugation with glucoronic acid though the maillard reaction[J]. Food Research Intrenational. 1999, 32: 129-133.
    [52]Babiker E.E., Hiroyuki A. Effect of polysaccharide conjugation or transglutaminase treatment on the allergenicity and functional properties of soy protein[J]. Journal of Agricultural and Food Chemistry. 1998, 46: 866-871.
    [53]麻建国,王璐,许时婴. 大豆蛋白-魔芋多糖复合物及乳化性能的初步研究[J]. 无锡轻工大学学报. 1999, 18(3):12-16.
    [54] Fayle S E., Gerrard J.A. Crosslinkage of proteins by dehydroascorbic acid and its degradation products[J]. Food Chemistry. 2000, 70: 193-198.
    [55] 华欲飞.大豆分离蛋白性能优化关键技术[J].中国油脂. 2001, 26(6):79-81.
    [56] 莫文敏.蛋白质改性研究进展[J]. 食品科学.2000, 6: 6-9.
    [57] Adler-Nissen J. Enzymatic hydrolysis of protein for increase solubility[J]. Journal of Agricultural and Food Chemistry. 1976, 24: 1090-1093.
    [58] 班玉凤,朱海峰,关纳新.热处理对大豆蛋白酶解性能的影响[J].现代食品科技.2005,21(1):72-77.
    [59] Kinsella J.E. Functional properties of soy proteins. Journal of American Oil Chemist’s Society.1979, 56: 242-258.
    [60] 李川,蒋和体,曾凡坤. 大豆蛋白改性. 食品科技.2000, 3: 22-23.
    [61] 陈莹,沈培英,刘复光.醇法大豆浓缩蛋白(SPC)挤压组织化机理(Ⅱ)-蛋白质变性热力学的差示扫描量热分析法[J].食品与发酵工业.1994, 6:10-15.
    [62] Galazka V.B., Dickinson E., Ledward D.A. Influence of high pressure processing on protein solutions and emulsions [J]. Current Opinion in Colloid & Interface Science. 2000, 5: 182-187.
    [63] 李汴生,曾庆孝. 高压处理大豆分离蛋白溶解性和流变特性的变化及其机理[J]. 高压物理学报. 1999, 1: 22-29.
    [64] Molina E., Papdopoulou A., Ledward D.A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins[J]. Food Hydrocolloids. 2001, 15: 263-269.
    [65] 李荣和. 植物蛋白加工新技术[M]. 北京:科技文献出版社,1999
    [66] 李汴生. 超高压处理对豆浆感官状态和流变特性的影响[J].食品与发酵工业. 1998, 24(6):12-18.
    [67] 杨汝德.超声钝化大豆胰蛋白酶抑制剂的研究[J].华南理工大学学报, 1998, 26(1):66-71.
    [68] 添田孝彦,马场启子. 大豆蛋白质の新规改质法とその食品利用[J].日本食品科学工学会志.1999,46(10): 627-632.
    [69]Skanderby M. Protein hydrolysates: their functionality and applications[J]. Food Technol European. 1994, 10: 141-148.
    [70] Calderon de la Barca A.M., Ruiz-Salazar R.A., Jara-Marini M.E. Enzymatic hydrolysis and synthesis of soy protein to improve its amino acid composition and functional properties[J]. Journal of Food Science. 2000, 65: 246–253.
    [71] Lee K.A., Kim S.H. SSGE and DEE, new peptides isolated from a soy protein hydrolysate that inhibit platelet aggregation[J]. Food Chemistry. 2005, 90: 389-393.
    [72] Molina Ortiz S.E., Wagner J.R. Hydrolysates of native and modified soy protein isolates: structure characteristics, solubility and foaming properties[J]. Food Research International. 2002, 35: 511-518.
    [73] Pena-Ramos E.A., Xiong Y.L.L. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties[J]. Meat Science. 2002, 64: 259-263.
    [74] SurówkA K., Zmudziński D., Surówka J. Enzymatic modification of extruded soy protein concentrate as a method of obtaining new functional food components[J]. Trends in Food Science and Technollogy. 2004, 15: 153-160.
    [75] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification[J]. Trends in Food Science and Technology. 1996, 7: 120-125.
    [76] Wu W.U., Hettiarachchy N.S., Qi M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration[J]. Journal of American Oil Chemist’s Society. 1998, 75: 845-850.
    [77] Vioque J., Sanchez-Vioque R., Clemente A., et al. Partial hydrolysed rapeseed protein isolates with improved functional properties[J]. Journal of American Oil Chemist’s Society. 2000, 77: 447-450.
    [78] Mahmoud M.I. Physicochemical and functional properties of protein hydrolysates in nutritional products[J]. Food Technology. 1994, 48(10): 89-95.
    [79] Sook Y.K. Functional properrties of proteolytic enzyme modified soy protein isolates[J]. Journal of Agricultural and Food Chemistry. 1990, 38(3): 651-656.
    [80] Michel L., Jacques F., Michel P., et al. Protein recovery from veal bones by enzymatic hydrolysis[J]. Journal of Food Science. 1995, 60(5): 949-958.
    [81] Horiuchi T., Fukushima D., Sugimoto H. Studies on enzyme modified proteins as foaming agents; effect of structure on foam stability. Food chemistry[J]. 1978, 3:35-42.
    [82] 王璋.食品蛋白质的酶法改性[J].无锡轻工业学院学报.1989, 4: 88-95.
    [83] Lee J.W., Lopez A. Modification of plant proteins by immobilized proteases[J]. CRC Food Science & Nutrition.1984, 21:289-322.
    [84] Ferreira S.H, Bartet D.C, Greene L.J. Isolation of bradykinin-potentiating peptides from bothops jararaca venom[J]. Biochemistry. 1970, 9: 2583-2590.
    [85] Pihlanto-Leppala A., Koskinen P., Piilola K., et al. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characteriza- tion of active peptides[J]. Journal of Dairy Research. 2000, 67: 53-64.
    [86] Yano S., Suzuki K., Funatsu G. Isolation from a thermolysin peptides with angiotensin I-converting enzyme inhibitory activity[J]. Bioscience Biotechnology and Biochemistry. 1996, 60(4): 661-663.
    [87] Mahmoud M.I., Malone W., Corolle C.T. Enzymatic hydrolysis of casein: effect of degree of hydrolysis on antigenicity and physical properties[J]. Journal of Food Science. 1992, 57(5): 1223-1229.
    [88] William J.L., Steven D.B. Enzymatic production of protein hydrolysates for food use[J]. Food Technology. 1994, 48(10): 68-71.
    [89] Diniz F.M., Martin A.M. Effects of the extent of enzymatic hydrolysis on functional properties of shark protein hydrolysate[J]. Lebensmittel-Wissenschaft und- Technologie. 1997, 30(3): 266-272.
    [90] Jany K D. Studies on the digestive enzymes of the stomachless bonefish Carass- ius auratus gibelio (Bloch)[J]. Endopeptidases. Comp Biochem Physiol, 1976, 53: 31-38.
    [91] Rojas G.C.R., Ronnestad I. Assimilation of dietary free amino acids, peptides and protein in post-larval Atlantic halibut (Hippoglossus hippoglossus) [J]. Marine Biology. 2003, 142: 4, 801-808.
    [92] Zhao X.T., McCamish M.A. Intestine transit and absorption of soy protein in dogs depend on load and degree of protein hydrolysis[J]. Journal of Nutrition. 1997, 12: 2350-2356.
    [93] Antoine H.S. Efficiency of enteral nitrogen support in surgical patients: small peptides v non-degraded proteins[J]. Gut, 1990, 31(11): 1277- 1283.
    [94] Fiat A.M., Migliore-Samour D., Jollès P., et al. Biologically active peptides from milk protein with emphasis on two examples concerning antithombotic and immunomodulating activities[J]. Journal of Dairy Science. 1993, 76: 300-310.
    [95] Gill H.S., Dohll F., Rutherfurd K. J., et al. Immunoregulatory peptides in bovine milk[J]. British Journal of Nutrition. 2000, 84: 111-117.
    [96] Kayser H., Meisel H. Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins[J]. FEBS Letter. 1996, 383: 18-20.
    [97] Otani H., Hata I. Inhibition of proliferative responses of mouse spleen lymphocytes and rabbit Peyer's patch cells by bovine milk casein and their digests[J]. Journal of Dairy Research. 1995, 62: 339-438.
    [98] Miyoshi S., Ishikawa H., Kaneko T., et al. Structures and activity of angiotensin I-converting enzyme inhibitors in an α-zein hydrolysate[J]. Agricultural and Biological Chemistry. 1991, 55(5): 1313-1318.
    [99] Yano S., Suzuki K., Funatsu G. Isolation from a thermolysin peptides with angiotensin I-converting enzyme inhibitory activity[J]. Bioscience Biotechnology and Biochemistry. 1996, 60(4): 661-663.
    [100] Kirimural J., Shimizu A., Kimizuka A., et al. The contribution of peptides and amino acids to the taste of food stuffs[J]. Journal of Agricultural and Food Chemistry. 1969, 17(4): 689-695.
    [101] Guérard F., Dufossé L., Broise D.L., et al. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using alcalase[J]. Journal of Molecular Catalysis B: Enzyme. 2001, 11: 1051-1059.
    [102] Silvestre M.P.C. Review of methods for the analysis of protein hydrolysis[J]. Food Chemistry. 1997, 60(2): 263-271.
    [103] Villanueva A., Vioque J., Sanchez-Vioque R., et al. Peptide characteristics of sunflower protein hydrolysates[J]. Journal of American Oil Chemist’s Society. 1999, 76: 1455-1460
    [104] Vioque J., Sanchez-Vioque R., Clemente A., et al. Partially hydrolyzed rapseed protein isolates with improved functional properties[J]. Journal of American Oil Chemist’s Society. 2000, 77: 447-450.
    [105] Kristinsson H.G., Rasco B.A. Fish protein hydrolysates: production, biochemical, and functional properties[J]. Critical Review in Food Science and Nutrition. 2000, 40(1): 43-81.
    [106] Van Beresteijn E.C., Peeters R.A., Kaper J., et al. Molecular mass distribution, immunological properties and nutritive value of whey protein hydrolysates[J]. Journal of Food Protection. 1994, 57: 619-625.
    [107] Clemente A., Chambers S.J. Development and production of hypoallergenic protein hydrolysates for use in infant formulas[J]. Food Allergy Intoler. 2000, 1: 175-190.
    [108] 中国轻工业联合会. 广东省食品饮料工业产业竞争力研究报告. 2003: 176.
    [109] 齐兵建,苏东民.小麦粉品质改良与专用粉生产[M].北京:中国商业出版社,2000, p12-13.
    [110] Bailey C.H. (1941). A translation of Beccari’s lecture ‘concerning grain’ (1728). Cereal Chemistry. 1941(18): 555–561.
    [111] 国家粮食局. 我国粮食加工企业统计资料. 北京: 2005.
    [112] Dayab L., Augustinab M.A., Bateybc I.L., et al. Wheat-gluten uses and industry needs[J]. Trends in Food Science & Technology. 2006, 17: 82–90.
    [113] Kasarda D.D., Carnlo J.M., Rousset M., et al. Advances in cereal science and technology[M]. Minnesota: St Paul AACC, 1976.
    [114] Gianibelli M.C., Larroque O.R., MacRitchie F., et al. Biochemical, genetic, and molecular characterization of wheat endosperm proteins[J]. Journal of Cereal Science(Online review). 2007: 1-20.
    [115] Grosch W., Wieser H. Redox reactions in wheat dough as affected by ascorbic acid[J]. Journal of Cereal Science. 1999, 29: 1-16.
    [116] Wieser H. Chemistry of gluten proteins. Food Microbiology. 2007, 24: 115-119.
    [117] Wrigley C.W. Giant proteins with flour power[J]. Nature. 1996, 381:738-739.
    [118] Bietz J.A., Wall J.S. Wheat gluten subunits: Molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel eletrophoresis[J]. Cereal Chemistry. 1972, 49: 416-430.
    [119] Payne P.I., Law C.N., Mudd E.E. Control by homoeologous group 1 chomosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm[J]. Theoretic and Applied Genetics. 1980, 58: 113-120.
    [120] Payne P.I, Lawrence G.J. Catalogue of alleles for the complex gene loci Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat[J]. Cereals Research Communication. 1983, 11: 29-35.
    [121] Kolster P., Krechting C.F., Van Gelder W.M.J. Quantification of individual high molecular weight subunits of wheat glutenin using SDS-PAGE and scanning denstitometry[J]. Journal of Cereal Science. 1992, 15: 49-61.
    [122] Gupta R.B., Shepherd K.W. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin. I. Variation and genetic control of the subunits in hexaploid wheats[J]. Theoretic and Applied Genetics. 1990a, 80: 65-74.
    [123] 王金水,张长付,卞科,等.我国小麦 HMW 麦谷蛋白亚基分布及组成. 郑州粮食学院学报. 2000, 21(1):18-21.
    [124] Shewry P.R., Halford N.G., Tatham A.S. High molecular weight subunits of wheat glutenin[J]. Journal of Cereal Science. 1992, 15: 105-120.
    [125] Shewry P.R., Tatham A.S. Disulphide bonds in wheat gluten proteins. Journal of Cereal Science. 1997, 25: 207-227.
    [126] Shewry P.R.S. Gilbert A.S., Tatham P.S., et al. The HMW subunits of wheat glutenin and their role in determining the functional properties of wheat gluten and dough. In: P. Colonna & S. Guilbert (Eds), Biopolymer Science: Food and Non Food Applications. Les Colloques de l’INRA. 1999. p13–18.
    [127] Sissons M.J., Bekes F., Skerritt J.H. Isolation and functionality testing of low molecular weight glutenin subunits[J]. Cereal Chemistry. 1998, 75: 30-36.
    [128] Wieser H., Bushuk W., MacRitchie F. The polymeric glutenins. In: Wrigley, C., Bekes, F., Bushuk, W. (Eds.), Gliadin and Glutenin: the Unique Balance of Wheat Quality. St. Paul. American Association of Cereal Chemistry. 2006, p213-240.
    [129] Belton P.S., Colquhoun I.J., Field J.M., et al. FTIR and NMR studies on the hydration of a high Mr subunits of glutenin[J]. International Journal of Biological Macromolecule. 1995, 17: 74-80.
    [130] Humphis A.D.L., McMaster T.J., Miles M.J., et al. Atomic force microscopy (AFM) study of interactions of HMW subunits of wheat glutenin[J]. Cereal Chemistry. 2000, 77:107-110.
    [131] Bietz J.A., Huebner F.R., Sanderson J.E., et al. Wheat gliadin homology revealed though N-terminal amino acid sequence analysis[J]. Cereal Chemistry. 1977, 54:1070-1083.
    [132] Bushuk W., Sapirstein H.D. Modified nomenclature for gliadins. Pages 454-458 in: Gluten Proteins 1990. W. Bushuk and R. Tkachuk, eds. American Association of Cereal Chemist’s: St. Paul, MN. 1991.
    [133] Kasarda D.D., Autran J.C., Lew E.J.-L., et al. N-terminal amino acid sequences of ω-gliadins and ω-secalins; Implications for the evolution of prolamin genes[J]. Biochim. Biophys. Acta 1983, 747:138-150.
    [134] Payne P.I., Holt L.M., Lawrence G.J., et al. The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm[J]. Qual. Plant. Food Hum. Nutr. 1982, 31:229-241.
    [135] Payne P.I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality[J]. Annual Review in Plant Physiology. 1987, 38: 141-153.
    [136] Singh N.K., Shepherd K.W. The structure and genetic control of a new class of disulphide-linked proteins in wheat endosperm[J]. Theoretic and Applied Genetics. 1988, 71: 79–92.
    [137] Pogna P.E., Autran J.C., Mellini F., et al. Chomosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength[J]. Journal of Cereal Science. 1990, 11: 15-34.
    [138] Fido R.J., Bekes F., Gras P.W., et al. Effect of α- ,β- ,γ- ,ω- gliadins on the dough mixing properties[J]. Bulletin of the Chugoku national. Agriculture Experiment Station A. 1997, 29: 33-69.
    [139] Wrigley C.W., Bushuk W., Gupta R. Nomenclature: establishing a common gluten language. in Gluten 96. C. W. Wrigley, ed. RACI: Melbourne, Australia. 1996. p403-407
    [140]曹劲松,王晓梦.食品营养强化剂[M].北京:中国轻工业出版社,2002
    [141] (日)渡边笃二著,周奇文等译.新蛋白食品知识[M].北京:中国食品出版社,1987.
    [142] 王叔全.谷朊粉应用概述[J].粮油食品科技,2000, 8(2): 5-7.
    [143] Bietz J.A.,Lookhart G.L. Properties and non-food potential of gluten[M]. Cereal Foods World. 1996, 41(5):376-382.
    [144] Lavelli V., Guerrieri N., Cerletti P. Controlled reduction study of modifications induced by gradual heating in gluten proteins[M]. Journal of Agricultural and Food Chemistry. 1996, 44: 2459–2555.
    [145] Guerrieri N., Alberti E., Lavelli V., et al. Use of spectroscopic and fluorescencetechniques to assess heat-induced molecular modifications of gluten[J]. Cereal Chemistry. 1996, 73: 368–374.
    [146] Weegels P.L., Verhoek J.A., de Groot A.M.G., et al. Effects on gluten of heating at different moisture contents. I. Changes in functional properties[J]. Journal of Cereal Science. 1994, 19: 31–38.
    [147] Weegels P.L., de Groot A.M.G., Verhoek J.A., et al. Effects on gluten of heating moisture contents. II. Changes in physico-chemical properties and secondary structure[J]. Journal of Cereal Science. 1994,19: 39–45.
    [148] Booth, M.R., Bottomley, R.C., Ellis, J.R.S., Malloch, G., Schofield, J.D. and Timms, M.F. The effects of heat on gluten physico-chemical properties and baking quality[J]. Annales de Technologie Agricole. 1980, 29: 399–408.
    [149] Singh H., MacRitchie F. Application of polymer science to properties of gluten[J]. Journal of Cereal Science. 2001, 33:231-243.
    [150] Hayta M., Schofield J.D. Dynamic rheological behavior of wheat glutens during heating[J]. Journal of Science of Food and Agriculture. 2005, 85:1992-1998.
    [151] Apichartsrangkoon A. Physicochemical properties of high pressure treated wheat gluten[J]. Food Chemistry. 1998, 63(2):215-220.
    [152] Mecham D.K. Changes in flour protein during mixing[J]. Cereal Science Today. 1968, 13:371–373.
    [153] Tsen C.C. Effect of oxidizing and reducing agents on changes of flour protein during mixing[J]. Cereal Chemistry. 1969, 46:435–442.
    [154] Tanaka K., Bushuk W. Changes in flour protein during dough mixing. III. Analytical results and mechanisms[J]. Cereal Chemistry. 1973, 50:605–612.
    [155] MacRitchie F. Mechanical degradation of gluten proteins during high speed mixing of doughs[J]. Journal of Polymer Science Symposium. 1975, 49:85–90.
    [156] Singh N.K., MacRitchie F. Controlled degradation as a tool for probing wheat protein structure. In ‘Wheat End-Use Properties: Wheat and Flour Characterization for Specific End-Uses’ (H. Salovaara, ed.) University of Helsinki, Helsinki, Finland. p321–326.
    [157] Grace G.E., Guo-Sui. Processes for the modification of wheat gluten[P]. USA: 6,113,975, 2000
    [158] Woodar J.C., Shord D.D.J. Preparation and Properties of Acid-solubilized gluten conformation[J]. Nutrition. 1973, 103-569.
    [159]Finly J.W. Deamidated gluten: A potential fortifier for fruit juices[J]. Journal of Food Science. 1975, 40:1283-1285.
    [160] Wu C.H., Nakai S., Powrie W.P. Preparation and properties of acid-solubilized gluten[J]. Journal of Agricultural and Food Chemistry. 1976, 24:504-510.
    [161] Kato A., Lee Y., Kobayashi K. Deamidation and functional properties of food proteins by the treatment with immobilized chymotrypsin at alkaline pH[J]. Journal of Food Science. 1989, 54:1345-1347.
    [162] Matsudomi N., Tanaka A., Kato A. Functional properties of deamidated gluten obtained by treating with chymotrypsin at alkali pH[J]. Agricultural and Biological Chemistry. 1986, 50(8): 1989-1994.
    [163] 史新慧,王兰,邹凤羽,等.小麦面筋蛋白改性的研究[J].郑州粮食学院学报. 2000, 1: 27-28.
    [164] 何慧如.碱处理面筋功能之探讨[J]. 食品科学.1981,19(2): 241-252.
    [165] Mimouni B., Raymond J., Merle-Desnoyers A.M., et al. Combined acid deamidation and enzymic hydrolysis for improvement of functional properties of wheat gluten[J]. Journal of Cereal Science. 1994, 21:153–165.
    [166] Bergthaller W., Thermeier H., Lindhauer M.G. Wheat gluten modification by alkaline treatment and succinylation in a semi-technical process. In: Plant proteins from European Crops[C]. Gueguen J., Popineau Y. eds 1998. pp292-296.
    [167] Bollecker S., Viroben G., Popineu Y., et al. Acid deamidation and enzymatic modification at pH10 of wheat gliadins:influence on their functional properties. Sciences des Aliments. 1990, 10: 343-356.
    [168] Kato A., Kazuhiko S., Kunihiko K. Improvement of the functional properties of insoluble gluten by protease digestion followed by dextran conjugation[J]. Journal of Agricultural and Food Chemistry. 1991, 39:1053-1056.
    [169] Fadil E. Improvement in the functional properties of gluten by protease digestion or acid hydrolysis followed by microbial transglutaminase treatment[J]. Journal of Agricultural and Food Chemistry. 1996, 44:3746-3750.
    [170] Singh H., MacRitchie F., Madl R., et al. Enzymatic modification of gluten to improve functional properties.Annual Meeting and Food Expo-Anaheim[C]. California, 2002.
    [171] Drago S.R., Gonzalez, R.J. Foaming properties of enzymatically hydrolysed wheat gluten[J]. Innovative Food Science and Emerging Technologies. 2001, 1:269-273.
    [172] Linares E., Larre C., Lemeste M., et al. Emulsifying and foaming properties of gluten hydrolysates with an increasing degree of hydrolysis: Role of soluble and insoluble fractions[J]. Cereal Chemistry. 2000, 77(4): 414-420.
    [173] Popineau Y., Blandine H., Larré C.,et al. Foaming and emulsifying properties of fractions of gluten peptides obtained by limited enzymatic hydrolysis and ultrafiltration[J]. Journal of Cereal Science. 2002, 35:327-335.
    [174] 赵冬艳,王金水,严中军.碱性蛋白酶水解小麦面筋蛋白乳化性研究[J].粮食与饲料工业. 2003, 8: 18-23.
    [1] Bailey C.H. A translation of Beccari’s lecture ‘concerning grain’[J] (1728). Cereal Chemistry. 1941, 18: 555–561.
    [2] Kasarda D.D., Carnlo J.M., Rousset M. Advances in cereal science and technology[M]. Minnesota: St Paul AACC, 1976.
    [3] Gianibelli M.C., Larroque O.R., MacRitchie F., et al. Biochemical, genetic, and molecular characterization of wheat endosperm proteins[J]. Journal of Cereal Science (Online review). 2007: 1-20.
    [4] Dayab L., Augustinab M.A., Bateybc I.L., et al. Wheat-gluten uses and industry needs[J]. Trends in Food Science & Technology. 2006,17: 82–90.
    [5] Bietz J.A., Lookhart G.L. Properties and non-food potential of gluten[J]. Ceareal Foods World. 1996, 41(5):376-382.
    [6] Vioque J., Sanchez-Vioque R., Clemente A., et al. Partial hydrolysed rapeseed protein isolates with improved functional properties[J]. Journal of American Oil Chemist’s Society. 2000, 77:447-450.
    [7] Lee K.A., Kim S.H. SSGE and DEE, new peptides isolated from a soy protein hydrolysate that inhibit platelet aggregation[J]. Food Chemistry. 2005, 90:389-393.
    [8] Kuehler C.A., Stine C.M. Effect of enzymatic hydrolysis on some functional properties of whey protein[J]. Journal of Food Science. 1974, 39:379-82.
    [9] Deeslie W.D., Cheryan M. Fractionation of soy protein hydrolysates using ultrafiltration membranes[J]. Journal of Food Science. 1991, 57:411-413.
    [10] Alder-Nissen J., Olsen H.S. The influence of peptide chain length on taste and functional properties of enzymatically modified soy protein. In: Pourel A. editor. Functionality and protein structure[M]. Washington, DC: American Chemical Society. 1979. p125.
    [11] Tkachuk R. Nitrogen to protein conversion factors for cereal and oilseed meals[J]. Cereal Chemistry. 1969, 46:419-423.
    [12] 郑铁松,龚院生.粮食与食品生化实验指导[M].郑州: 河南医科大学出版社,1996.
    [13] Kovacs M.I.P., Fu B.X., Woods S.M., et al. Thermal stability of wheat gluten protein: its effect on dough properties and noodle texture[J]. Journal of Cereal Science. 2004, 39: 9-19.
    [14] Laemmli L.I.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature. 1970, 227:680-685.
    [15] Jinbao Z., Guangtian L., Shuzhen Z. The separation of high and low molecular weight subunits of glutenin in wheat and their relations to bread making quality. In: Processing of 8th International Wheat Genetics Symptium[C]. Beijing, China, 1983, 715-718.
    [16] Tkachuk R., Mellish V.J. Wheat cultivar identi.cation by high voltage electrophoresis[J]. Annales de Technologie Agricole (Paris).1980, 29: 207–212.
    [17] Adler-Nissen J. Enzymic hydrolysis of food Proteins[M]. Backing, UK: Elsevier Applied Science Publishers. 1986. p9-56, 110-169.
    [18] 宁正祥.食品成分分析手册[M].北京:中国轻工业出版社,1998.
    [19]Batey I.L., Gupta R.B., MacRitchie F. Use of size-exclusion high-performance liquid chomatography in the study of wheat flour proteins: an improved chomatographic procedure[J]. Cereal Chemistry. 1991, 68:207-209.
    [20] Bildlngmeyer B.A., Cohen S.A., Tarvin T.L. et al. A new, rapid, high sensitivity analysis of amino acid in food type samples[J]. Journal of Assoiation Official Analatical Chemistry. 1987, 70(2):241-247.
    [21] Wieser H. Chemistry of gluten proteins[J]. Food Microbiology. 2007, 24: 115-119.
    [22] Day L., Augustin M.A., Batey I.L. et al. Wheat-gluten uses and industry needs[J]. Trends in Food Science & Technology. 2006, 17: 82-90.
    [23] Hoyle N.T., Merritt H. Quality of fish protein hydrolysates from herring[J]. Journal of Food Science. 1994, 59(1): 76-79,129.
    [24] Wrigley C.W. Giant proteins with flour power[J]. Nature. 1996, 381(6585), 738–739.
    [25] Gianibelli M.C., Larroque O.R., MacRitchie F., et al. Biochemical, genetic and molecular characterization of wheat glutenin and its component subunits[J]. Cereal Chemistry. 2001, 78(6):635–646.
    [26] Beckwith A.C., Nielsen H.C., Wall J.S. et al. Isolation and characterisation of a high-molecular-weight protein from wheat gliadin[J]. Cereal Chemistry. 1966, 43:14-28.
    [27] Field J.M., Shewry P.R., Miflin B.J. Solubilization and characterization of wheat gluten proteins[J]. Journal of Science of Food and Agriculture. 1983, 34:370-377.
    [28] MacRitchie F. Physicochemical properties of wheat proteins in relation to functionality[J]. Advance in Food Nutrition Research. 1992, 36:1-87.
    [29] 王金水,陈云川,张长付,等.小麦面团加工过程中麦谷蛋白变化研究[J].郑州粮食学院学报.1999, 20(2):12-14.
    [30] 王金水,司学芝,陈万义. 面团搅拌过程中麦谷蛋白大聚体的变化-Ⅰ麦谷蛋白大聚体亚基组分的变化[J]. 郑州工程学院学报.2004, 3: 9 -12.
    [31] Grosch W., Wieser H. Redox reactions in wheat dough as affected by ascorbic acid[J]. Journal of Cereal Science. 1999, 29: 1-16.
    [32] Surówka K., Zmudziński D., Surówka J. Enzymatic modification of extruded soy protein concentrates as a method of obtaining new functional food components[J]. Trends in Food Science & Technology. 2004, 15: 153-160.
    [33] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification[J]. Trends in Food Science and Technology. 1996, 7: 120-125.
    [34] Teresa S.M., Alberto C.M., Ernesto F.T., et al. Fish protein hydrolysates from gold carp (Carassius auratus): I. A study of hydrolysis parameters using response surface methodology[J]. Journal of the Science of Food and Agriculture. 2004, 10: 231-239.
    [35] González-Tello P., Camacho F., Juracdo E. Enzymatic hydrolysis of whey proteins. I. Kinetic models[J]. Biotechnolology and Bioengineering. 1994, 44: 523-528.
    [36] Moreno M.M.C., Cuadrado F.V. Enzymic hydrolysis of vegetable proteins: mechanism and kinetics[J]. Process Biochemistry. 1993, 28: 481-490.
    [37] Liaset B.L., Julshamn K., Espe M. Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymatic hydrolysis of salmon frames with Protamx[J]. Processing Biochmistry. 2003, 38: 1747-1759.
    [38] Berjakul S., Morrissey M.T. Protein hydrolysates from Pacific Whiting solid wastes[J]. Journal of Agricultural and Food Chemistry. 1997, 45: 3422-3430.
    [39] 相孝亮著. 黄文涛, 胡学智译. 酶应用手册[M]. 上海: 上海科学技术出版社.1993. p107-112.
    [40] Mullally M.M.O., Callaghan D.M., FitzGerald R.J. Eymogen activation in pancreatic endproteolytic preparation and influence on some whey protein characteristics[J]. Journal of Food Science. 1995, 60: 227-231.
    [41] Payne P.I., Corfield K.G. Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium[J]. Planta. 1979, 145:83-88.
    [42] Payne P.I., Holt L.M., Jarvis M.G., et al. Two dimensional fractionation of the endosperm proteins of bread wheat (Triticum aestivum): Biochemical and genetic studies[J]. Cereal Chemistry. 1985, 62:319-326.
    [43] Thompson S., Bishop D.H.L., Tatham A.S., et al. 1994. Exploring disulphide bond formation in a low molecular weight subunit of glutenin using a baculovius expression system. Pages 345-355.in: Gluten Proteins 1993. Association of Cereal Research: Detmold, Germany.
    [44] Masci S., Lafiandra D., Porceddu E., et al. D-glutenin subunits: N-terminal sequences and evidence for the presence of cysteine[J]. Cereal Chemistry. 1993, 70:581-585.
    [45] Bushuk W., Zillman R.R. Wheat cultivars identification by gliadin electrophoregrams. I. Apparatus method and nomenclature[J]. Canada Journal of Plant Science. 1978, 58:505-515.
    [46] Larroque O.R.; Bekes F. Rapid size-exclusion chomatography analysis of molecular size distribution for wheat endosperm protein[J]. Cereal Chemistry. 2000, 77: 451-453.
    [1] Payne P.I., Nightingale M.A.A., Krattiger F., et al. The relationship between HMW glutenin subunit composition and the breadmaking quality of British-grown wheat varieties[J]. Journal of Science of Food Agriculure. 1987, 40: 51-65.
    [2] Shewyr P.R., Halford N.G., TathamA.S. High molecular subunits of wheat glutenin[J]. Journal of Cereal Science. 1992, 15: 105-120.
    [3] Bietz, J.A., Lookhart, G.L. Properties and non-food potential of gluten[J]. Cereal Foods World. 1996, 41: 376-382.
    [4] Lens J.P., Mulder W.J., Kolster P. Modification of wheat gluten for nonfood application[J]. Cereal Foods World. 1999, 44: 5-9.
    [5] Howell N., Bristow E., Copeland E., Friedli G.-L. Interaction of deamidated soluble wheat protein with sodium alginate[J]. Food Hydrocolloids. 1998, 12: 317-324.
    [6] Weegels P.L., Degroot A.M.G., Verhoek J.A., et al. Effect on gluten of heating at different moisture contents. II. Changes in functional properties[J]. Journal of Cereal Science. 1994, 19: 39-47.
    [7] Surówka K., Zmudziński D., Surówka J. Enzymatic modification of extruded soy protein concentrates as a method of obtaining new functional food components[J]. Trends in Food Science & Technology. 2004, 15: 153-160.
    [8] Calderon de la Barca A.M., Ruiz-Salazar R.A., Jara-Marini M.E. Enzymatic hydrolysis and synthesis of soy protein to improve its amino acid composition and functional properties[J]. Journal of Food Science. 2000, 65: 246–253.
    [9] Lee K.A., Kim S.H. SSGE and DEE, new peptides isolated from a soy protein hydrolysate that inhibit platelet aggregation[J]. Food Chemistry. 2005, 90: 389-393.
    [10] Molina Ortiz S.E., Wagner J.R. Hydrolysates of native and modified soy protein isolates: structure characteristics, solubility and foaming properties. Food Research International[J]. 2002, 35: 511-518.
    [11] Analyz M.D., Elmore J.S., Mottram D.S. Comparison of aroma characteristics of acid-hydrolyzed and enzyme-hydrolyzed vegetable proteins produced from soy[J]. Journal of Agricultural and Food Chemistry. 1998, 46(12): 5225-5231.
    [12] Wu Y.E., Rake H.H., Gerard P.D. Development of a meat-like process flavoring from soybean-based enzyme-hydrolyzed vegetable protein[J]. Journal of Food Science. 2000, 65(7):1220-1227.
    [13] 陶慰孙.蛋白质分子基础[M]. 北京: 高等教育出版社,2000.
    [14] Pe?as E., Préstamo G., Polo F., et al. Enzymatic proteolysis, under high pressure of soybean whey: Analysis of peptides and the allergen Gly m1 in the hydrolysates[J]. Food Chemistry. 2006, 99: 569-573.
    [15] Dufour E., Hervé G., Haertle T. Hydrolysis of β-lactoglobulin by thermolysin and pepsin under high hydrostatic pressure[J]. Biopolymers. 1995, 35: 475–483.
    [16] Maynard F., Weingand A., Hau J. et al. Effects of highpressure treatment on the tryptic hydrolysis of bovine β-lactoglobulin AB[J]. International Dairy Journal. 1998, 8: 125–133.
    [17] Stapelfeldt H., Petersen P.H., Kristiansen K.R., et al. Effect of high hydrostatic pressure on enzymatic hydrolysis of β-lactoglobulin B by trypsin, thermolysin and pepsin[J]. Journal of Dairy Research. 1996, 6: 111–118.
    [18] Van Willige R.W.G., Fitzgerald R.J. Tryptic and chymotryptic hydrolysis of β-lactoglobulin A, B an AB at ambient and high pressure[J]. Milchwissenschaft. 1995, 50: 183–185.
    [19] 班玉凤, 朱海峰,关纳新. 热处理对大豆蛋白酶解性能的影响.现代食品科技.2005,21(1): 72-77.
    [20] 胡爱军,郑捷. 超声作用下蛋白酶解产生大豆的比较研究. 食品科技. 2005(3): 27-30.
    [21] 赵新淮,冯志彪.蛋白质水解度的测定[J].食品科学.1994, 11: 65-67.
    [22] 宁正祥.食品成分分析手册[M].北京:中国轻工业出版社,1998.
    [23] Beveridge T., Toma SJ., Nakai S. Determination of SH- and SS-groups in some food proteins using Ellman’s reagent[J]. Journal of Food Science. 1974, 39: 49-51.
    [24] Steel R.G.D., Torrie J.H. Principles and Procedures of Statistics[M]. A biometrical Apporach, 2nd ed. McGraw-Hill: New York. 1980.
    [25] Adler-Nissen J. Enzymatic hydrolysis of protein for increasing solubility[J]. Journal of Agricultural and Food Chemistry. 1976, 24: 1090-1093.
    [26] Drago S.R., González R.J. Formaing properties of enzymatically hydrolysed wheat gluten[J]. Innovative Food Science & Emerging Technologies. 2001, 1: 269-273.
    [27] Moh V. Enzymes technology in the meat and fish industries[J]. Process Biochemistry. 1980, 15: 18-21, 32.
    [28] 段振华, 张敏, 汤坚, 等. 酶法水解鳙鱼下脚料及其降苦机理研究[J]. 食品工业科技. 2003, 24(5): 19-22.
    [29] Opstvedt J., Miller R., Hardy R.W. et al. Heat induced changes in sulfhydryl groups and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout (Salmo gairdneri) [J]. Journal of Agricultural and Food Chemistry. 1984, 32: 929-935.
    [30] Li M., Lee T.C. Effect of cysteine on the molecular weight distribution and the disulfide cross-link of wheat flour proteins in extrudates[J]. Journal of Agricultural and Food Chemistry. 1998, 46: 846-853.
    [31] Friedman M., Grosjean O.K., Zahnley J.C. Inactivation of soya bean trypsin inhibitors by thiols[J]. Journal of the Science of Food and Agriculture. 1982, 33: 165-172.
    [32] Mason T.J.L., Paniwnyk J.P. The uses of ultrasound in food technology[J]. Ultrasound Sonochemistry. 1996, 3: 253 - 260.
    [33] 朱少娟,施用晖,乐国伟. 超声波对胰蛋白酶水解酪蛋白的影响[J].食品与生物技术学报.2005, 24(2): 50-54.
    [34] Singh H., MacRitchie F. Use of sonication to probe wheat gluten structure[J]. Cereal Chemistry. 2001, 78(5): 526-529.
    [35] Ng P.K.W., Xu C., Bushuk W. Model of glutenin structure based on farinograph and electrophoretic results[J]. Cereal Chemistry. 1992, 68:321-322.
    [36] Singh N.K., Donovan G.R., Batey I.L., et al. Use of sonication and size-exclusion HPLC in the study of wheat flour protein. I. Dissolution of total protein in unreduced form[J]. Cereal Chemistry. 1990, 67:150-161.
    [37] Mecham D.K. Changes in flour protein during mixing[J]. Cereal Science Today. 1968, 13: 371–373.
    [38] Tsen C.C. Effect of oxidizing and reducing agents on changes of flour protein duringmixing[J]. Cereal Chemistry. 1969, 46: 435–442.
    [39] Tanaka K., Bushuk W. Changes in flour protein during dough mixing. III. Analytical results and mechanisms[J]. Cereal Chemistry. 1973, 50: 605–612.
    [40] MacRitchie F. Mechanical degradation of gluten proteins during high speed mixing of doughs[J]. Journal of Polymer Science Symposium. 1975, 49: 85–90.
    [41] 康立宁,魏益民.大豆蛋白及其组织化技术[J].食品科学.2004, 25(增刊): 112-116.
    [42]赵学伟, 魏益民, 张波. 挤压对小米蛋白溶解性和分子量的影响[J]. 中国粮油学报. 2006,21(2): 38-43.
    [43] 孟凡友, 李承刚, 王立, 等. 挤压对米糠蛋白功能特性的影响[J]. 粮油加工. 2006(11): 68-71.
    [44] Li M., Lee T. Effect of extrusion temperature on solubility and molecular weight distribution of wheat proteins[J]. Journal of Agricultural and Food Chemistry. 1996, 44:763 –768.
    [45] Li M., Lee T. Relationship of the extrusion temperature and the solubility and disulfide bond distribution of wheat proteins[J]. Journal of Agricultural and Food Chemistry. 1997, 45: 2711 –2717.
    [46] Koh B.K. Effect of cysteine on free radical production and protein modification in extruded wheat flour[J]. Cereal Chemistry. 1996, 73 (1): 115-122.
    [47] Hamm R., Hofmann K. Changes in the sulphydryl and disulfide groups in beef muscle proteins during heating[J]. Nature. 1965, 18: 1269-1271.
    [48] Opstvedt J., Miller R., Hardy R.W. Heat induced changes in sulfhydryl groups and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout (Salmo gairdneri) [J]. Journal of Agricultural and Food Chemistry. 1984, 32: 929-935.
    [49] Shewry P.R., Tatham A.S. Disulphide bonds in sequences[J]. Journal of Cereal Science. 1997, 25: 207–227.
    [50] Schofield J.D. Wheat proteins: structure and functionality in milling and breadmaking. In ‘Wheat production, properties and quality’(ed. W Bushuk and V F Rasper), Blackie Academic and Professional,UK, pp73-106.
    [1] Lahl W.J., Grindstaff D.A. Spices and seasongings: Hydrolyzed Proteins’ in Proceedings of the 6th SIFST Symposium on Food Ingredients-Applications, Status and Safety, p51-65. Singapore, 27-29 April 1989, Singapore Institute of Food Science and Technology.
    [2] Clemente A., Vioque J., Mailan F. Vegetable protein hydrolysates[J]. Nutricion y Obesidad. 1999, 2: 289-296.
    [3] Fox P.F. Morrisey P.A., Mulvihill D.M. Chemical and Enzymatic modification of food proteins. In: Developments in Food Proteins[M]. Hudson B.J., ed. P1-60. Applied Science Publisher Inc. New Jersey.
    [4] Moreno M.C.M., Cuadrado V.F. Enzymatic hydrolysis of vegetable proteins: mechanism and kinetics[J]. Process Biochemistry. 1993, 28 (7): 481-490.
    [5] Shahidi F., Han X.Q., Synowiecki J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus)[J]. Food Chemistry. 1995, 53(3): 285-293.
    [6] Perea A., Uglade U. Continuous hydrolysis of whey proteins in a membrane recycle reactor[J]. Enzyme and Microbial Technology. 1996, 18: 29-34.
    [7] Gonzalez-Tello P., Camacho F., Jurado E., et al. Enzymatic hydrolysis of whey proteins: I. Kinetic models[J]. Biotechnology and Bioengineering. 1994, 44: 523-528.
    [8] Webber B.A., Nielsen S.S. Isolation and partial characterization of a native serine-type protease inhibitor from bovine milk[J]. Journal of Dairy Science. 1991, 74: 764-774.
    [9] Hsu H.W., Vavak D.L., Satterlee L.D., et al. A multienzyme technique for estimating protein digestibility[J]. Journal of Food Science. 1977, 42: 1269-1273.
    [10] Hardwick J.E., Glatz C.E. Enzymatic hydrolysis of corn gluten proteins[C]. Annual Biological and Chemical Engineering Symp. 1989, p10-20.
    [11] Ozbek B., Loviett R.W. Solubilisation studies on the enzymatic hydrolysis of wheat gluten[C]. Ninth European Congress on Biotechnology, July 11-15, Brussels July, ISBN 80521-1-5. 1999.
    [12] Adler-Nissen J. A review of food protein hydrolysis—speci.c areas. In: Enzymatic Hydrolysis of Food Proteins[M]. New York: Elsevier Applied Science. 1986, p57-109.
    [13] Cheison S.C., Wang Z., Xu S.Y. Hydrolysis of whey protein isolate in a tangential flow filter membrane reactor: I. Characterisation of permeate flux and product recovery by multivariate data analysis[J]. Journal of Membrane Science. 2006, 283(1-2): 45-56.
    [14] Cheison S.C., Wang Z., Xu S.Y. Multivariate strategy in screening of enzymes to be used for whey protein hydrolysis in an enzymatic membrane reactor[J]. International Dairy Journal. Doi: 10.1016/j.idairyj.2006.05.006.
    [15] Steel R.G.D., Torrie J.H. Principles and Procedures of Statistics[M]. A biometrical Apporach, 2nd ed. McGraw-Hill: New York. 1980.
    [16] Palmer T. Understanding Enzymes[M]. Elis Horwood Limited, Chischester. 1984, p89-91.
    [1] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification[J]. Trends in Food Science and Technology. 1996, 7120-125.
    [2] Mahmoud M.I., Malone W., Corolle C.T. Enzymatic hydrolysis of casein: effect of degree of hydrolysis on antigenicity and physical properties[J]. Journal of Food Science. 1992, 57(5): 1223-1229.
    [3] William J.L., Steven D.B. Enzymatic production of protein hydrolysates for food use[J]. Food Technology. 1994, 48(10): 68-71.
    [4] Shutov A.D., Pineda J., Senyuk V.I., et al. Action of trypsin on glycinin[J]. European Journal of Biochemistry. 1991, 199(3): 539-543.
    [5] Kamata Y.S., Otsuka S., Shibasak K. Limited proteolysis of soybean β-conglycinin[J]. Agricultural and Biological Chemistry. 1982, 46(11): 2829-2834.
    [6] Deeslie W.D., Cheryan M. Fractionation of soy protein hydrolysates using ultrafiltration membranes[J]. Journal of Food Science. 1991(57): 411-413.
    [7] Alder-Nissen J., Olsen H.S. The influence of peptide chain length on taste and functional properties of enzymatically modified soy protein. In: Pourel A. editor. Functionality and protein structure[M]. Washington, DC: American Chemical Society. 1979, p125.
    [8] 毛忠贵. 生物工业下游技术[M]. 北京: 中国轻工出版社, 1999, p192~194.
    [9] Jeon, Y.J., Byun, H.G., Kim, S.K. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes[J]. Process Biochemistry. 1999, 35: 471 – 478.
    [10] Chobot J.M., Sitohy M.S., Whitaker J.R. Soubility and emulsifying properties of casein modified enzymatically by Staphylococcus aureas V8 protease[J]. Journal of Agricultural and Food Chemistry. 1988, 36: 220 - 224.
    [11] Porter M.C., Michaels A.S. Applications of membrane ultrafiltration to food processing. Presented at the 3rd International Congress of Food Science and Technology[C], Washington, D.C., Aug 9-14, 1970.
    [12] Okubo K., Waldrop A.B., Iacobucci G.A., et al. Preparation of low-phytate soybean protein isolate and concentrate by ultrafiltration[J]. Cereal Chemistry. 1975, 52: 263-271.
    [13] Goodnight K.C., Hartman G.H., Marquardt R.F. Aqueous purified soy protein and beverage[P]. US: 3 995 071, 1976.
    [14] Lawhon J.T., Hensley D.W., Mulsow D., et al. Optimization of protein isolate production from soy flour using industrial membrane systems[J]. Journal of Food Science. 1978, 43: 361-364.
    [15] Martin M., Denis I., Francois L., et al. Production of soy protein concentrates using a combination of electroacidification and ultrafiltration[J]. Journal of Agricultural and Food Chemistry. 2004, 52: 6991-6996.
    [16] Omosaiye O., Cheryan M., Mathews E. Removal of oligosaccharides from soybean water extracts by ultrafiltration[J]. Journal of Food Science. 1978, 43: 354-360.
    [17] Nichols D.J., Cheryan M. Production of soy isolates by ultrafiltration: factors affecting yield and composition[J]. Journal of Food Science. 1981, 46: 367-372.
    [18] Kumar N.S.K., Yea M.K., Cheryan M. Soy protein concentrates by ultrafiltration[J]. Journal of Food Science. 2003, 68: 2278-2283.
    [19] Legay C., Popineau F., Berot S., et al. Nahung. 1997, 41: 201-206.
    [20] Popineau Y., Popineau F., Evon P., et al. Nahung. 1999, 43: 361-365.
    [21] Berot S., Popineau Y., Compoint J.-P., et al. Ultrafiltration to fractionate wheat polypeptides[J]. Journal of Chomatography B. 2001, 753: 29–35.
    [22] Lewis M.J. Ultrafiltration. In: Separation processes in food and biotechnology industries: principles and applications[M]. Grandison A.S. Eds. Cambridge, 1996: Woodhead Pub. Ltd. p 97-139.
    [23] 张玉忠,郑领英,高从堦. 液体分离膜技术及应用[M]. 北京: 化学工业出版社. 2004.
    [24] Laemmli L.I.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature. 1970, 227: 680-685.
    [25] Vázques O.F., Caire G., Higuera I., et al. High performance liquid chomatographic determination of free amino acids in shimp[J]. Journal of Chomatography. 1995, 18: 2059-2068.
    [26] Clark W.M., Bansal A., Sontakke M., et al. Protein adsorption and fouling in ceramic ultrafiltration membranes[J]. Journal Membrane Science. 1991, 55:21–38.
    [27] Marshall A.D., Munro P.A., Tragardh G. The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: a literature review[J]. Desalinisation. 1993, 91:65–108.
    [28] Taddei C., Daufin G., Aimar P., et al. Role of some whey components on mass transfer in ultrafiltration[J]. Biotechnology and Bioengineering. 1989, 34:171–9.
    [29] D’Alvise N., Lesueur–Lambert C., Fertin B., et al. Hydrolysis and large scale ultrafiltration study of alfalfa protein concentrate enzymatic hydrolysate[J]. Enzyme and Microbial Technology. 2000, 27: 286–294.
    [30] 王湛.膜分离技术基础[M]. 北京: 化学工业出版社,2000.
    [31] Meng G.T., Ma C.Y. Fourier-transform infrared spectroscopic study of globulin from Phaseolus angularis (red bean) [J]. International Journal of Biological Macromolecules. 2001, 29: 287-294.
    [32] 伍越寰. 有机结构分析[M]. 合肥: 中国科技大学出版社,1993.
    [33] 唐传核,杨晓泉,陈中,等.MTGase 聚合大豆蛋白及其改性机理注(Ⅲ) [J]. 中国粮油学报. 2004,19(3):42-46.
    [34] 谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用[M].北京: 科学出版社, 2001.
    [1] Zdzistaw E.S. Chemical & Functional Properties of Food Proteins[M]. Technomic Publishing Co. Inc. USA. 2003.
    [2] Payne P.I., Nightingale M.A., Krattiger A.F., et al. The relationship between HMW glutenin subunit composition and the breadmaking quality of british-grown wheat varieties[J]. Journal of the Science of Food and Agriculture. 1987, 40: 51-65.
    [3] Shewry P.R., Halford N.G., Tatham A.S. High molecular subunits of wheat glutenin[J]. Journal of Cereal Science. 1992, 15:105-120.
    [4] Cook R.B., Shulman M.L. Method of making gluten colloidal dispersions and edible coatings thereform[P]. US: 5705207, 1998.
    [5] Gennadios A., Weller C.L. Edible films and coatings from wheat and corn proteins[J]. Food Technology. 1990, 44: 63-67.
    [6] Gontard N., Guilbert S., Cuq J.L. Edible wheat gluten films: influence of the main process variables on film. Properties using response surface methodology[J]. Journal of Food Science. 1992, 57: 190-195.
    [7] Gontard N., Ring S. Edible wheat gluten film: influence of water content on glass transition temperature[J]. Journal of Agricultural and Food Chemistry. 1996, 44(11): 3474-3479.
    [8] Larré C., Desserme C., Barbot J., et al. Properties of deamidated gluten films enzymatically cross-linked[J]. Journal of Agricultural and Food Chemistry. 2000, 48: 5444-5449.
    [9] Berkwith A.C., Wall J.S., Dimler R.J. Amide groups as interaction sites in wheat gluten proteins[J]. Archives in Biochemistry Biophysics. 1963, 103: 319-330.
    [10] Krull L.H., Wall J.S., Zobel H., et al. Synthetic polypeptides containing side-chain amide groups[J]. Biochemistry. 1996, 5: 1521-1527.
    [11] Bietz J.A., Lookhart G.L. Properties and non-food potential of gluten[J]. Cereal Chemistry. 1996, 41(5): 376-382.
    [12] Lens J.P., Mulder W.J., Kolster P. Modification of wheat gluten for nonfood applications[J]. Cereal Foods World. 1999, 44: 5-9.
    [13] Apichartsrangkoon A., Ledward D.A., Bell A.E. et al. Physiochemical properties of high pressure treated wheat gluten[J]. Food Chemistry. 1998, 63(2): 215-220.
    [14] Haschemeyer R.H., Haschemeyer A.E. Proteins: A guide to study by physical and chemical methods[M]. New York: John Wiley and Sons.1973.
    [15] Molina Ortiz S.E., A?ón M.C. Analysis of products, mechanisms of reaction, and some functional properties of soy protein hydrolysates[J]. Journal of American Oil Chemist Socaety. 2002, 77: 1293-1301.
    [16] Surówka K., Zmudzinski D., Surówka J. Enzymic modification of extruded soy protein concentrates as a method of obtaining new functional food components[J]. Trends in Food Science & Technology. 2004, 15(3-4):153-160.
    [17] Wall J.S., Friedman M., Krull L.H., et al. Chemical modification wheat gluten proteins and related model systems[J]. Journal of Polymer Science: Part C. 1968, 24:147.
    [18] Larré C., Schwenke K.D. Modifications chemiques et enzymatique des proteins végétales[M]. Paris: Technique et Documentation lavoisier.1996.
    [19] Panyam D., Arun K. Enhancing the functionality of food protein by enzymatic modification[J]. Trends in Food Science and Technology. 1996, 7(4):120-125.
    [20] Batey I. Enzymatic solubilization of wheat gluten[J]. Journal of Applied Biochemistry. 1985, 7: 423-429.
    [21] Kato A., Shimokawa K., Kobayashi K. Improvement of the functional properties of insoluble gluten by pronase digestion followed by dextran conjugation[J]. Journal of Agricultural and Food Chemistry. 1991, 39: 1053-1056.
    [22] Mimouni B., Raymond J., Merle-Desnoyers A.M., et al. Combined acid deamidation and enzymic hydrolysis for improvement of the functional properties of wheat gluten[J]. Journal of Cereal Science. 1994, 21: 153-165.
    [23] Babiker E.F., Fujisawa N., Matsudomi N., et al. Improvement in the functional properties of gluten by protease digestion or acid hydrolysis followed by microbial transglutaminase treatment[J]. Journal of Agricultural and Food Chemistry. 1996, 44:3746-3750.
    [24] Linares E., Larre C., Le M.M., et al. Emulsifying and foaming properties of gluten hydrolysates with an increasing degree of hydrolysis: role of soluble and insoluble fractions[J]. Cereal Chemistry. 2000, 77:414-420.
    [25] Popineau Y., Masson P., Pineau F., et al. Limited hydrolysis of a gamma-type gliadin by chymotrysin: isolation of specific sequence domains[J]. Lebensmittel Wissenschaft und Technologie. 1990, 28: 474-480.
    [26] Legay C., Popineau Y., Berot S., et al. Comparative study of enzymatic hydrolysis of α/β- and γ-gliadins[J]. Nahung. 1997, 41: 201-207.
    [27] Popineau Y., Pineau F. Emulsifying properties of wheat gliadins and gliadin peptides. In’Food proteins, structure and functionality’(K. D. Schwenke and R. Mothes, eds)[M], VCH, Weinheim. 1993, p290-296.
    [28] Popineau Y., Pineau F., Evon P., et al. Influence of pH and salt concentration on the emulsifying properties of native wheat gliadins and their chymotryptic hydrolysates[J]. Nahung. 1999, 43: 361-367.
    [29] Berot S., Chaufer B., Basso Y., et al. Fractionation of gliadin hydrolysates in water-ethanol by ultrafiltration with modified or unmodified membranes[J]. Biotechnology and Bioengineering. 1999, 62: 649-658.
    [30] Berot S., Popineau Y., Compoint J.P., et al. Ultrafiltration to fractionate wheat polypeptides[J]. Journal of Chomatography B. 2001, 753: 29-35.
    [31] Popineau Y., Huchet B., Larre C., et al. Foaming and emulsifying properties of fractions of gluten peptides obtained by limited enzymatic hydrolysis and ultrafiltration[J]. Journal of cereal Science. 2002, 35: 327-335.
    [32] Deeslie W.D., Cheryan M. Fractionation of soy protein hydrolysates using ultrafiltration memebranes[J]. Journal of Food Science. 1991, 57: 411-413.
    [33] Pearce K.N., Kinsella J.E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique[J]. Journal of Agriculture and Food Chemistry. 1978, 26: 716-723.
    [34] Schacterle G.R., Pollack R.L. A simplified method for a quantitative assay of small amounts of protein in biological material[J]. Analytical Biochemistry. 1973, 51: 654–655.
    [35] Kato Y., Aoki T., Kato N., et al. Modification of ovalbumin with glucose 6-phosphate by amino-carbonyl reaction: Improvement of protein heat stability and emulsifying activity[J]. Journal of Agriculture and Food Chemistry. 1995, 43: 301-305.
    [36] Bernardi Don L.S., Pilosof A.M.R., Bartholomal G.B. Enzymatic modification of soy protein concentrates by fungal and bacterial proteases[J]. Journal of the American Oil Chemists Society. 1991, 68: 102-105.
    [37] Quinn J.R., Paton D.A. Practical measurement of water hydration capacity of protein materials[J]. Cereal Chemistry. 1979, 56(1): 38-40.
    [38] Alizadeh-Pasdar N., Li-Chan E.C. Comparison of protein surface hydrophobicity measured at various pH values using thee different fluorescent probes[J]. Journal of Agriculture and Food Chemistry. 2000, 48(2): 328-334.
    [39] Molina Ortiz S.E., A?ón M.C. Analysis of products, mechanism of reaction, and some functional properties of soy protein hydrolysates[J]. Journal of American Oil Chemist’s Socety. 2000, 77(12): 1293-1301.
    [40] Rao A., Shallo H.E., Ericson A.P. Characterization of soy protein concentrate produced by membrane ultrafiltration[J]. Journal of Food Science. 2002, 67(4):1412-1418.
    [41] Steel P.R., Torrie J.H. Principles and procedures of statistics[M]. In: McGraw-Hill. (Eds.), A Biometrical Approach. New York. 1980.
    [42] Chobert J.M., Bertrand-Harb C., Nicolas M.G. Journal of Agricultural and Food Chemistry. 1988, 36: 883-886
    [43] Chobert J.M., Bertrand-Harb C., Delgalarando M. Journal of Food Biochemistry. 1989, 13: 335-339.
    [44] Turgeon S.L., Gauther S.F., Paquin P. Emulsifying property of whey peptide fractions as a function of pH and ionic strength[J]. Journal of Food Science. 1992, 57:601-604.
    [45] Mahmoud M.I., Malone W.T., Cordle C.T. Journal of Food Science. 1992, 57: 1223-1229.
    [46] Adler-Nissen J., Olsen H.S. In: Functionality and Protein Structure[M]. A Pour-EL (ed.), American Chemistry Symposium Series 92. Washington DC. 1979, p125-146.
    [47] Chobert J.M., Sitohy M.Z., Whitaker J.R. Journal of Agricultural and Food Chemistry. 1988, 36:220-225.
    [48] Chobert J.M., Bertrand-Harb C., Delgalarando M., et al. Journal of Food Biochemistry. 1989, 13: 335-339.
    [49] Barbel L., Gerd K. Physico-chemical and functional properties of whey protein as affected by limited papain proteolysis and selective ultrafiltration[J]. International Dairy Journal. 1996, 6:13-31.
    [50] Ipsen R., Otte J., Sharma R., et al. Effect of limited hydrolysis on the interfacial rheology and foaming properties of (-lactoglobulin A) [J]. Colloids and Surfaces B: Biointerfaces. 2001(21):173–178.
    [51] Doxastakis G.; Kiosseoglou V. In: Novel Macromolecules in Food Systems[M]. Elsevier Science. 2000, p181-215.
    [52] Chavan U.D., Nckenzie D.B., Shahidi F. Functional properties of protein isolates from beach pea (Lathyrus Maritimus L.) [J]. Food Chemistry. 2001, 74(2):177-187.
    [53] Adebowale K.O., Lawal O.S. Foaming, gelation and electrophoretic characteristics of mucuna bean (mucuna pruriens) protein concentrates[J]. Food Chemistry. 2003, 83(2):237-246.
    [54] Were L., Hettiarachchy N.S., Kalapathy U. Modified soy proteins with improved foaming and water hydration properties[J]. Journal of Food Science. 1997, 62(4):821-823,850.
    [55] Kim S.Y., Park P.S.W., Rhee K.C. Functional properties of proteolytic enzyme modified soy protein[J]. Journal of Agricultural and Food Chemistry. 1990, 36(3):651-656.
    [56] Sánchez A.C., Burgos J. Thermal gelation of trypsin hydrolysates of sunflower proteins: effect of pH, protein concentration, and hydrolysis degree[J]. Journal of Agricultural and Food Chemistry.1996, 44(12):3773-3777.
    [57] Oshodi A.A., Ojokan E.B. Effect of salts on some of the functional properties of bovine plasma protein concentrate[J]. Food Chemistry. 1997, 59: 333-338.
    [58] Fu B.X., Sapirstein H.D., Bushuk W. Salt-induced disaggregation/solubilization of gliadin and glutenin proteins in water[J]. Journal of Cereal Science. 1996, 24: 241-246.
    [59] Ochiai K., Kanata Y., Shibasaki K. Effect of tryptic digestion on emulsifying properties of soy protein[J]. Agricultural and Biological Chemistry. 1982, 46:91-96.
    [60] Alder-Nissen J. Enzymatic hydrolysis of soy protein for nutritional fortification of low pH food[J]. Annual Nutrition Alimentation. 1978, 32: 205-216.
    [61] Lee S.W., Shimuzu M., Kaminogawa S., et al. Emulsifying properties of peptides obtained from the hydrolysis of β-casein. Agricultural and Biological Chemistry. 1987, 51:161-166.
    [62] Wu W.U., Hettiarachchy N.S., Qi M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration[J]. Journal of American Oil Chemist Society. 1998, 75(7):845-850.
    [63] Kato A.K., Komatsu K., Fujimoto K. Relationship between surface functional properties and Flexibility of proteins detected by the protease susceptibility[J]. Journal of Agricultural and Food Chemistry. 1985, 33(5):931-934.
    [64] Damodaran S. Interfaces, protein films and foams[J]. Advance in Food and Nutritional Research. 1990, 34:1-79.
    [65] Kuehler C.A., Stine C.M. Effect of enzymatic hydrolysis on some functional properties of whey protein[J]. Journal of Food Science. 1974, 39:379-382.
    [66] Adler-Nissen J. Enzymatic hydrolysis of food proteins[M]. Barking. UK: Elsevier Applied Science Publishers. 1986. p9-56, 110-169.
    [67] Puski G. Modification of functional properties of soy proteins by proteolytic enzyme treatment[J]. Cereal Chemistry. 1975, 52: 655-664.
    [68] Xie Y.R., Hettiarachchy N.S. Effect of xanthan gum on enhancing the foaming properties of soy protein isolate[J]. Journal of American Oil Chemist Society.1998, 75(6): 729-732.
    [69] Qi M., Hettiarachchy N.S., Kalapathy U. Solubility and emulsifying properties of soy protein isolates modified by pancreatin[J]. Journal of Food Science. 1997, 62(6): 1110-1115.
    [70] Chaplin V., Andrew A.T. Functional properties of peptides derived from casein proteolysis[J]. Journal of Dairy Research. 1989, 56:544-548.
    [71] 江志炜,沈蓓英,潘秋琴著.蛋白质加工技术[M].北京:化学工业出版社, p108-196.
    [72] Attenburrow G., Barnes D.J., Davies A.P., et al. Rheological properties of wheat gluten[J]. Journal of Cereal Science. 1990, 12:1–14.
    [73] Hibberd G.E., Parker N.S. Measurement of the fundamental rheological properties of wheat-flour doughs[J]. Cereal Chemistry. 1975, 52:1r–23r.
    [74] Cia M., Tozzi L., Lafiandra D. Relationship between flour protein composition determined by size-exclusion high-performance liquid chomatography and dough rheological parameters[J]. Cereal Chemistry. 1996, 73:346–351.
    [75] Renkema J.M.S., Hnabben J.H.M., van Vliet T. Gel formation by β-conglycinin and glycinin and their mixtures[J]. Food Hydrocolloids. 2001, 15:407-414.
    [76] Oakenfull D., Pearce J., Burley R.W. Protein gelation. In: Damadarm S. and Paraf A. eds. Food protein and their applications[M]. Marcel Dekker Inc., New York, 1997.
    [77] Ikeda S., Foegeding E.A., Hagiwara T. Rheological study on the fractal nature of the protein gel structure[J]. Langmuir. 1999, 15(25):8584-8589.
    [78] Tsumura K., Saita T., Kugimiya W., et al. Selective proteolysis of the glycinin and β-conglycinin fractions in a soy protein isolate by pepsin and papain with controlled pH and temperature[J]. Journal of Food Science. 2004, 69(5): C363-C367.
    [1] De Kruif C.G., Tuinier R. Polysaccharide protein interactions[J]. Food Hydrocolloids. 2001, 15: 555-563.
    [2] Dickinson E. Stability and rheological implications of electrostatic milk protein-polysaccharide interactions[J]. Trends in Food Science & Technology. 1998, 9: 347-354.
    [3] Maillard L.C. Action Des Acides Amines Sur Les Sucres:Formatieon Des Melaoidins Par Voie Methodique[J].Compt.Rend.1912,154: 66-68.
    [4] Hodge J.E. Chemistry of browning reactions in model systems[J]. Journal of Agricultural and Food Chemistry.1953, 1: 928-943.
    [5] Kato A., Minaki K., Kobayashi K. Improvement of emulsifying properties of egg white proteins by the attachment of polysaccharide though Maillard reaction in a dry state[J]. Journal of Agricultural and Food Chemistry. 1993, 41(4): 540-543.
    [6] Shu Y.W., Sahara S. Effect of the length of polysaccharide chains on the functional properties of the maillard-type lysozyme-polysaccharide conjugate[J]. Journal of Agricultural and Food Chemistry. 1996, 44: 2544-2548.
    [7] Nakamura S., Kato A., Kunihiko K. Enhanced antioxidative effect of ovalbumin due to covalent binding of polysaccharides[J]. Journal of Agricultural and Food Chemistry. 1992, 40(11): 2033-2037.
    [8] Diftis N., Diosseoglou V. Improvement of emulsifying properties of soybean protein isolate by conjugation with carboxymethy cellulose[J]. Food Chemistry. 2003, 81:1-6.
    [9] Kato A.; Sasaki Y.; Furuta R. Functional protein-polysaccharide conjugate prepared by controlled dry-heating of ovalbumin-dextran mixtures[J]. Agricultural and Biological Chemistry. 1990, 54(1):107-112.
    [10] Nakamura S., Kobayashi K., Kato A. Role of cCharge of lysozyme in the excellent emulsifying properties of Maillard-type lysozyme-polysaccharide conjugate[J]. Journal of Agricultural and Food Chemistry. 1994, 42: 268-269.
    [11] Kato A., Shimokawa K., Kobayashi K. Improvement of the functional propterties of insoluble gluten by pronase digestion followed by dextran conjugate[J]. Journal of Agricultural and Food Chemistry. 1991, 39:1053-1056.
    [12] Nakamura S., Kato A., Kobayashi K. New antimicrobial characteristics of lysozyme-dextran conjugate[J]. Journal of Agricultural and Food Chemistry. 1991, 39:647-650.
    [13] Francois C., Chobert J.M., Popineau Y., et al. Improvement of functional properties of b-lactoglobulin glycated though the Maillard reaction is related to the nature of the sugar[J]. International Dairy Journal. 2001, (11):145-152.
    [14] Chevalier F., Hobert J.M., Popineau Y., et al. Improvement of functional properties of β-lactoglobulin glycated though the Maillard reaction is related to the nature of the sugar [J]. International Dairy Journal. 2001, 11:145-152.
    [15] Martins S., Jongen W.M.F., van Boekel M.A. A review of Maillard reaction in food and implications to kinetic modeling [J]. Trend in Food Science and Technology. 2001, 11: 364-373.
    [16] Dickinson E., McClements D.J. Adbances in Food Colloids [M]. Blackic Academic and Professional. 1996.
    [17] Kobaysshi K.; Kato A. Developments in new functional food materials by hydridization of soy protein to polysaccharides [J]. Nutritional Science of Soy Protein.1992, 13(1):15-21.
    [18] Matsudomi N.; Inoue Y. Emulsion stabilization by Maillard-type covalent complex of plsama protein with galactomannan [J]. Journal of Food Science.1995, 60(2): 265-268.
    [19] 齐君茹. 蛋白-多糖共价复合物的制备及其功能特性的研究[D]. 广州:华南理工大学博士论文,2004.
    [20] Martinez K.D., Baeza R.I., Millan F., et al. Effect of limited hydrolysis of sunflower protein on the interactions with polysaccharides in foams[J]. Food Hydrocolloids. 2005, 19: 361–369.
    [21] Bernardi L.S., Pilosof A.M.R., Bartholomai G.B. Enzymatic modification of soy protein concentrates by fungal and bacterial proteases[J]. Journal of the American Oil Chemists’ Society. 1991, 68: 102–105.
    [22] Chobert J.M., Sitohy M.Z., Whitaker J.R. Solubility and emulsifying properties of caseins modified enzymatically by Staphylococcus aureus[J]. Protease. 1988, 36: 220–224.
    [23] Vioque J., Sanchez-Vioque R., Clemente A., et al. Partially hydrolyzed rapessed protein isolates with improved functional properties[J]. Journal of the American Oil’s Chemist Society. 2000, 77: 1–4.
    [24] Ipsen R., Otte J., Sharma R., et al. Effect of limited hydrolysis on the interfacial rheology and foaming properties of (-lactoglobulin A) [J]. Colloids and Surfaces B: Biointerfaces. 2001, 21: 173–178.
    [25] Karina D.M., Cecilio C.S., Victor P.R.H., et al. Effect of limited hydrolysis of soy protein on the interactions with polysaccharides at the air-water interface[J]. Food Hydrocolloids. 2007, 21: 813-822.
    [26] Brands C.M.J., van Boekel M.A.J.S. Kinetic modelling of reactions in heated disaccharide-casein systems [J]. Food Chemistry. 2003, 83: 13-26.
    [27] 冯 若,李化茂. 声化学极其应用[M]. 合肥:安徽科学技术出版社.1992, p23-26.
    [28] Haeggstrom E., Luukkala M. Ultrasound detection and identication of foreign bodies in food products[J]. Food Control. 1997, 1:1-6.
    [29] Morales F.J., van Boekel M.A.J.S. A study on advanced Maillard reaction in heated casein/sugar solutions: colour formation [J]. International Dairy Journal. 1998, 8: 907-915.
    [30] Bobitaille G., Ayers C. Effect of κ-casein glycosylation on heat stability of milk[J]. Food Research International. 1995, 28(1): 17-21.
    [1] Kinsella J.E. Functional properties of proteins in foods: a survey[J]. Critical Review in Food Science and Nutrition. 1976, 7: 219-280.
    [2] Damodaran S. Structure-Function Relationship of Food Proteins. In: Protein Functionality in Food Systems[C]. N.S. Hettiarchchy, G.R. Ziegler (Ed.). IFT Basic Symposium Series, Chicago, IL. 1994. p1-37.
    [3] Ma C.Y., Liu W.S., Kwok K.C., et al. Isolation and characterization of proteins from soymilk residues (Okara) [J]. Food Research Interational. 1996, 29 (8): 799-805.
    [4] Foegeding E.A., Jack P., Davis J.P., et al. Advances in modifying and understanding whey protein functionality[J]. Trends in Food Science & Technology. 2002, 13:151–159.
    [5] Adler-Nissen J. Enzymatic hydrolysis of proteins for increased solubility[J]. Journal of Agricultural and Food Chemistry. 1976, 24(6):1090–1093.
    [6] Lamsal B.P., Jung S., Johnson L.A. Rheological properties of soy protein hydrolysates obtained from limited enzymatic hydrolysis[J]. LWT. Online. doi:10.1016/j.lwt.2006.08.021.
    [7] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modi.cation[J]. Trends in Food Science & Technology. 1996, 7(4): 120–125.
    [8] Jung S., Murphy P.A., Johnson L.A. Physicochemical and functional properties of soy protein substrates modi.ed by low levels of protease hydrolysis[J]. Journal of Food Science. 2005, 70(2): 180–186.
    [9] Wu W.U., Hettiarachchy N.S., Qi M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration[J]. Journal of American Oil Chemist’s Socity. 1998, 75: 845-850.
    [10] Vioque J., Sanchez-Vioque R., Clemente A.et al. Partial hydrolysed rapeseed protein isolates with improved functional properties[J]. Journal of American Oil Chemist’s Socity. 2000, 77: 447-450.
    [11] 高体玉,李俊,慈云祥. 乳腺癌组织中蛋白质二级结构的 Fourier 变换红外光谱研究[J]. 分析科学学报. 2000, 16(5): 353-357.
    [12] Steel R.G.D., Torrie J.H. Principles and Procedures of Statistics[M]. A biometrical Apporach, 2nd ed. McGraw-Hill: New York. 1980.
    [13] Shewry P.R., Tatham A.S. Disulphide Bonds in Wheat Gluten Proteins (Mini Review) [J]. Journal of Cereal Science. 1997, 25: 207-227.
    [14] Kauffman S.P., Hoseney R.C., Fennema O. Dough rheology – A review of structural models and the role of disulphide interchange reactions[J]. Cereals Foods World. 1986, 31: 820–824.
    [15] Lindsay M.P., Skerritt J.H. Low-temperature scanning electronic microscopy study of gluten ultrastructure[J]. Cereal Chemistry. 1999,
    [16] Lindsay M.P., Skerritt J.H. The glutenin macropolymer of wheat flour doughs: structure-function perspectives[J]. Trends in Food Science & Technology. 1999, 10: 247-253.
    [17] Byler D.M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra[J]. Biopolymers. 1986, 25: 469–487.
    [18] Surewicz W.K., Mantsch H.H. New insight into protein secondary structure from resolution-enhanced infrared spectra[J]. Biochimica et Biophysica Acta. 1988, 952: 115–130.
    [19] Arrondo J.L.R., Muga A., Castersana J., et al. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy[J]. Progress in Biophysics and Molecular Biology. 1993, 59: 23–56.
    [20] Subirade M., Kelly I., Gue′guen J., et al. Molecular basis of .lm formation from a soybean protein: Comparison between the conformation of glycinin in aqueous solution and in .lms[J]. International Journal of Biological Macromolecules. 1998, 23: 241–249.
    [21] Belton P.S., Colquhoun I.J., Grant A., et al. FTIR and NMR Studies on the hydration of a high-Mr subunit of glutenin[J]. International Journal of Biological Macromolecules. 1995, 17(2): 74–80.
    [22] Mejri M., Roge B., BenSouissi A., et al. Effects of some additives on wheat gluten solubility: A structural approach[J]. Food Chemistry. 2005, 92: 7-15.
    [23] Dousseau F., Pézolet M. Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods[J]. Biochemistry. 1990, 29(37): 8771–8779.
    [24] Lee D.C., Haris P.I., Chapman D., et al. Determination of protein secondary structure using factor analysis of infrared spectra[J]. Biochemistry. 1990, 29: 9185–9193.
    [25] 黄友如,华欲飞,王晓虹. DSC 在大豆蛋白功能性质研究中应用[J]. 粮食与油脂. 2003, 8: 15-17.
    [26] Molina Ortiz S.E., A?ón M.C. Enzymatic hydrolysis of soy protein isolates: DSC study[J]. Journal of Thermal Analysis and Calorimetry. 2001, 66(2): 489-499.
    [27] Clark A.H., Lee-Tuffnell C.D. Gelation of globular proteins. In: Functional Properties of Food Macromolecules[M]. Mitchell J.P., Ledward D.A. eds. Elsevier Applied Science, Amsterdam, 1986.
    [28] Boye J.I., Ma C.-Y., Harwalkar V.R. Thermal denaturation and coagulation of proteins[M]. In Damadarm S. and Paraf A. eds. Food protein and their applications. Marcel Dekker Inc., New York, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700