琼脂糖凝胶分离纯化大黄等中药有效成分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分析技术,设备简单、操作方便,不需要污染性有机溶剂,对高分子物质有很好的分离效果。目前已经广泛应用于生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域,该技术不但应用于科学实验研究,而且已经大规模地用于工业生产。琼脂糖凝胶是由球状琼脂糖经两次交联而制得的凝胶,其高交联结构显著提高了颗粒刚性和物理化学稳定性,粒度小而粒径分布范围窄,属于高效凝胶,可在高流速下使用,并具有分离范围宽和分辨率高等特点。已用于天然中草药中有效成分的分离,成功的分离了黄酮类和多酚类化合物,引起了国内外分离工作者的广泛关注。
     中药有效成分的提取分离与纯化技术研究是中药现代化的核心,也是中药企业发展的必经之路。开展中药化学成分提取分离新技术的研究,对于提高企业的科技实力与竞争力,促进中药现代化的发展具有重要意义。目前,应用琼脂糖凝胶作为固定相在分离纯化天然药物中的蒽醌、黄酮和多酚等有效成分方面已获得令人满意结果。本文对琼脂糖凝胶分离纯化大黄、大豆、虎杖、知母、甘草和连翘叶中的有效成分进行了研究,建立了分离纯化这几种中草药中有效成分的新方法,取得了相关核心技术,并利用紫外光谱(UV)、高效液相色谱(HPLC)、核磁共振波谱(NMR)等对目标产物的纯度和化学结构进行了分析和鉴定,结合各组分的化学结构式及凝胶色谱保留时间,对琼脂糖凝胶作为固定相分离纯化蒽醌类化合物、黄酮类化合物、异黄酮类化合物和木脂素类化合物的机理进行了探讨。
     1.大黄中有效成分的分离纯化
     以琼脂糖凝胶为固定相,建立了分离纯化大黄蒽醌类化合物和苯乙烯酸的新方法,以55%的甲醇(0.01%的HAC)水溶液作为流动相进行洗脱,可以得到苯乙烯酸、大黄酸、芦荟大黄素、大黄酚、大黄素甲醚、大黄素等六部分,分别收集,得到化合物的纯度均在95%以上。经一步分离从大黄粗提物中分离得到苯乙烯酸、大黄酸、芦荟大黄素、大黄酚、大黄素甲醚和大黄素六种高纯度化合物。
     根据大黄药材粗提物中各组分的化学结构式以及在琼脂糖凝胶上的保留时间,对琼脂糖凝胶(Superose 12)色谱分离纯化大黄有效成分的机理进行了探讨。研究结果表明琼脂糖凝胶分离纯化中草药中蒽醌类化合物的机理是目标化合物结构式中的羟基与Superose 12合成残留基团的氢键作用和疏水作用二者的协同作用,建立了分离纯化中草药中蒽醌类化合物的新方法。
     2.大豆中异黄酮类化合物的分离纯化
     应用琼脂糖凝胶作为固定相分离纯化大豆中的异黄酮类化合物,以40%的甲醇和60%的甲醇溶液作为流动相梯度洗脱,经一步分离从大豆提取物中得到大豆苷、染料木苷、黄豆黄苷、大豆苷元、染料木素和黄豆黄素六种高纯度化合物,纯度分别为99.0%, 99.0%, 90.5%, 99.0%, 94.5%和99.0%。
     根据大豆粗提物中各组分的化学结构式以及在琼脂糖凝胶上的保留时间,对琼脂糖凝胶色谱分离纯化异黄酮类化合物的机理进行了探讨。研究结果表明琼脂糖凝胶分离纯化中草药中异黄酮类成分的机理是目标化合物结构式中的羟基与Superose 12合成残留基团的氢键作用和疏水作用二者的协同作用,建立了分离纯化中草药中异黄酮类化合物的新方法。
     3.虎杖中有效成分的分离纯化
     以琼脂糖凝胶为填料,建立了分离纯化虎杖中有效成分的新方法。以65%的甲醇溶液作为流动相,一步分离可以得到白藜芦醇苷、大黄素-8-O-β-D-葡萄吡喃糖甙、白藜芦醇和大黄素四种高纯度化合物。根据虎杖药材粗提物中各组分的化学结构式以及在琼脂糖凝胶上的保留时间,对琼脂糖凝胶(Superose 12)色谱分离纯化虎杖有效成分的机理进行了探讨。研究结果表明琼脂糖凝胶分离纯化虎杖有效成分的机理是目标化合物结构式中的羟基与Superose 12合成残留基团的氢键作用和疏水作用二者的协同作用,建立了分离纯化虎杖有效成分的新方法。
     4.知母中有效成分的分离纯化
     建立了琼脂糖凝胶作为固定相分离纯化知母中有效成分的新方法,以60%的甲醇溶液作为洗脱流动相,从知母粗提物中一步分离得到单甲基-顺-扁柏树脂酚、顺-扁柏树脂酚两种高纯度木脂素类化合物和新芒果苷、芒果苷两种黄酮类化合物,纯度分别为96.1%, 98.0%, 97.2%和98.1%。
     根据中药知母粗提物中各组分的化学结构式以及在琼脂糖凝胶上的保留时间,对琼脂糖凝胶色谱分离纯化木脂素、黄酮类化合物的机理进行了研究。最终得出琼脂糖凝胶分离纯化知母中有效成分的机理是目标化合物结构式中的羟基与Superose 12合成残留基团间的氢键作用和疏水作用二者的协同作用,建立了分离纯化知母中有效成分的新方法。
     5.甘草中有效成分的分离纯化
     以琼脂糖凝胶作为固定相,建立了分离纯化甘草中有效成分的新方法,即以60%的甲醇溶液作为流动相进行洗脱,经一步分离从甘草中分离得到异甘草素葡萄糖芹菜苷、甘草糖苷A、异甘草素和甘草香豆素四种高纯度化合物,纯度分别为91.3%, 95.1%, 91.8%和96.7%。
     根据甘草粗提物中各组分的化学结构式以及在琼脂糖凝胶上的保留时间,对琼脂糖凝胶色谱分离纯化甘草中有效成分的机理进行了探讨。研究结果表明琼脂糖凝胶分离纯化甘草中有效成分的机理是目标化合物结构式中的羟基与Superose 12合成残留基团的氢键作用和疏水作用二者的协同作用,开创了分离纯化甘草中有效成分的新方法。
     6.连翘叶中有效成分的分离纯化
     建立了琼脂糖凝胶作为固定相分离纯化连翘叶中有效成分的新方法,即以30%的甲醇溶液作为流动相进行洗脱,从连翘叶中一步分离得到连翘苷、连翘酯苷和芦丁三种高纯度化合物,纯度分别为99.2%,96.3%和99.2%。
     根据连翘叶粗提物中各组分的化学结构式以及在琼脂糖凝胶上的保留时间,对琼脂糖凝胶色谱分离纯化连翘叶中有效成分的机理进行了探讨。研究结果表明琼脂糖凝胶分离纯化连翘叶中有效成分的机理是目标化合物结构式中的羟基与Superose 12合成残留基团的氢键作用和疏水作用二者的协同作用,开创了分离纯化连翘叶中有效成分的新方法。
Gel media based on cross-linked dextran and cross-linked agarose are widely used for size exclusion chromatography of large biomolecules, which was developed in the 1960’s. Superose 12, the gel that is prepared by spherical agarose with cross-linking two times. The high cross-linked structure increased its rigidity and stability observably. So it can be used in high velocity. And now Superose 12 has been widely used in the separation and purification of high molecular weight compounds. It was also used in the separation and purification of active components from natural products.
     It has become an urgent task to investigate Chinese traditional medicinal herbs with modern technological instrument and establish integrate quality appraisal system. And it is also the road that must be taken in the development of the Chinese native medicine enterprise. So carrying on the research of the new method of traditional Chinese medicine plays an important role in promoting the development of modern traditional Chinese pharmacology and the Chinese medicine modernization. Successful application of adsorption chromatography on cross-linked 12% agarose has been reported for the purification of flavones and polyphenols.
     In the present paper, under the optimized experiment conditions, active components from common traditional Chinese herbs (Rheum officinale Baill., Glycine max (L.)Merr Polygonum cuspidatum Sieb.et Zucc, etc.) were separated and purified. The purity of the obtained compounds after Superose 12 separation was above 95% determined by high performance liquid chromatography (HPLC) analysis and their chemical structures were identified by 1H-NMR, 13C-NMR and standard samples. And also discussed the separated mechanism of hydroxyanthraquinone, flavonoid and lignans compounds on cross-linked 12% agarose.
     1. Isolation and purification of hydroxyanthraquinone compounds from the roots of Rheum officinale Baill. by Superose 12
     A chromatographic method for isolation and purification of chemical constituents from the well-known traditional Chinese drugDa-huang (roots of Rheum officinale Baill.) was established by using 12% cross-linked agarose gel, Superose 12, as the separation media. 55% methanol (including 0.01% HAC) was used as the eluent for separation of cinnamic acid, rhein, aloe-emodin, chrysophanol, physcion and emodin from Da-huang crude extract. As a result, cinnamic acid and five kinds of hydroxyanthraquinones including rhein, aloe-emodin, chrysophanol, physcion and emodin were obtained in one-stepp seperation with high purity.
     The retention behavior of hydroxyanthraquinones on Superose 12 was studied according to the chemical structure and the retention time. The results of the present study clearly demonstrate that Superose 12 can be used for the separation of hydroxyanthraquinones and that the retention of hydroxyanthraquinones on Superose 12 is based on a mixture of hydrogen bonding and hydrophobic interactions between the hydroxyl groups of hydroxyanthraquinones and the residues of the cross-linking reagents used in the manufacturing process of Superose 12.
     2. Isolation and purification of Sobyean isoflavones from sobyean by Superose 12 Six soy isoflavones including daidzin, genistin, glycitin, daidzein, glycitein and genistein with the purity of 99.0%, 99.0%, 90.5%, 99.0%, 94.5% and 99.0%, were isolated and purified by adsorption chromatography Superose 12 from soybean in one-step separation. When 40% and 60% methanol were used as the mobile phase in gradient mode at a flow rate of 0.5 ml/min, good separation results could be obtained.
     The retention behavior of soy isoflavones on Superose 12 was studied according to the chemical structure and the retention time. The results of the present study clearly demonstrate that Superose 12 can be used for the separation of soy isoflavones and that the retention of soy isoflavones on Superose 12 is based on a mixture of hydrogen bonding and hydrophobic interactions between the hydroxyl groups of soy isoflavones and the residues of the cross-linking reagents used in the manufacturing process of Superose 12.
     3. Isolation and purification of four compounds from the Chinese medicinal herb Polygonum cuspidatum Sieb.et Zucc by adsorption chromatography on cross-linked 12% agarose
     The four compounds of the well-known traditional Chinese drug Polygonum cuspidatum Sieb. et Zucc can be separated by adsorption chromatography on the cross-linked 12% agarose gel Superose 12. Sixty five percent methanol was used as the eluent for separation of piceid, resveratrol, anthraglycoside B and emodin from Hu-zhang crude extract. The purity of each compound is over 95% as determined by HPLC.
     The retention behavior of the compounds from Polygonum cuspidatum Sieb.et Zucc on Superose 12 was studied according to the chemical structure and the retention time. The results of the present study clearly demonstrate that Superose 12 can be used for the separation of the compounds from Polygonum cuspidatum Sieb.et Zucc and that the retention of these compounds on Superose 12 is based on a mixture of hydrogen bonding and hydrophobic interactions between the hydroxyl groups of the compounds and the residues of the cross-linking reagents used in the manufacturing process of Superose 12.
     4. Isolation and purification of four compounds from the Chinese medicinal herb Rhizoma Anemarrhenae by adsorption chromatography on 12% cross-linked agarose Four bioactive compounds including two lignans compounds cishinkiresinol, (-)-4′-O-methylnyasol and two flavonoid compounds mangiferin, neomangiferin were separated from the methanol extract of Rhizoma Anemarrhenae by adsorption chromatography. Sixty percent methanol was used as the mobile phase. The purities of the four compounds reached 96.1%, 98.0%, 97.2% and 98.1%.
     The retention behavior of the compounds from Rhizoma Anemarrhenae on Superose 12 was studied according to the chemical structure and the retention time. The results of the present study clearly demonstrate that Superose 12 can be used for the separation of the compounds from Rhizoma Anemarrhenae and that the retention of these compounds on Superose 12 is based on a mixture of hydrogen bonding and hydrophobic interactions between the hydroxyl groups of the compounds and the residues of the cross-linking reagents used in the manufacturing process of Superose 12.
     5. One step isolation and purification of four compounds from the Chinese medicinal Radix Glycyrrhiza by adsorption chromatography on 12% cross-linked agarose Adsorption chromatography (Superose 12) was successfully used for the isolation and purification of four compounds from Radix Glycyrrhiza, the Chinese herbal drug. Sixty percent methanol was used as the mobile phase. Four kinds of compounds including licuraside, licorice-glycoside A, isoliquiritigenin and glycycoumarin were obtained after one step separation, with the purity of 91.3%, 95.1%, 91.8% and 96.7%, respectively, as determined by high performance liquid chromatography (HPLC).
     The retention behavior of the compounds from Radix Glycyrrhiza on Superose 12 was studied according to the chemical structure and the retention time. The results of the present study clearly demonstrate that Superose 12 can be used for the separation of the compounds from Radix Glycyrrhiza and that the retention of these compounds on Superose 12 is based on a mixture of hydrogen bonding and hydrophobic interactions between the hydroxyl groups of the compounds and the residues of the cross-linking reagents used in the manufacturing process of Superose 12.
     6. Isolation and purification of three compounds from the leaves of Forsythia suspensa by adsorption chromatography on 12% cross-linked agarose Superose 12, adsorption chromatography was successfully applied to the separation and purification of forsythiaside, phillyrin and rutin from the leaves of Forsythia suspensa.
     The optimum solvent system composed of methanol-water (30:70, v/v) led to the successful preparation of forsythiaside, phillyrin and rutin with high purity (99.2%, 96.7% and 99.2%).
     The retention behavior of the compounds from the leaves of Forsythia suspensa on Superose 12 was studied according to the chemical structure and the retention time. The results of the present study clearly demonstrate that Superose 12 can be used for the separation of the compounds from the leaves of Forsythia suspensa and that the retention of these compounds on Superose 12 is based on a mixture of hydrogen bonding and hydrophobic interactions between the hydroxyl groups of the compounds and the residues of the cross-linking reagents used in the manufacturing process of Superose 12.
引文
[1] Jerker P, Per F. Gel filtration: a method for desalting and group separation [J]. Nature, 1959, 183.
    [2] Jerker P. Gel filtration of proteins, peptides and amino acids [J]. Biochimica et Biophysica Acta, 1960, 39: 193-207.
    [3] Bertil G. Studies on gel filtration sorption properties of the bed material sephadex [J]. Journal of Chromatography, 1960, 3: 330.-342.
    [4] Synge R L M, Youngson M A. Molecular-sieve methods for separations of polypeptides according to molecular weight [J]. Biochemical Journal, 1961, 78: 31.
    [5] Bagdasarian M, Matheson N A, Synge R L M, etc.. New procedures for isolating polypeptides and proteins from tissues [J]. Biochemical Journal, 1964, 91: 91-105.
    [6] Ruttenberg M A., King T P, Craig L C. The Chemistry of Tyrocidine. VI. The Amino Acid Sequence of Tyrocidine C [J]. Biochemistry, 1965, 4(1):11-18.
    [7] Eaker D , Porath J. Sorption Effects in Gel Filtration: I. A Survey of Amino Acid Behavior on Sephadex G-10 [J]. Separation Science and Technology, 1967, 2(4): 507-550.
    [8] Janson J C. Adsporption phenomena on sephadex [J]. Journal of Chromatography, 1967, 28: 12-20.
    [9] Yang Q, Gong Z Z. Purification and Characterization of an Ethylene- Induced Antifungal Protein from Leaves of Guilder Rose (Hydrangea macrophylla) [J]. Protein Expression and Purification, 2002, 24, 76-82.
    [10] Guo X, Condra M, Kimura K, etc.. Determination of molecular weight of heparin by size exclusion chromatography with universal calibration [J]. Analytical Biochemistry, 2003, 312(2): 33-39.
    [11] Rittidach W, Paijit N, Utarabhand P. Purification and characterization of a lectin from the banana shrimp Fenneropenaeus merguiensis hemolymph [J]. Biochimica et Biophysica Acta, 2007, 1770: 106-114.
    [12] Sultan N A M, Kenoth R, Swamy M J. Purification, physicochemical characterization, saccharide specificity, and chemical modification of a Gal/GalNAc specific lectin from the seeds of Trichosanthes dioica [J]. Archives of Biochemistry and Biophysics, 2004, 432: 212-221.
    [13] Ng T B, Yu Y L, Chu K T. Isolation of a novel legumin-like lectin with potent hemagglutinating activity from seeds of the Chinese chestnut Castanea mollisima [J]. Comparative Biochemistry andPhysiology Part C, 2002, 133: 453-460.
    [14] Bento L S M, Sa S. Study of high-molecular weight compounds in sugar using gel-permeation chromatography with an evaporative light scattering detector [J]. Carbohydrate Polymers, 1998, 37: 257-261.
    [15] Fernandes C F, Moraes V C P, Vasconcelos I M, etc.. Induction of an anionic peroxidase in cowpea leaves by exogenous salicylic acid [J]. Journal of Plant Physiology, 2006, 163: 1040-1048.
    [16] He X L, Tan T W, Janson J C. Purification of the isoflavonoid puerarin by adsorption chromatography on cross-linked 12% agarose [J]. Journal of Chromatography A, 2004, 1057: 95-100.
    [17] Qi Y Y, Sun A L, Liu R M, etc.. Isolation and purification of flavonoid and isoflavonoid compounds from the pericarp of Sophora japonica L. by adsorption chromatography on 12% cross-linked agarose gel media [J]. Journal of Chromatography A, 2007, 1140: 219-224.
    [18] Xu J, Tan T W, Janson J C. Mixed-mode retention mechanism for (-)-epigallocatechin gallate on a 12% cross-linked agarose gel media [J]. Journal of Chromatography A, 2006, 1137: 49-55.
    [19] Huang Y Y, Sun A L, Qi Y Y, etc.. Purification of hydroxyanthraqui- nones and cinnamic acid from the roots of Rheum officinale Baill. [J]. Journal of Separation Science, 2008, 31:283-287.
    [20] 陈冲. 中药研发中的新思路[J]. 世界科学技术-中药现代化,2000,2(6):41-45.
    [21] 王宝,鲁 静. 国家中药化学对照品品种介绍[J]. 中药新药与临床药理,1994,2:42-43.
    [22] 国家中药管理局《中华本草》编委会. 中华本草[M]. 上海科技出版社,1999.
    [23] 王桂荣,刘淑荣,刘功良. 大黄的药理研究进展[J]. 邯郸医专学报,1994,7(2),104-105.
    [24] 李文圣,陈涛. 大黄药理研究新进展[J]. 时珍国药研究,1994,5(1),40- 43.
    [25] 杨茂区,陈伟,冯磊. 大豆异黄酮的生理功能研究进展[J]. 大豆科学,2006,3:320-324.
    [26] 中华人民共和国药典委员会,中华人民共和国药典[S]. 2000年版第1部,京:化学工业出版社,1999,167
    [27] Zheng H Z, Dong Z H, She J. Huzhang, Rhizoma polygoni cuspidati. In: Modern Study of Traditional Chinese Medicine [M]. Xue Yuan Press, Beijing, 1998, 3, 2800
    [28] 倪梁红,秦民坚. 知母资源化学及药理研究进展[J]. 中国野生植物资源,2005,24(4):16-20,58.
    [29] 刑国秀,李楠,王童等. 甘草中黄酮类化学成分的研究进展[J]. 中国中药杂志,2003,28(7):593-597.
    [30] 丛景香,高丽娟,林炳昌. 甘草黄酮类化合物研究进展[J]. 精细化工,2004,21(增刊):121-124.
    [31] 江苏新医学院. 中药大辞典[M]. 上海:上海人民出版社,1977:2270.
    [32] 胡克杰,徐凯建,王跃红等. 连翘酯苷体外抗病毒作用的实验研究[J]. 中国中药药科技,2001,8(2): 89
    [33] 张立伟,赵春贵,杨频. 连翘酯苷清除活性氧活性研究[J]. 中国药学杂志,2003,38(5):334-336.
    [34] 国家中药管理局《中华本草》编委会. 中华本草[M]. 上海科技出版社,1999.
    [35] 宋立人. 现代中药大辞典[M]. 人民卫生出版社,2001.
    [36] 陈勤. 中药美容保健品的研究与设计[M]. 中国医科大学出版社,1999,1:471.
    [37] 胡军,屠鹏飞,果德安等. 秦岭大黄化学成分研究[J]. 西北药学杂志,1997,12(4):153-155.
    [38] 李军林,王爱芹,李家实等. 河套大黄的蒽醌类成分研究[J]. 中草药,2000,31(5):321-324.
    [39] 黄泰康. 常用中药成分与药理手册[M]. 北京:中国医药科技出版社,1994:227.
    [40] 李军林,王爱芹,李家实等. 河套大黄非蒽醌类成分研究[J]. 中草药,1998,29(11):721-723
    [41] Liu R M Li A F, Sun A L. Preparative isolation and purification of hydroxyanthraquinones and cinnamic acid from the Chinese medicinal herb Rheum officinale Baill. by high-speed counter-current chromatography [J]. Journal of Chromatography A, 2004, 1052:217-221.
    [42] 鲁宽科,佟文勇,胡蓉等. 大黄愈伤组织化学成分的研究[J]. 中草药,1998,29(7):438-440.
    [43] 周金黄,王建华,刘干中等. 世纪之交:现代中药药理学的回顾与展望[J]. 中国药理学会通讯,1999,16(3):6-7.
    [44] 徐斌. 大黄为血症要药[J]. 中医杂志,1992,33(1):5.
    [45] 夏学德. 大黄治疗急性胰腺炎17例[J]. 中西医结合杂志,1988,8(4):209.
    [46] 温枫. 大黄的药理作用及其临床应用[J]. 山西中医,2000,6(3):53-54.
    [47] 钱尚统. 单味大黄醇提片治疗急性肠炎、菌痢的疗效观察[J]. 中成药,1989,11(9):23-24.
    [48] 倪弘,薛小平,杨秀竹等. 大黄酸抑制小鼠腹腔巨噬细胞炎性介质活化的作用机理[J]. 天津中医,2001,18(1):35-36.
    [49] 黄翠玲,李才,邓义斌. 大黄延缓慢性肾功能衰竭机制的研究进展[J]. 中国中西医结合杂志,1995,15(8):506.
    [50] 刘莉,李保莉,周四元等. 唐古特大黄多糖对小鼠急性肝损伤的保护作用[J]. 第四军医大学学报,1999,20(6):549-551.
    [51] 王鸿利. 大黄有效单体止凝血机理的临床研究[J]. 中西医结合杂志,1985,9:555-557.
    [52] 李新宇,张翔宇,景炳文等. 大黄对大鼠肠缺血再灌注致肺损伤中磷脂酶A2的影响[J]. 中国急救医学,2000,20(6):324-326.
    [53] 陈万生,徐江平,李力等. 大黄素-8-O-D-吡喃葡萄糖苷的促智活性及其机制[J]. 中草药,2001,32(1):39-41.
    [54] 陈秀武,胡秀诊,李芳. 大黄清除活性氧作用研究[J]. 中国药学杂志,1996,31(8):461.
    [55] 陈德昌. 中药化学对照品工作手册[M],北京:中国医药科技出版社, 2000, 46, 42, 97, 44, 43.
    [56] 孙莉静,袁伟杰,张国兆. 大豆蛋白与肾脏疾病[J]. 国外医学?泌尿系统分册,2002,22(1):16-19.
    [57] 范小兵,宋士量,殷庆元等. 大豆低聚糖对肠道微生物的作用效应及各组分含量检测方法[J]. 中成药,2000,22(8):572-575.
    [58] 赵淑敏,谭红梅,葛红霞等. 大豆磷脂及其应用[J]. 大豆通报,2006,1:39-42.
    [59] 许晶,张永忠,付茂辉. 大豆异黄酮的研究进展[J]. 山西食品工业,2005,3:23-25.
    [60] 孟凡钢,富健,王新风等. 大豆皂甙研究进展与应用[J]. 中国农业科技导报,2007,9(4):66-72.
    [61] 戴军,陈尚卫,方涛等. 大豆甾醇及其异构体的分离与鉴定[J]. 分析化学,2005,33(12):1725-1729.
    [62] 王春林. 中国大豆辅酶Q10的提取、分离和鉴定[J]. 中国医药工业杂志,1996,27(8):102-104.
    [63] 张根旺. 大豆生物活性成分开发与若干思考[J]. 粮食与油脂,2002,8:2-4.
    [64] 叶艳彬,苏宜香. 大豆异黄酮减缓绝经后妇女骨丢失的临床效应[J]. 营养学报,2004,26(1):49-53.
    [65] 毛峻琴,宓鹤鸣. 大豆异黄酮的研究进展[J]. 中草药,2000,31(1):61-64.
    [66] 张风光,彭欣莉,曲红光等. 大豆植物提取物的抗炎和镇痛作用研究[J]. 食品科学,2007,28(11):533-536.
    [67] 潘喜华,仲伟鉴,消萍等. 大豆异黄酮对去势大鼠骨代谢的影响[J]. 上海预防医学,2006,18(5):211-212,221.
    [68] Cassidy A, Bingham S, Setchell K D. Biological effects of a diet of soy protein rich in isoflavoneon the menopausal cycle of premenopausal women [J]. American Journal of Clinical Nutririon, 1994, 60:333-340.
    [69] 权静,卢定强,张筱等. 大豆功能性成分的研究现状[J]. 大豆通报,2004,3:27-29.
    [70] 孙莉静.大豆蛋白与肾脏疾病[J].国外医学泌尿系统分册,2002,22(1):16-19.
    [71] 张乐. 大豆异黄酮药理作用研究进展[J]. 草业科学,2007,24(4):54-57.
    [72] 朱慧娟,赵岩,李世芬等. 大豆提取物抗氧化作用研究[J]. 江苏卫生保健,2007,9(1):5-6.
    [73] 毛峻琴,宓鹤鸣. 大豆异黄酮的研究进展[J]. 中草药,2000,31(1):61-64.
    [74] Park H J, Park J H, Moon J O, etc.. Isoflavone glycosides from the flowers of Pueraria thunbergiana [J]. Phytochemistry, 1999, 51: 147-151.
    [75] Chang T S, Ding H Y, Tai S S K, etc.. Mushroom tyrosinase inhibitory effects of isoflavones isolated from soygerm koji fermented with Aspergillus oryzae BCRC 32288 [J]. Food Chemistry, 2007, 105(4): 1430-1438.
    [76] 王凤芹,蒋可志,李祖光. 银杏叶提取物中染料木素的分离纯化及结构鉴定[J]. 色谱,2007,25(4):509-513.
    [77] 王霞,凌世峰. 虎杖药理作用研究进展[J]. 海军医学杂志,2004,25(2):179-181.
    [78] 张喜云. 虎杖的化学成分、药理作用与提取分离[J]. 天津药学,1999,11(3):13-14.
    [79] 冯雷. 虎杖研究新进展[J]. 医药论坛杂志,2003,24(9):78-79.
    [80] 刘晓秋,于黎明,吴立军. 虎杖化学成分研究(I)[J]. 中国中药杂志,2003,28(1):47-49.
    [81] 金雪梅,金光洙. 虎杖的化学成分研究[J]. 中草药,2007,38(10):1446-1448.
    [82] 金春华,刘杰,赵克森. 虎杖苷对白细胞-内皮细胞粘附作用的影响[J]. 中国微循环,1999,3(2):82.
    [83] 刘杰,金春华,赵克森. 虎杖苷对大鼠细动脉平滑肌细胞ATP敏感钾通道的影响[J]. 微循环杂志,1999,9(4):9.
    [84] 金春华,赵克森,刘 杰等.虎杖甙对正常大鼠血管平滑肌细胞内游离钙浓度的影响[J].中国病理生理杂志,1998,14(2):195-198.
    [85] 李笑宏,杨 玲,林建海.虎杖注射液对猪急性缺氧性肺动脉高压的作用研究 [J].中华结核和呼吸杂志,2001,24(1O):633.
    [86] 李笑宏,林建海.虎杖对血流动力学、血气及纤溶系统的影响[J].上海医学,2001,24(10):597.
    [87] 刘丹,汤海峰,张三奇等. 虎杖浓缩片对小鼠实验性肝损伤的保护作用[J]. 时珍国医国药,2007,18(12):3034-3035.
    [88] 高晚霞,罗丽丹,陈舒丽等. 虎杖对大鼠急性四氯化碳肝损伤保护作用的量效关系[J]. 咸宁学院学报:医学版,2007,21(3):215-217.
    [89] 钟芳芳,李芸芳,陈玉等. 虎杖中大黄素的分离及抗菌活性的初步研究[J]. 中南民族大学学报(自然科学版),2006,25(1):40-42.
    [90] 王志洁,邓培,方学韫等. 虎杖蒽醌化合物抗疱疹病毒的实验研究[J]. 湖北医科大学学报,2000,21(3):180-183.
    [91] 王卫华,肖红,陈科力等.虎杖提取液抗柯萨奇病毒B3的实验研究[J].湖北中医杂志,2001,23(9):47-48.
    [92] 刘红山,齐咏,刘青光等. 虎杖提取物白藜芦醇对鼠肝癌细胞H22生长及扩增的影响[J]. 新乡医学院学报,2001,18(6):381-385.
    [93] 王怀亮.虎杖提取物对冠心病患者血小板释放功能的影响[J].深圳中西医结合杂志,1997,7(2):19.
    [94] 张佩文,单春文,张健等.3,4’,5-三羟基芪-3-β-单-D-葡萄糖甙对人血液流变学及胆固醇的影响[J].第一军医大学学报,1995,15(1):47-48.
    [95] 朱立贤,金征宇,罗欣. 白藜芦醇和白藜芦醇苷抗氧化作用的研究[J]. 食品研究与开发,2007,28(5):22-25.
    [96] 潘英明,张晓璞,朱金婵等. 虎杖中抗氧化成分的提取分离及其活性研究[J]. 精细化工,2005,22(11):835-837.
    [97] 中华人民共和国药典委员会. 中华人民共和国药典2000年版第1部[S],北京: 化学工业出版社,1999, p167.
    [98] 朱鸿津. HPLC法测定虎杖中白藜芦醇的含量[J]. 药学进展, 2001, 20(1), 49-50.
    [99] 刘兆平,霍君生. 白藜芦醇的生物学作用[J]. 国外医药学卫生学分册,2002,29(3):146-148.
    [100] 胡跃. 白藜芦醇抗肿瘤作用研究新进展[J]. 国外医学肿瘤学分册,2002,1(6):174-177.
    [101] Christian I, Markus S. Occunrence and activity of natural antioxidants in herbal spirits Irnovative [J]. Food Science & Emerging Technologes, 2001, (1):239-234.
    [102] Albert S, Agnes S, Grace Y. The “French paradox” and beyond: neuroprotective effects ofpolyphenols [J]. Free Radical Biology & Medicine, 2002, (1): 314-318.
    [103] 吕振越,王庆华. 白藜芦醇研究进展[J]. 食品研究与开发,2003,2(24):25-26.
    [104] 衣洪福,陈万生,张汉明. RP-HPLC测定虎杖中白藜芦醇苷的含量[J]. 中草药,2004,35 (7), 825-827.
    [105] 陆豫,黄志纾,马林等. 虎杖中主要蒽醌的提取分离及HPLC分析测定[J]. 应用化学,2004,21 (5),433-436.
    [106] Steglich W, Losel W. Bestimmung der stellung von O-sub-stituenten bei 1, 8- dihydroxy-anthrachinon-derivaten mithilfe der NMR- spektroskoqie. Tetrahedron, 1969, 25, 4391-4399.
    [107] Chen L, Yang F Q, Zhang T Y, etc.. Separation and Analysis of Resveratrol and Piceid in Polygonum Cuspidatum Sieb. et Zicc [J]. Journal of Instrumental Analysis. 2000, 19 (4), 60-62.
    [108] Gamini S, Jayatilake, Hiranthi J, etc.. Kinase inhibitors from Polygonum cuspidatum [J]. Natural Products, 1993, 56 (10), 1805-1810.
    [109] Chen D C. Handbook of Reference Substance for Traditional Chinese Herbs [M]. China Pharmacertical Technology Publishing House, Beijing, 2000, p43, p44
    [110] 中华人民共和国药典委员会. 中华人民共和国药典一部[S]. 北京:人民卫生出版社,1990,184.
    [111] 陈千良,马长华,王文全等. 知母药材中挥发性成分的气相色谱-质谱分析[J]. 中国中药杂志,2005,30(21):1657-1659.
    [112] 边际,徐绥绪. 知母化学及药理研究进展[J]. 沈阳药学院学报,1993,10(2):141-144.
    [113] 沈莉,戴胜军,赵大洲. 知母中的生物碱[J]. 中国中药杂志,2007,32(1):39-41.
    [114] 倪梁红,秦民坚. 知母资源化学及药理研究进展[J]. 中国野生植物资源,2005,24(4):16-20,58.
    [115] Sun Q H, Sun A L, Liu R M. Preparative isolation and purification of four compounds from the Chinese medicinal herb Rhizoma Anemarrhenae by high-speed counter-current chromatography [J]. Journal of Chromatography A, 2006, 1104:69-74.
    [116] 边际,徐绥绪,黄松等.知母化学成分的研究[J].沈阳药科大学学报,1996,13(1):34-40.
    [117] 何薇,曾祖平. 知母皂苷及其苷元抗衰老作用的研究进展[J]. 北京中医,2006,25(6):376-378.
    [118] Zhang J Y, Meng Z Y, Zhang M Y, etc.. Effect of six steroidal saponins isolated from anemarrhenae rhizome on platelet aggregation and hemolysis in human blood [J]. Clinica Chimica Acta, 1999, 289: 79-88.
    [119] 金有豫.知母皂甙 D对心肌缺血/复灌性损伤的保护作用的分析[J].首都医学院学报,1994,15(2):138.
    [120] 李泽松,李德良,黄坚等. 心血管相关基因芯片的制备及其在知母皂苷作用机理研究中的应用[J].药学学报,2003,38(7),496—500.
    [121] 黄潇,彭志刚. 芒果苷药理作用研究概括[J]. 中国药师,2007,10(1):73-74.
    [122] 胡雅儿,孙启祥,夏宗勤等.ZMS对老年大鼠脑内NGF和BDNF的影响[J].中国药理学通报,2003,19(2):149-151.
    [123] 杨丽蓉. 知母的化学成分及药理作用研究进展[J]. 国外医学中医中药分册,2002,24(4),207-210.
    [124] Hong Y F, Han G Y, Guo X M. Acta Pharm. Sinica, 1997, 32 (6), 473-475.
    [125] Su B N, Zhu Q X, Jia Zh J. Nor-lignan and sesquiterpenes from Cremanthodium ellisii [J]. Phytochemistry, 2000, 53, 1103-1108.
    [126] Tsui W Y, Brown G D. (+)-Nyasol from Asparagus Cochinchinensis [J]. Phytochemistry, 1996, 43 (6), 1413-1415.
    [127] 江苏新医学院.中药大辞典[M].上海:上海科学技术出版社,2001.567-573.
    [128] 梁勇,典灵辉,方昆阳等. 甘草挥发性成分GC-MS分析[J]. 西北药学杂志,2005,20(1):3-5.
    [129] 马君义,张继,王一峰等. 乌拉尔甘草根挥发性化学成分的分析研究[J]. 草业学报,2006,15(1):120-123.
    [130] 张波,官月平,田庆来等. 乌拉尔甘草中黄酮类化学成分的研究进展[J]. 中成药,2006,28(9):1362-1365.
    [131] 徐志栋,王敏,康怀萍. 甘草属植物三萜成分研究概况[J]. 河北轻化工学院学报,1998,19(1):10-15.
    [132] 李德华,李德宇,李永光. 甘草化学成分与药理作用研究进展[J]. 中医药信息,1995,5:31-35.
    [133] 胡金锋,沈凤嘉. 云南甘草中新生物碱的结构[J]. 高等学校化学学报,1995,16(8):1245-1247.
    [134] 周蓉,齐莉,王雅芬. 甘草多糖的分离纯化及高效毛细管电泳分析[J]. 分析化学,1999,27(2):245.
    [135] 王岳五,张海波,陈水平等. 甘草残渣中多糖的分离纯化及性质分析[J]. 南开大学学报:自然科学版,1999,32(4):36-38.
    [136] 傅乃武,刘朝阳,张如意等. 甘草黄酮类和三萜类化合物抗氧化作用的研究[J]. 中药药理与临床,1994,5:26-29.
    [137] 傅乃武,剂朝阳,张如意等. G9315抗促癌和抑制促癌物诱发的脂质过氧化作用[J].中草药.1995.26(8):411 -413,422.
    [138] 王秀梅,贾世山,董菁等. 甘草叶总黄酮和干扰素诱导单核巨噬细胞产生肿瘤坏死因子[J]. 中国中西医结合杂志,1993,13:134.
    [139] Haraguchi H, Tanimoto K, Tanmura Y, etc.. Mode of antibacterial action of retrochalcones from Glycyrrhiza Inflata [J]. Phytochemistry, 1998, 48(1):125-129.
    [140] Toshio F, Ai M, Kiyoshi K, etc.. Anti-heli-cobacter pylori flavonoids fromlicorice extract [J]. Life Sciences, 2001, 71:1449-1463.
    [141] Fukai T, Marumo A, Kaitou K, etc.. Antimicrobial activity of licorice flavonoids against methicillin-resistant staphylococcus anreus [J]. Fitoterapia, 2002, 73: 536-539.
    [142] 谢世荣,黄彩云,杨静娴等. 甘草黄酮抗实验性心律失常的作用[J]. 基础医学与临床,1998,18(2):72-74.
    [143] 胡小鹰,彭国平,陈汝炎. 甘草总黄酮抗心律失常作用研究[J]. 中草药,1996,27:733-735.
    [144] 潘燕. 甘草水溶性总黄酮抗心肌缺血作用的研究[J]. 辽宁中医杂志,2004,32:173.
    [145] Kameia J, Nakamurab R, Ichikib H, etc.. Antitussive principles of Glycyrrhiza radix, a main component of the Kampo preparations Bakumondo-to (Mai-men-dong-tang) [J]. European Journal of Pharmacology, 2003, 469:159-163.
    [146] Kuroda M, Mimaki Y, Sashida Y, etc.. Phenolics with PPAR-Ligand-Binding activity obtained from licorice (Glycyrrhiza uralensis Roots) and ameliorative effects of glycyrin on genetically diabetic KK-Ay mice [J]. Bioorganic & Medicinal Chemistry Letters, 2003, 13:4267-4272.
    [147] 谢彦,徐淑永,曾和平. 甘草属植物中三萜类化合物研究概述[J]. 2004,32(1):1-5.
    [148] 蔡立宁,张如意,张建华. 甘草属植物中三萜化合物的研究进展[J]. 天然产物研究与开发,1989,1(1):47-54.
    [149] 王岳五,张海波,史玉荣等. 甘草多糖GPS对病毒的抑制作用[J]. 南开大学学报:自然科学版,2001,34(2):126-128.
    [150] 王岳五,张海波,吕杰等. 甘草残渣中多糖GPS抗肿瘤作用的研究[J]. 南开大学学报:自然科学版,2000,33(4):46-48.
    [151] 王忱,谢广茹,史玉荣等. 甘草多糖的体内抑瘤作用及其机制的研究[J]. 临床肿瘤学杂志,2003,8(2):85-87.
    [152] 郑尧,何景华,高建华等. 甘草多糖对小鼠巨噬细胞吞噬功能的影响[J]. 中医药学刊,2003,21(2):254-255.
    [153] 陈海娇. 北药甘草的药理学研究进展[J]. 吉林农业科技学院学报,2006,15(2):15-18.
    [154] 高红霞,邵世和,王国庆. 中药甘草研究进展[J]. 井冈山医专学报,2004,11(5):8-11.
    [155] 白虹,窦德强,裴玉萍等. 栽培甘草的化学成分研究[J]. 中草药,2005,36(5):652-654.
    [156] Tsutomu H, Miyuki T, Hideyuki I, etc.. Acylated flavonoid glycodides and accompanying phenolics from Licorice [J]. Phytochemistry, 1998, 47(2): 287-293.
    [157] 朱大元,宋国强,蒋福祥. 甘草化学成分的研究[J]. 化学学报,1984,42:1080-1084.
    [158] Ma C J, Li G S, Zhang D L, etc.. One step isolation and purification of liquiritigenin and isoliquiritigenin from Glycyrrhiza uralensis Risch. Using high-speed counter-current chromatography [J]. Journal of Chromatography A, 2005, 1078:188-192.
    [159] 中国药典2000年版一部 [S]. 2000,135.
    [160] Sansei N. The structure of forsythiaside isolated from Forsythia suspensa [J]. Chemical & Pharmaceutical Bulletin, 1982, 30(3): 1048~1050.
    [161] Katsuya E, Kazuhiro T, Toyoko A, etc.. Structure of forsythoside B, an antibacterial principle of Forsythia koreana stems [J]. Hetemeydes,1982,19(2):261-264.
    [162] Nishibe S,Okabe K,Tsukamoto H,etc..Studies onthe chinese crudedrug“Forsythiae Fructus”Ⅵ [J]. Chemical & Pharmaceutical Bulletin,1982,30 (12):4548-4553.
    [163] Endo K, Hikino H. Structures of rengyol, rengyoxide and rengyolone, new cyelohexylethane derivatives from Forsythia Suspensa fruits [J]. Canadian Journal of Chemistry, 1984, 62(10): 2011-2014 (Eng).
    [164] Kitagawa E, Tsukamoto H, Hisada S, eta.. Studies on the chinese crude drug“Forsythiae Fructus”Ⅶ [J]. Chemical & Pharmaceutical Bulletin, 1984, 32 (3): 1209—1213.
    [165] Tsukamoto H, Hisada S, Nishibe S. Studies on the lignam from Oleaeeae plants [J]. Tennen YukiKagobutsu Toronkai Koen Yoshishu, 1983, 26:181—188 (Japan).
    [166] 刘东雷,徐绥绪,李会轻等. 连翘中的木脂素单糖苷[J]. 沈阳药科大学学报,1997,14(3):197-198.
    [167] Kitagawa S, Nishibe S, Benecke R, et a1. Lignans of Forsythia intermedia [J]. Phytochemistry, 1990, 29(6):1971-1980.
    [168] 西部三省. 中药连翘成分研究(第2报)第九改正日本药局方连翘基原植物的果实中木质体苷成分的比较[J]. 生药学杂志(日),1977, 31(2):131.
    [169] Chih M, Hisada S. Studies on the chinese crude drug“Forsythiae Fructus”(III) [J]. Shoyakugaku Zasshi, 1978, 32(3): 194-197.
    [170] 胡旺云,罗士德.连翘中三个乙酰化三萜的分离与鉴定[J].中草药,1991,22(4):147-152.
    [171] 徐植灵,潘炯光,吉力等. 连翘挥发油成分分析[J]. 天然产物研究与开发,1994,5(1):14-17.
    [172] Naghski J, Porter W L. Isolation of rutin from two varieties of Forsythia intermedia [J]. Journal of the American Chemical Society, 1947, 69:572.
    [173] Matsyi K, Tokoroyama T. Bitter constituents of Forsythia viridissima [J]. Phytochemistry, 1972, 11:1522-1523.
    [174] 刘悦,宋少江,徐绥绪等.连翘化学成分研究[J].沈阳药科大学学报,2003,20(2):101-103.
    [175] Takizawa Y, Suzuki E, Mitsuhashi. Natural occurring antioxidant (I).Isolation and determination of natural phenolic antioxidants from Forsythia Suspensa Vahl [J]. Tokyo gakngei Daigaku Kiyo dai-4-bumon, 1981, 33: 119-123 (Eng).
    [176] 周成萍,何宝林,廖蔚珍等.连翘化学成分的分析[J].中国民族学院学报 (自然科学版),1998,17(2):22-23.
    [177] 刘悦,宋少江,张国刚等.连翘中的一个新化合物(II) [J].中国药物化学杂志,2003,13(2):108-109.
    [178] 中华本草编辑委员会[M]. 中华本草,1999,16:159.
    [179] 张炜,张汉明,郭美丽等. 连翘的药理学研究[J]. 中国现代应用药学杂志,2000,17(20):7-9.
    [180] 于起福,孙非. 四种中草药水煎剂抗柯萨奇 B5 病毒的细胞学实验研究[J].吉林中医药,1995,1:35.
    [181] 芮菁,尾崎幸,唐元泰. 连翘提取物的抗炎镇痛作用[J].中草药,1999,30(1):43-45.
    [182] 丁岗,刘延泽. 中药连翘及其同属植物的研究近况[J]. 中药材,1994,17(10):42-44.
    [183] 侯晓薇,杨更森,刘春梅. 7 种中药对龋病主要致病菌的体外抑菌作用[J]. 中级医刊,1998,33(8):55-56.
    [184] 张其兰,赵鲁明,滕伯刚. 牙痛灵镇痛、抗炎及抑菌作用的研究[J]. 中成药,1994,16(8):35-36.
    [185] 胡克杰,徐凯建,王跃红等. 连翘酯甙体外抗病毒作用的实验研究[J]. 中国中药药科技,2001,8 (2) :89.
    [186] 段飞, 张双民, 杨建雄等. 连翘叶提取物抑菌作用的研究[J]. 西北药学杂志,2005,20(2):66-67.
    [187] 国家医药管理局中草药情报中心站编. 植物药有效成份手册[M]. 北京:人民卫生出版社,1986:902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700