铜合金水平电磁连铸及行星轧制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜合金因具有高耐蚀、高强度、高导电等性能而被广泛应用。在铜基体中添加镍、铁和锰元素,制备具有良好耐腐蚀性能的BFe10-1-1合金,可运用于海水淡化和船舶等行业。在铜基体中添加微量铬和锆元素,形成具有高强度和高导电性能的Cu-Cr-Zr合金,可运用于高速铁路等行业。
     传统BFe10-1-1管材的制备工艺复杂,成品率不足40%,市场竞争力较弱,需要开发一种短流程的制备工艺。时速超过350km高铁所需Cu-Cr-Zr接触导线也需要用短流程工艺制备,如京沪高铁要求的接触导线强度为600MPa以上、导电率80%IACS以上和单根盘重2500kg,传统Cu-Cr-Zr合金的真空熔铸及加工方式无法满足要求。因此,研究一种新技术制备这两种铜合金管线材,具有重要意义。
     电磁搅拌技术作为细化晶粒、消除偏析的重要手段,可显著提高BFe10-1-1和Cu-Cr-Zr铸坯的质量。行星轧制技术能够实现超长铸坯的大变形,而且能依靠动态再结晶改善组织性能。本文通过水平连铸及行星轧制短流程工艺制备BFe10-1-1管材的研究,分析了旋转磁场和行星轧制对材料性能的影响,然后把该工艺运用于Cu-Cr-Zr接触导线的制备。
     本文研究了旋转磁场对BFe10-1-1管坯的表面质量、组织和晶粒尺寸等性能的影响,结果表明:管坯表面的平均粗糙度Ra(μm)降低了65.87%;柱状晶组织消失,管坯上下端组织均匀,晶粒在横断面和纵断面的生长方向均被打散;管坯晶粒得以细化,平均晶粒尺寸为0.55mm;元素分布均匀。
     BFe10-1-1管行星轧制变形的研究表明:再结晶细化晶粒的效果显著,管坯的抗拉强度为293MPa,硬度为99HB,断面收缩率为26%,具有良好的塑性变形性能;轧制后90%管坯的偏心率保持在2.8%—6.0%,优于挤压穿孔工序的偏心率,可有效防止拉伸过程的不均匀变形。拉伸变形通过了多次实验验证。短流程工艺制备BFe10-1-1管获得成功。通过研究BFe10-1-1管的塑性变形规律发现,塑性变形中同时存在固溶强化、形变强化和细晶强化三种机制,固溶强化、形变强化是引起强度增加、塑性降低的主要原因;而细晶强化在提高强度的同时也提高了塑性,只是对提高塑性的贡献率没有固溶强化和形变强化对降低塑性显著,三者叠加的结果使材料整体性能表现为强度提高、塑性降低。
     针对时速超过350km高铁所需特殊性能接触导线,将短流程工艺运用于Cu-Cr-Zr接触导线的制备。研究了非真空条件的水平电磁连铸技术,发现施加旋转磁场使Cu-Cr-Zr棒坯的铸造温度降低了22℃,实现了低温铸造,是非真空条件熔铸棒坯的关键因素。通过现场多次实验,确定了非真空条件下水平电磁连铸技术制备φ87mm、长度45m的Cu-Cr-Zr棒坯工艺:铸造速度为108 mm/min,铸造温度为1255-1260°C,冷却水流量1.9 m3/h,旋转磁场参数为50 A、30Hz。棒坯表面无裂纹,凝固组织均匀,内部无气孔和夹渣,晶粒得以细化,元素分布均匀。
     长度45m的Cu-Cr-Zr棒坯进行了行星轧制,轧制变形使棒坯完成了动态再结晶,平均晶粒尺寸为0.04mm,抗拉强度为244.04 MPa,伸长率为29.31%,导电率为75.10%IACS。轧制后棒坯的固溶工艺为860°C×1h。三道次冷加工变形后棒坯的时效工艺为385℃×2h。经过水平电磁连铸、行星轧制、固溶处理、冷加工和时效处理工艺,制备的成品导线的抗拉强度达到610 MPa、导电率85%IACS、单根盘重2500kg。强度不断提高是细晶强化、固溶强化、时效强化和形变强化共同作用的结果。在合作工厂制备了200吨高强高导Cu-Cr-Zr接触导线,于2010年10月3日在京沪高铁线上通过了高铁史上最高运营时速486.1公里的实验,新型高强高导接触导线的开发获得成功。
Copper alloys are widely used because of its excellent properties, such as high corrosion resistance, high strength and high electric conductivity and so on. Copper alloy CuNi 1 OFe 1 Mn added Ni, Fe and Mn elements in the copper matrix is widely applied to desalination of sea water, marine ship and other industries due to its property of high corrosion resistance. Cu-Cr-Zr alloy added Cr and Zr in the copper matrix is applied to high-speed railway due to its properties of high strength and electric conductivity.
     There is an urgent need to study a short process technology of CuNi10FelMn tubes as the traditional preparation technology is complicated, and the rate of finished products is less than 40%, so the products are less competitive. The researches indicate that the short process technology can also produce the contact wires installed on the high-speed railway with 350km/h speed, for instance, the properties of contact wires used in the Beijing-Shanghai high-speed railway are demanded that the tensile strength is above 600MPa, and the conductivity is above 80%IACS and the single plate weight is above 2500kg. Therefore, traditional vacuum casting and processing methods of Cu-Cr-Zr alloys must be changed. In a word, it is significant to study a new technology for preparing copper alloys as mentioned above.
     Electromagnetic stirring technology plays a significant role in improving the quality of CuNi10FelMn and Cu-Cr-Zr alloy due to grains refining and elimination of segregation. A large deformation of long billets can be achieved by planetary rolling technology and improvement of the structural properties can be realized by dynamic recrystallization. This paper studied the short process technology combining the horizontal continuous casting with planetary rolling in the preparation of CuNi10FelMn tubes, explored the effect of the rotating electromagnetic field (REF) and planetary rolling on the material properties, and then the contact wire of Cu-Cr-Zr alloy was prepared by the short process technology.
     This paper studied the influence of REF on the surface quality, structure and grain size of CuNi10FelMn billets and so on. The results indicate that:the average roughness Ra (μm) of tubes surface is decreased by 65.87%, and the columnar grain structure of top and bottom area is disappeared, and the grain size is refined obviously, which is 0.55mm. The distribution of elements is even.
     The studies of planetary rolling of CuNi10FelMn tubes indicate that there is a good property of plastic deformation as the grain size is refined obviously by dynamic recrystallization, and the tensile strength is 293MPa, and the hardness is 99HB, and the percentage of area reduction is 26%. The eccentricity of 90% tubes after planetary rolling is remained at 2.8%-6.0%, which is better than that of the extrusion process and can effectively prevent the uneven deformation during the drawing deformation. The drawing process has successfully passed the test many times, so the short process technology can be successfully used for producing the CuNilOFelMn tubes. The studies of the plastic deformation indicate that:there are three mechanisms such as solution strengthening, deformation strengthing and refined grain strengthening, and the increase of strength and the decrease of plasticity are mainly caused by the solution strengthening and deformation strengthing, however, the refined grain strengthening not only improves the strength but also improves the plasticity, only the contribution rate of raising the plasticity is not more remarkable than that of the solution strengthening and deformation strengthing. As a result, the whole properties of the tube show that the plasticity is reduced and the strength is increased by three methods.
     The short process technology is applied to produce the contact wires of Cu-Cr-Zr alloy in order to meet the special needs of high-speed railway over 350km/h speed. The paper studied the horizontal electromagnetic continuous casting under non-vacuum conditions, the results indicate that the low-temperature casting by decreasing 22℃can be achieved by REF, which is a key factor for non-vacuum conditions. The casting parameters of Cu-Cr-Zr alloy billet with a length of 45m, diameter ofΦ87 are:casting speed is 108mm/min, and casting temperature is 1255℃-1260℃, and the cooling water flow is 1.9 m3/h, the parameters of REF are that the current intensity is 50 A and the frequency is 30Hz. There is no crack on the billet surface and no porosity and slag on internal, and the solidification structure and the distribution of Cr, Zr, Cu of are even, and the grain refinement is significant.
     The Cu-Cr-Zr billet with length of 45m can be rolled by planetary rolling technology, which makes the bar achieve dynamic recrystallization. The average grain size of the billet's bar is 0.04mm, the tensile strength of which is 244.04 MPa, elongation of which is 29.31%, and conductivity of which is 75.10% IACS. The solution parameters of rolled bar are 860℃×1h. The aging parameters after cold deformation with three passes are 385℃×2h. After the processing of horizontal electromagnetic continuous casting, planetary rolling, solution treatment, cold deformation and aging treatment, the properties of finished contact wire are that the tensil strength is 610 MPa, and the conductiviey is 85%IACS. Increasing of tnesile strength is depended on the refined grain strengthening, solution strengthening, aging strengthening and deformation strengthening. The finished contact wires of 200 tons have been produced for Beijing-Shanghai high-speed railway at co-cooperation workshop, and they have been successfully passed the experiment of the highest operating speed of 486.1 km/h in the high-speed railway history on October 3,2010. A new contact wire of high strength and high conductivity achieves success.
引文
[1]钟卫佳,马可定,吴维治.铜加工技术实用手册[M].北京:冶金工业出版社,2007.
    [2]王碧文.中国铜加工工业现状及发展趋势[C].中国铜加工技术与应用论坛文集.北京:中国有色金属加工工业协会,2007.
    [3]阎志明.铜及铜合金管坯水平电磁连续铸造技术研究[D](博士学位论文).大连:大连理工大学,2009.
    [4]王碧文.中国铜加工最新投资项目进展情况与行业前景分析[C].2006年中国铜加工研讨会论文集.北京:2006.
    [5]王海才.舰船及海洋工程用铜及铜合金[C].中国铜加工技术创新文集.北京:中国有色金属加工工业协会,2006.
    [6]Gilbert P. T. Copper Alloys for Seawater Systems [C]. Institute of Marine Engineers Symposium,. London:March 1968.
    [7]J. P. Fulford, R. W. Schutz, Lisenbey R. C. Characterization of Titanium Condenser Tube Hydriding at Two Florida Power and Light Company Plants [C]. Joint ASME/IEEE Power Generation Conference. Florida:1987.
    [8]张智强,,郭泽亮,,雷竹芳.铜合金在舰船上的应用[C].中国铜加工技术创新文集.北京:中国有色金属加工工业协会,2006.
    [9]吴朋越,谢水生,黄国杰.高速列车用铜合金接触线用材料及其加工工艺[J].稀有金属.2006,30(2):203-207.
    [10]黄崇祺.轮轨高速电气化铁路接触网用接触线的研究[J].中国铁道科学.2001,22(1):1.
    [11]张强.高速用铜镁合金接触线的研究[J].铁道机车车辆.1996,6:18.
    [12]吴予才.高速电气化铁路接触网导线[J].稀有金属.2004,28(1):289.
    [13]雷静果,刘平,井晓天.高速铁路接触线用时效强化铜合金的发展[J].金属热处理.2005,30(3):1.
    [14]刘辉,胡忠卫,樊刚.铜银合金接触线(cTHA)的性能研究[J].云南冶金.2004,33(3):34.
    [15]郭莉,李耀群.冷凝管生产技术[M].北京:冶金工业出版社,2007.
    [16]肖寒.TP2铜管坯水平连铸工艺缺陷研究[D](硕士).大连:大连理工大学,2006.
    [17]顾维.水平连续铸钢的设备与工艺[J].铸造设备研究.1995,4(6-11).
    [18]Zhiming Yan, Xintao Li, Zhiqiang Cao, Xiaoli Zhang,Tingju Li.. Grain refinement of horizontal continuous casting of the CuNilOFelMn alloy hollow billets by rotating magnetic field(RMF). [J]. Mater Lett.2008,62:4389-4392.
    [19]李新涛,郭照相,赵祥伟.一种白铜管坯的近终形连铸[J].铸造技术.2007,56(7):691-693.
    [20]李新涛,赵祥伟,魏笔,et a1.旋转电磁场对BFe10—1—1合金管坯组织及力学性能的影响[J].中国有色金属学报.2007,17(6):922-926.
    [21]李冰,张士宏,张金利.B10铜合金管坯三辊行星轧制模拟优化与实验研究[J].稀有金属.2006,30(专辑):162-167.
    [22]赵大军,唐丽,管桂生.我国电气化铁道用接触线的现状和发展趋势[J].铁道机车车辆.2008,28(5):74-77.
    [23]吴予才.高速电气化铁路接触网导线[J].稀有金属.2004,28(1):289-292.
    [24]黄崇祺.轮轨高速电气化铁路接触网用接触线的生产现状及发展趋向[J].电线电缆.1999,(6):2-6.
    [25]张强,宋卫星.我国铜及铜合金接触线与承力索的研究和创新[J].现代城市轨道交通.2004,2:18.
    [26]牛玉英,宋宝韫,刘元文.银铜合金接触线新工艺的研究[J].中国铁道科学.2005,26(3):99-102.
    [27]刘辉.连铸连轧法取代传统上引法生产高速电气化铁路用铜银合金接触线的研究[D](硕士学位论文).昆明:昆明理工大学,2004.
    [28]白常厚,刘关强.高强高导合金电极材料铜铬锆合金新工艺研究[J].有色矿冶.2007,23(1):34-37.
    [29]王隆寿.宝钢铬锆铜结晶器铜板的研究开发[J].宝钢技术.2000,(2):55-59.
    [30]韩至成.电磁冶金技术及装备[M].北京:冶金工业出版社,2008.
    [31]Moffatt H.K., Proctor. W.R.E. Metallurgical application of magnetohydrodynamic [C]. Proceedings of a Symposium of the IUTAM. London:1982.
    [32]S. Asai. Recent activities and trend of electromagnetic processing of materials [C]. Proceeding of the 6th International Iron and Steel Congress. Nagoya:1990.
    [33]S Asai. Electromagnetic Processing of Materials 1994 [C]. The 1st International Symposium on Electromagnetic Processing of Materials. Nagoya,Japan:1994.
    [34]Y.Fautrelle. Electromagnetic Processing of Materials 1997 [C]. The 2th International Symposium on Electromagnetic Processing of Materials. Paris, France:Oct.1997.
    [35]Shoji Taniguchi. Electromagnetic processing of materials 2000 [C]. The 3th International Symposium on Electromagnetic Processing of Materials. Nagoya, Japan Oct.2000.
    [36]Y.Fautrelle. Electromagnetic processing of materials 2003 [C]. The 4th International Symposium on Electromagnetic Processing of Materials. Lyon, France:Oct.2003.
    [37]Shoji Taniguchi. Electromagnetic processing of materials 2006 [C]. The 5th International Symposium on Electromagnetic Processing of Materials. Sendai, Japan:Oct.2006.
    [38]李廷举,温斌,张志峰.电磁场作用下材料加工新技术[J].大连理工大学学报.2000,40:61-64.
    [39]李廷举,金俊泽.改进铸坯表面质量的电磁连续铸造研究进展[J].大连理工大学学报.2000,40(1):80-82.
    [40]Birat J. P., Chone J. Electromagnetic stirring on billet, bloom and slab continuous casters:state of the art in 1982 [J]. Ironmaking and Steelmaking.1983,10:67-73.
    [41]周汉香,于学斌.电磁搅拌技术的发展及其在武钢的应用[J].武钢技术.2004,42(4):45-49.
    [42]潘秀兰,王艳红,梁慧智.国内外电磁搅拌技术的发展与展望[J].鞍钢技术.2005,334:9-15.
    [43]徐国兴,张琪渔.电磁搅拌技术在连铸机上的应用及其对铸坯质量的改善[J].上海金属.1997,19(3):28-33.
    [45]K Fujisaki. In-mold electromagnetic stirring in continuous casting [J]. IEEE Transactions on Industry Applications.2001,37(4):1098-1104.
    [46]S Oh K, W Chang Y. Macro-segregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring [J]. ISIJ International.1995, 35(7):866-875.
    [47]杜卫东,王凯,蒋明伟.间歇式变向复合电磁搅拌作用下60Si2CrVAT钢的凝固组织[J].钢铁.2007,42(11):27-30.
    [48]陈崇峰.一种新型的连铸电磁搅拌技术[J].钢铁研究.1997,3:53-56.
    [49]K Ayata, H Mori, Tanigunchik. Low superheat teeming with eletromagnetic stirring [J]. ISIJ International.1995,35(6):680-685.
    [50]朱兴元.连铸电磁搅拌工艺在取向硅钢生产中的应用研究[J].钢铁.1994,29(4):19-23.
    [51]李开煜,杨焕祥.电磁搅拌工艺参数的研究与应用[J].炼钢.1994,3:47-52.
    [52]李开煜.EMS和轧制参数对含磷钢低温韧性的影响[J].钢铁研究.1991,5:6-9.
    [53]李开煜.电磁搅拌工艺对无取向w10-12钢质的影响[J].钢铁研究.1990,3:21-25.
    [54]纪振双,姚留枋,唐仲和.电磁搅拌作用下铸坯宏观偏析的研究[J].钢铁研究学报(增刊).1992,4:9-14.
    [55]纪振双,姚留枋,唐仲和.连铸过程采用电磁搅拌时的负偏析带的形成机理[J].钢铁研究学报.1993,5(2):9-16.
    [56]赵航,李铮.连铸钢坯上白亮带的形成机制[J].钢铁研究学报.2000,12(1):71-72.
    [57]吴夜明,姚留枋.电磁搅拌对铸坯化学成分偏析影响机理[J].特殊钢.1999,20(3):13-16.
    [58]赵爱民,毛卫民,崔成林.电磁搅拌对弹簧钢60Si2Mn凝固组织的影响[J].北京科技大学学报.2000,22(2):134-137.
    [59]周德光,傅杰,王平.工艺参数对连铸轴承钢坯碳偏析的影响[J].钢铁.1999,34(6):22-26.
    .[60]杨卯生,赵爱民,毛卫民.钢的半固态电磁搅拌力场与组织转变[J].钢铁研究学报.2003,15(4):18-23.
    [61]李树索,王德仁,毛卫民,et al. Al-37%Si合金磷变质及电磁搅拌显微组织的研究[J].机械工程材料.1998,22(5):14-16.
    [62]胡汉起,郑日琪.电磁搅拌对低硫钢枝晶组织及机械性能的影响[J].金属学报.1990,26(4):A313-A315.
    [63]董晟全,王春景,杨通,et al. SiCP/Al水平连铸电磁搅拌结晶器的设计[J].西安工业学院学报.2001,21(4):336-342.
    [64]周书才,曹鹏军,任正德,et al电磁搅拌对水平连铸奥氏体不锈钢组织的影响[J].特种铸造及有色合金.2006,26(12):784-786.
    [65]李树索,赵爱民,毛卫民, et al.半固态过共晶Al-Si合金显微组织中近球形a相形成机理的研究[J].金属学报.2000,36(5):545-549.
    [66]毛卫民,李树索,赵爱民,et al.电磁搅拌Al-24%Si合金的显微组织[J].中国有色金属学报.2001,11(5):819-823.
    [67]毛卫民,赵爱民,崔成林,et al.电磁搅拌对半固态AlSi7Mg合金初生α-Al的影响规律[[J].金属学报.1999,35(9):971-974.
    [68]韩维新,杨柯,李殿中,et al.电磁搅拌对离心铸造0Cr17Mn14Mo2N管坯组织和性能的影响[J].铸造.1998,12:7-9.
    [69]祝美丽,李海英,张俊善,et al.电磁搅拌对HK40钢离心铸管显微组织及蠕变性能的影响[J].机械工程材料.2004,28(8):18-20.
    [70]李治,金俊泽,曹志强.电磁搅拌作用下TM颗粒-A1红外功能复合材料的研究[J].大连理工大学学报.1999,39(4):523-526.
    [71]金俊泽,曹志强,郑贤淑.电磁搅拌作用下形成分离共晶的研究[J].金属学报.1995,31(8):B374-B378.
    [72]Li Xintao, Guo Zhaoxiang, Zhao Xiangwei, et al. Continuous casting of copper tube billets under rotating electromagnetic field [J]. Materials Science and Engineering A.2007,460-461:648-651.
    [73]李新涛,赵祥伟,魏笔,et a1.旋转电磁场对BFe10—1—1合金管坯组织及力学性能的影响[J].中国有色金属学报.2007,17(6):922-926.
    [74]回春华,李廷举,金文中,et a1.锡磷青铜带坯的水平电磁连铸技术研究[J].稀有金属材料与工程.2008,37(4):721—724.
    [75]Wenzhong Jin, Tingju Li, Guomao Yin. Research on vacuum-electromagnetic casting of IN 100 superalloy ingots [J]. Science and technology of advanced materials.2007,8:1-4.
    [76]Wenzhong Jin, Fudong Bai, Tingju Li, et al. Grain refinement of superalloy IN 100 under the action of rotary magnetic fields and inoculants [J]. Materials Letters.2008,62:1585-1588.
    [77]金文中,白富栋,李廷举, et al.电磁场和表面孕育剂对K417高温合金铸态组织的影响[J].稀有金属材料与工程.2008,37(5):784-788.
    [78]金文中.K417高温合金真空熔铸凝固过程的电磁控制[D](博士学位论文).大连:大连理工大学,2008.
    [79]金文中,李军,李廷举,et al.线性电磁搅拌对K417高温合金母合金锭质量的影响[J].真空科学与技术学报.2008,28(6):579-583.
    [80]上原彰夫,藤崎敬介,清濑明人.连续铸造铸にねけゐ型内电磁搅拌方法[P].日本,特开平10-180426.
    [81]贾光霖,庞维成.电磁冶金原理与工艺[M].沈阳:东北大学出版社,2003.
    [83]渡边省三,清瑕名,青木松秀, et al.连续铸造方法[P].日本,平3-254338.
    [84]Hidemaro TAKEUCHI, MORI Hisashi, IKEHARA Yasunobu, et al. The effects of electromagnetic stirring on solidification structure of continuously cast SUS430 stainless steel slabs [J]. Trans. ISIJ. 1981,21:109-116.
    [85]Suzuki Ken-ichiro, Shinsho Yutaka, Murata Kenji, et al. Hot model experiments on electromagnetic stirring at about crater end of continuously cast bloom [J]. Trans. ISIJ.1984,24:940-949.
    [86]Toh Takehiko, Takeuchi Eiichi, Hojo Masatake, et al. Electromagnetic control of initial solidification in continuous casting of steel by low frequency alternating magnetic field [J]. ISIJ International.1997, 37(11):1112-1119.
    [87]山本裕则,松村千史,森健太郎.连续铸造方法及ひその装置[P].日本,特开平4-220149.
    [88]Len Beitelman. Flow control in the meniscus of continuous casting mold with an auxiliary a.c. magnetic field [J]. ISEPM.1994:235-241.
    [89]L Beitelman, A Mulcahy J. Continuous casting of steel billets with an in-mold dual-coil electromagnetic stirring system [J]. ISEPM.1997:335-341.
    [90]S.Kunstreich, M.C.Nove, D.Yves. In-mold double stirring system in continuous casting:effect of two counter rotating magnetic fields [J]. ISEPM.1997:355-365.
    [91]藤村俊生,北冈英就.连续铸造片の中心偏析防止方法[P].日本,特开昭63-157748.
    [92]赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社,1998.
    [93]冯慈璋.电磁场[M].北京:高等教育出版社,1983.
    [94]王晓东.电磁力对金属熔体驱动与运动形态控制的研究[D](博士论文).大连:大连理工大学,2002.
    [95]Joseph A, Mulcahy, Leonid Beitelman. Rotary electromagnetic stirring for continuous casting of billets and blooms [J]. Iron and Steel Engineer.1984, (7):49-57.
    [96]李新涛.管线坯水平连铸工艺及外场改性研究[D](博士学位论文).大连:大连理工大学,2006.
    [97]胡汉起.金属凝固原理[M].北京:机械工业出版社,1999.
    [98]Wang T M, Xu J J, Li J, et al. In situ study on dendrite growth of metallic alloy by a synchrotron radiation imaging technology [J]. Sci China Tech Sci.2010,53:1278-1284.
    [99]王同敏,朱晶,陈宗宁,et al.电场调控下合金凝固过程枝晶形貌演变同步辐射原位成像[J].中国科学.2011,41:23-28.
    [100]Meyer J L, EI-kaddah N, Szekely J, et al. A comprehensive study of the induced current, the electromagnetic force field, and the velocity field in a complex electromagnetically driven flow system [J]. Metall. Trans. B.1987,18:529-538.
    [101]Griffiths W D, McCartney D G. The effect of electromagnetic stirring during solidification on the structure of Al-Si alloys [J]. Materials Science and Engineering A.1996,216:47-60.
    [102]Li Tao, Lin Xin, Huang Weidong. Morphological evolution during solidification under stirring [J]. Acta Mater.2006,54:4815-4824.
    [103]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2000.
    [104]Efird K.D. The synergistic effect of Ni and Fe on the seawater corrosion of copper alloy [J]. Corros. 1977,33:347-349.
    [105]Drolenga L.J.P., Ijsseling F.P. The influence of alloy composition and microstructure on the corrosion behaviour of Cu-Ni alloys in seawater [J]. Mater. Corros.1983,34:167-169.
    [106]Popplewell J.M., Hart R.J. The effect of iron on the corrosion characteristics of 90-10 cupronickel in quiescent 3.4% sodium chloride solution [J]. Corros. Sci.1973,13:295-297.
    [107]Bailey G.L. Copper-nickel iron alloys resistant to sea-water corrosion [J]. J. Inst. Met.1951, 79:243-245.
    [108]Jie Zhang, Qing Wang, Yingmin Wang, et al. Effect of heat treatment on the highly corrosion-resistant Cu70Ni27.7Fe2.3 alloy [J]. Journal of Alloys and Compounds.2010,505:505-509.
    [109]张杰,王清,王英敏,et al.含Fe和Mn的Ni30Cu70固溶体团簇模型与耐腐蚀性研究[J].金属学报.2009,45(11):1390-1395.
    [110]J Zhang, Q Wang, M Wang Y, et al. Revelation of solid solubility limit Fe/Ni=1/12 in corrosion-resistant Cu-Ni alloys and relevant cluster model [J]. J. Mater. Res.2010,25(2):328-336.
    [111]A Laachach, A Srhiri, C Fiaud, et al. Electrochemical behaviour of Cu-Ni alloy in 3%NaCl medium polluted by sulphides:effect of aminotriazole [J]. British Corrosion Journal.2001,32(2):136-142.
    [112]林乐耘,刘少峰,刘增才,et al.铜镍合金海水腐蚀的表面与界面特征研究[J].腐蚀科学与防护技术.1999,11(1):37-43.
    [113]倪元相.小型三辊行星冷轧机的研究开发[D](硕士学位论文).昆明:昆明理工大学,2006.
    [114]李冰,扬志,刘化民,et al.三辊行星轧制运动和管坯变形规律的仿真模拟[J].塑性工程学报.2005,12(5):70-73.
    [115]陶炳旺.三辊行星轧管机的特点及轧制功率的计算[J].有色金属加工.2003,32(5):28-30.
    [116]Li B., S.H.Zhang, G.L.Zhang, et al. Microstructure simulation of copper tube and its application in three roll planetary rolling [J]. Mater Sci and Tech.2007,23(6):715-722.
    [1]7]罗子健,旗杨,姬婉华.考虑变形热效应的本构关系建立方法[J].中国有色金属学报.2000,10(6):804-808.
    [118]蔡开科.连铸结晶器[M].北京:冶金工业出版社,2008.
    [119]刘智恩.材料科学基础[M].西安:西北工业大学出版社,2000.
    [120]慕思国.高强高导Cu-Cr-Zr系合金制备新工艺及理论研究[D](博士学位论文).长沙:中南大学,2008.
    [121]张生龙,尹志民.高强高导铜合金设计思路及其应用[J].材料导报.2003,17(11):26-29.
    [122]赵冬梅,董企铭,刘平,et al.探索高强高导铜合金最佳成分的尝试[J].功能材料.2007,32(6):609-611.
    [123]O.E. OcИHЦeB, B.H. ΦeдopoB. Meдb И MeдHЪIe cПЛаBbI[M]. MocκBa:Ma щиHO CT pa eHиe,2004.
    [124]Hiroki, Nagasawa.将沉淀硬化铜合金应用于接触导线[J].国外机车车辆工艺.1999,(3):11.
    [125]青木久纯.析出强化铜合金(PHC)在接触导线上的应用[J.国外机车车辆工艺.2000,(7):9.
    [126]吴成三.铜镁合金的高强接触线[J].1996,铁道工程学报(4):99.
    [127]何启基.金属力学性能[M].北京:冶金工业出版社,1982.
    [128]梁英教,牛荫昌.无机物热力学数据手册[M].北京:科学出版社,1993.
    [129]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,1981.
    [130]日本金属学会.金属(?)一夕(?)(?)(?)[M].东京:丸善株式会社,1993.
    [131]姜锋,陈小波,陈蒙,et al.高强高导Cu-Cr-Zr系合金纳米析出相及其作用机理的研究进展[J].材料导报.2009,23(1):72-76.
    [132]郭景杰,傅恒志.合金熔体及其处理[M].北京:机械工业出版社,2005.
    [133]刘平.快速凝固高强度高导电铜合金的制备技术及组织和性能的研究[D](博士学位论文).西安:西安交通大学,1999.
    [134]Zeng K J, Hamalainen M, Lilius K. Phase relationship in Cu-rich corner of the Cu-Cr-Zr phase diagram [J]. Scr Metall Mater.1995,32(12):2009-2012.
    [135]Zeng K J, Hmnen M. A theoretical study of the phase equilibria in Cu-Cr-Zr system [J]. J Alloys Compd.1995,220:53-56.
    [136]Liu P, Kang B X, Cao X G. Aging precipitation and recystallization of rapidly solidified Cu-Cr-Zr-Mg alloy [J]. Mater Sci Eng A.1999,265:262-265.
    [137]安阁英.铸件形成理论[M].北京:机械工业出版社,1989.
    [138]黄国杰,谢水生,米绪军,et al.高速铁路用Cu-Cr-Zr合金的研究[C].第十二届中国有色金属学会材料科学与合金加工学术研讨会文集.湖南省张家界:2007.
    [139]刘东华.紫铜冷凝管铸轧过程组织演变及冷凝管耐腐蚀性能研究[D](硕士学位论文).长沙:中南大学,2006.
    [140]傅文祖.三辊行星轧机轧制管棒材的扭转问题[J].上海金属(有色分册).1991,12(5):13-17.
    [141]董顺德,王世中,段广超.行星轧机的运动形式和轧管组织变化[J].锻压装备与工业炉.2004,4:30-32.
    [142]Liu Ping, Su Juanhua, DONG Qiming, et al. Microstructure and properties of Cu-Cr-Zr alloy after rapidly solidified aging and solid solution aging [J]. J.Mater.Sci.Technol.2005,21(4):474-478.
    [143]Holzwarth U, Stamm H. The precipitation behavior of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing [J]. Journal of Nuclear Materials.2000,279:31-45.
    [144]李华清,谢水生,米绪军,et al. Cu-Cr-Zr合金热处理工艺研究[J].热加工工艺.2006,35(20):39-42.
    [145]黄伯云,李成功,石力开,et al.中国材料工程大典[M].北京:化学工业出版社,2005.
    [146]张生龙Cu-Cr-Zr和Cu-Zn-Cr-Zr合金时效特性研究[D](硕士学位论文).长沙:中南大学,2002.
    [147]刘平,黄金亮.快速凝固高强度高导电Cu-Cr合金的组织和性能[J].兵器材料科学与工程.1999,1:12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700