葡西地区特低渗透油藏流体识别技术综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大庆西部外围油田开发的不断深入,后备储量动用难度越来越大,以葡西油田为代表的特低渗透复杂油气藏已成为目前油田开发的主要对象。该类油藏虽然储量资源较丰富,但储层薄、物性差、发育不稳定,储层特征难以掌握,钻井风险大;同时储层含泥、含钙、厚度小、流体类型多样、油水关系复杂等因素均掩盖了油水的电性响应特征,油水层解释符合率低。针对以上制约油田开发的瓶颈问题,本论文以葡西油田为研究对象,开展了特低渗透油气藏储层特征与流体识别研究,取得了以下研究成果:
     1.对葡西油田葡萄花油层开展了以高分辨率层序地层学理论指导的沉积特征研究,将葡萄花油层分成上、中、下三个四级层序8个体系域。另外由于多级次河流改道和河道决口,葡萄花油层保留了许多自旋回作用形成的更次级旋回地质记录,因此将葡西油田葡萄花油层进一步细分为葡Ⅰ1-11个小层,其中葡Ⅰ1-3为上砂岩组,葡Ⅰ4-6为中砂岩组,葡Ⅰ7-11为下砂岩组。
     2.在上述层序地层学系统研究基础上,综合利用岩心、录井、测井及地震等资料,对葡西油田葡萄花油层沉积体系进行了深入的研究,确定了葡西油田葡萄花油层主要发育三角洲前缘亚相沉积,水下分流河道、分流河道间薄层砂、河口坝、席状砂为主要微相类型;储层砂体分布零星,平面上砂体呈短条带状、串珠状,透镜体状零星分布,纵向上砂体连通性差,砂泥比低,属于典型的“泥包砂”沉积模式。
     3.在岩心观察、成像测井、动态分析等常规方法研究裂缝的基础上,重点利用无源微地震法对裂缝发育规模与程度进行了有效预测。从监测结果看该油藏中存在一定构造裂缝,且以高角缝为主,裂缝走向以北东东向为主,该方向反映了应力场的作用和影响,接近最大水平主应力方向。其次为北西西向裂缝,反映原生裂隙带的存在。这些裂缝的存在对油层流体识别、注水方案的编制以及油田的后期开发调整存在着较大的影响。
     4.在总结含不同种类流体储层的测井响应特征的基础上,研究了相应的测井响应机理,认为葡萄花油气藏中的低电阻率油层主要由薄层、薄互层、高束缚水饱和度、高泥质含量引起;高电阻率水层的形成是由于水层中含钙或含残余油,导致电阻率升高。
     5.针对常规流体识别方法解释符合率低的问题,开展了特低渗透复杂储层的流体识别技术研究。建立了分类图版法,即首先建立粉砂岩、细粉砂岩、含钙致密砂岩、泥质粉砂岩的岩性识别图版,然后根据不同类型储层再建立相应的流体识别图版,此种方法有效地提高了复杂储层流体识别能力。
     通过本论文的研究,解决了制约葡西油田开发的“瓶颈”问题,为葡西油田的大面积开发提供了技术支撑,同时也为大庆油田长垣以西地区的他拉哈、新肇等低渗透油水同层油藏的动用、开发提供了借鉴。
With the development of the exploitation of the western peripheral area of Daqing oil field, it is more and more difficult to use the mothball reserves, so that the exploitation of the low permeability reservoir that representative by Puxi oil field becomes the main exploitation object at present. This kind of oil reservoir keeps more abundant resource, but because of the thin reservoir, bad physical property and unstable development, it is difficult to control the reservoir characteristics and drilling technology, simultaneously, because of the argilliferous, calcareous and thin of the reservoir, multiple types of fluid and complexity of the oil and water relationship, it is difficult to recognize the electric nature of the oil and water and made the low coincidence rate of the interpretation of the oil and water layer. So, in this paper we based on Puxi oil filed developed the fluids identification method and studied the prediction of the potential area of the extra-low permeability reservoir. The contributions of this paper are as follows:
     1. Developed the deposition nature of the Putaohua oil layer in Puxi oil filed based on the theory of high resolution sequence stratigraphy, separate the Putaohua oli layer into three four-stage sequence(eight systems tracts) Additionally, because of the multiple diversion of river course and crevasse of river channel, there are many secondary cycle geologic record generated by autocyclicity effect, So Putaohua oil layer was separated into eleven layers named PI1-11, where PI1-3is top sandstone group, PI4-6 is middle sandstone group and PI7-11 is underneath sandstone group.
     2. Based on the above research on sequence stratigraphy, make use of the drill core, mud logging, logging and seismic materials, we do research on the deposit systems of Putaohua oil layer in Puxi oil field, make certain that Putaohua oil layer in Puxi oil field mainly develop delta front intrafacies, main microfacies types are subaqueous distributary channel, lie in distributary channel, mouth bar and sand sheet, because sand body of reservoir distribute discretely, sand body distribute as short strips, moniliformiy and lenses discretely. Sand body connectedness is bad on vertical, heavy clay content. We make certain that this is typically "mud pack sand" deposition type.
     3. Based on the research of cracks conventional methods such as core observation, image logging, dynamic analysis, we predict the cracks scale effectively mainly by the no-source microseismic. From the result of detection, we can get there are some structure cracks in this reservoir and it is mainly high-angle cracks, the trend is east-north-east. The trend mainly presented the effect and affection of the stress pattern, it is close to the direction of maximum principal stress. Second is north-west- west cracks, it indicates original existence of cracks. The existence of cracks affects the liquid identification of the oil layer, injection strategy and the late development adjustment of the oil field.
     4. Based on the summary of reservoir logging response that has different kinds of liquid, study on the corresponding logging response mechanism, we think that the low resistance oil layer of Putaohua reservoir was caused by thin layer, high bound water saturation, high shale content, the formation of high resistance water layer is because there is calcium or irreducible oil, so that the resistance become high.
     5.Develop the study of fluid identification technology of low permeability complex reservoir in view of the problem of the low interpretation coincidence rate. Build up the classification chart method, it is first build up the lithology identification chart of the siltstone, lepto siltstone, calcium tight sandstone, argillaceous siltstone, then according to the different kinds of reservoir, build up the corresponding fluid identification chart, this method improve the identification ability of complex reservoir effectively.
     We resolved the bottleneck problem restricting Puxi oil-field's development, provided the technique for the big area development of Puxi oil-field via the research in this paper. At the same time, providing reference for the exploitation of the low permeability oil-water layer reservoir like Talaha, Xinzhao , which are in the west in Changyuan of Daqing oil-field.
引文
[1]Sun S W,Shu L S,Zeng,Y W,Cao J,Feng Z Q.Porosity-permeability and textural heterogeneity of reservior sandstones from the Lower Cretaceous Putaohua Member of Yaojia Formation.Weixing Oilfield,Songliao Basin,Northeast China,Marine and Petroleum Geology,2007,24,109-127.
    [2]Guan Y C.Impact of dynamic mud invasion on Sw estimation in fresh water formations.Sudan Blocks 1/2/4,Muglad Basin:The Log Analyst,2001,40(3);205-221.
    [3]Givens W W,A conductive rock matrix model(CRMM) for the analysis of low-contrast resistivity formations.The Log Analyst,1987,17:72-76.
    [4]Hawes R Ⅰ.Feasibility studies of waterflooding gas condensate reservoirs[C].SPE15875,1986.
    [5]Henderson.Waterflooding of gas-condensate fluis in cores above and below the dewpoint[C].SPE22636,1991.
    [6]Fishlock T P.Waterflooding of gas condensate reservoirs[J].SPERE,1996,11:1-8.
    [7]Zhou D,Jia L,Kamath J,Kovscek,A R.Scaling of counter-current imbibition processes in low-permeability porous media,Journal of Petroleum Science and Engineering,2002,33:61-74.
    [8]Liu J J,Feng X T,Jing L R.Theoretical and experimental studies on the fluid-solid coupling processes for oil recovery from low permeability fractured reservoirs,Paper 2B41-SINOROCK2004 Symposium,Int.J.Rock Mech.Min.Sci.2004,41(3):1-6.
    [9]Dou LR,Xiao K Y,Cheng D S,Shi B Q,Li Z.Petroleum geology of the Melut Basin and the Great Palogue Field.Sudan.Marine and Petroleum Geology,2007,24(3):129-144.
    [10]Bagirov E,Lerche Ⅰ.Potential oil-field discoveries for Azerbaijan.Marine and Petroleum Geology,1998,15(1):11-19.
    [11]Hamada G M,Al-Blehed M S,Al-Awad M N,Al-Saddique M A.Petrophysical evaluation of low-resistivity sandstone reservoirs with nuclear magnetic resonance log.Journal of Petroleum Science and Engineering,2001,29:129-138.
    [12]Surdam R C,Crossley L J,Hagen E S.Organic-inorganic interaction and sandstone diagenesis.AAPG Bulletin 1989,73:1-23.
    [13]Gier S.Clay mineral and organic diagenesis of the Lower Oligocene SchOneck Fish shale,western Austrian Molasse Basin.Clay Minerals 2000,35:709-719.
    [14]Ketzer J M,Morad S,Evans R.Distribution of diagenetic alterations in fluvial,deltaic and shallow marine sandstones within a sequence stratigraphic framework:evidence from the Mullaghmore Formation(Carboniferous),NW Ireland.Journal of Sedimentary Research 2002,72:760-774.
    [15]Sachsenhofer R F,Gratzer R,Tschelaut W.Characterisation of non-producible oil in Eocene reservoir sandstones(Bad Hall Nord field,Alpine Foreland Basin,Austria).Marine and Petroleum Geology 2006,23(1):1-15.
    [16]La Torraca G A,Dunn K J,Bergman D J.Magnetic susceptibility contrast effects on NMR T2 logging.SPWLA 36th Annual Logging Symposium,Paris,1995,June 26-29.
    [17]李浩,刘双莲,吴伯福,等.低电阻率油层研究的3个尺度及其意义.石油勘探与开发,2005.32(2):123-125.
    [18]汪周华,吐依洪江,郭平,等.凝析气藏水驱机理研究,西南石油学院学报,2006,28(6):36-39.
    [19]陈义才、李延均、杨远聪,等.松辽盆地古龙凹陷凝析气藏判断及分布.新疆石油地质,1997,18(4):313-318.
    [20]蒋凌志、顾家裕、郭彬程.中国含油气盆地碎屑岩低渗透储层的特征及形成机理.沉积学报,2004,22(1):13-18.
    [21]高霞,谢庆宾.低电阻率油气藏成因机理及研究方法综述.中外能源,2006,11(6):28-32.
    [22]曾文冲.油气藏储集层测井评价技术.北京:石油工业出版社,1991.67-70.
    [23]欧阳健,张建华.渤海湾海水泥浆侵入油气层双侧向测井定量分析研究.测井技术,1998,22(4):256-260.
    [24]王宣龙,白全胜,赵文杰.胜利油区低电阻率油层类型及成因研究.特种油气藏,2004,11(1):21-23.
    [25]孙红梅,陈红梅.辽河油田中低电阻率油田解释评价方法研究.录井工程,2006,17(4):22-25.
    [26]欧阳健.油藏中饱和度-电阻率分布规律研究[A].北京:石油勘探与开发,2002,29(3):44-47.
    [27]王行信,辛国强,冯永才.松辽盆地粘土矿物研究.黑龙江科学技术出版社,1990.
    [28]张建华,胡启.泥浆侵入条件下的时间推移感应测井研究.测井技术,1993,17(4):239-244.
    [29]雍世和,张超谟.测井数据处理与综合解释.东营:石油大学出版社,2002.135-136.
    [30]周荣安,焦创赟,李志伟,等.鄂尔多斯盆地高电阻率水层的成因分析,测井技术,2005,29(4):333-336.
    [31]杨万里,李永康,高瑞祺,等.松辽盆地陆相生油母质的类型与演化模式.松辽陆相盆地石油地质,北京:石油工业出版社,1985.
    [32]赵澄林.沉积学原理.北京:石油工业出版社,200l,279-281.
    [33]孙伟峰.宝浪油田裂缝监测技术及其应用.科技情报开发与经济,2006,16(10):289.
    [34]沈德梅,李润华,钟玉龙,等.无源微地震法储层裂缝监测技术在双河油田的应用.河南石油,2005,19(3):71-73.
    [35]薛凤玲,李中冉,王亚茹,等.测井储层流体识别方法及其在低渗透油藏描述中的应用.大庆石油学院学报,28(6):92-94.
    [36]牛彦良,周永炳,刘国志,等.葡西油田葡萄花油层凝析气藏及成因分析.大庆石油地质与开发,2004,23(4):24-25.
    [37]欧阳健.渤海湾地区低电阻油气层测井技术与解释方法.北京:石油工业出版社,2000.1.
    [38]欧朝阳.泌阳凹陷复杂油藏低阻油层测井解释方法及应用.测井技术,2001,25(1):31-37.
    [39]郭洪岩,黄德利,潘国辉,等.低渗透油藏薄差油水层流体识别解释方法.中国石油勘探,2001,6(1):31-33.
    [40]李厚义.对低电阻率油层的一个误解及修正.测井技术,2002,26(2):148-149
    [41]周荣安.低电阻率油层解释方法.测井技术,2002,26(3):201-204.
    [42]高卫国,周凤鸣.冀东油田低阻油层成因分析研究.渤海湾地区低电阻油气层测井技术与解释方法,北京:石油工业出版社,2000.32-39.
    [43]孙贵霞.歧50断块低阻油层研究.测井技术,2000,24(4):291-294.
    [44]毛志强.塔里木盆地油气层低阻成因实验研究(Ⅰ).测井技术,1999,23(4):243-248.
    [45]夏建惠,刘新红.松辽盆地北部中部组合地层水特征及与油气有关问题的讨论.石油地质研究报告集(13),1985.
    [46]汪爱云,宋延杰,刘江,等.葡西地区低阻油层的成因.大庆石油学院学报,2005,29(1):18-20.
    [47]唐文生.后期水侵型复杂断块/岩性油藏评价.测井技术,2000,24(1):36-46。
    [48]林景哗,王建堂,谭保祥.头台、葡萄花低孔低渗储层分类评价方法.大庆石油地质与开发,1994,13(2):13-17.
    [49]刘维林,刘江,张军龙,等.葡西地区油水层分类解释方法.大庆石油地质与开发,2003,22(1):57-59.
    [50]田国华,刘江,韩波.低孔渗储层油水层判别分析方法.黑龙江大学自然科学版,2004,(1):35-38.
    [51]张丙山,杜建华,艾慧娟.核磁共振技术在葡西葡萄花油层的应用.大庆石油地质与开发,2005,24(增):121-122.
    [52]林景哗,李星军,赵文革.葡西地区葡萄花油层有效厚度标准的制定方法.大庆石油地质与开发,1999,18(4):33-34.
    [53]李艳丽,楚泽涵,岳兴举.葡西地区葡萄花油层定量识别与评价方法.测井技术,2002,26(5):379-382.
    [54]欧阳健.渤海湾油区测井低电阻油层勘探潜力分析,勘探家,1998,3(4):37-42
    [55]黄薇,杨辉,熊庆利,等.葡西地区岩性油藏勘探部署评价方法及经验.中国石油勘探,2003,8(3):69-74.
    [56]殷进垠,林铁锋.大庆长垣以西地区T1、T2层构造特征及其与油气分布关系研究.石油地质研究报告集(20),1992.
    [57]对大庆长垣西侧鼻状构造带油气藏形成规律的几点认识.松辽盆地石油勘探成果报告集,1975.
    [58]李延均,陈义才,朱江.松辽盆地古龙地区葡萄花油层油气成因与凝析气藏形成分布.西南石油学院学报,19(3):14-19.
    [59]李民河,廖建德,李震,等.陆梁油田头屯河组油藏地应力分析及应用.断块油气田,2004,11(1):28-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700