宽皮柑橘(Citrus reticulate Blanco)的遗传多样性及系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布在我国南岭山脉的野橘种质是我国重要的宽皮柑橘种质资源,不仅对研究我国宽皮柑橘的起源和演化,而且对引进野橘抗性性状进行宽皮柑橘育种来说,都具有重要的意义。宽皮柑橘地方品种是人们在柑橘栽培实践中,长期驯化和选择产生的一些栽培历史悠久的柑橘品种,这些种质中不仅蕴涵着优良的抗性和品质性状基因,而且同样是研究柑橘起源与演化的重要材料。为便于这些种质的有效收集和保存,并分析他们与我国宽皮柑橘起源的关系,本文以宽皮柑橘地方品种和野橘为试材,对我国宽皮柑橘和野橘的遗传多样性及系统发育关系进行了研究。获得的主要结果有:
     1.在对33份宽皮柑橘地方品种和19份野橘种质的遗传多样性研究中,共筛选出具有多态性的10对核基因组SSR引物和8对叶绿体基因组SSR引物,这些引物共扩增出60个核基因组SSR多态性条带和19个叶绿体基因组多态性条带。除分布于3组由7份种质所形成的组内种质外,核基因组SSR标记可将所有的种质区分开,包括2个不同的砂糖橘品系。
     2.位点多态性信息含量(Locus polymorphic information content,PIC)的计算结果表明,在叶绿体基因组和核基因组水平上,野橘种质的遗传多样性都要高于宽皮柑橘地方品种,在核基因组SSR水平上,二者的PIC值分别为0.6138和0.5091;在叶绿体基因组SSR水平上,二者的PIC值分别为0.4921和0.3769。
     3.利用Jaccard距离,通过UPGMA(The unweighted pair group method based on arithmetic averages,非加权对等平均法)法的聚类分析结果表明,在核基因组SSR水平上,宽皮柑橘地方品种聚成5组,野橘种质聚成2组;在叶绿体基因组水平上,宽皮柑橘地方品种和野橘种质都分别聚成2组:但叶绿体SSR和核SSR的聚类模式并不完全一致。通过分析叶绿体SSR和核SSR聚类模式上的差别,对一些地方品种的杂种起源进行了讨论。从聚类分析的结果还可看出,野橘种质中,崇义野橘与宽皮柑橘地方品种的关系最近,莽山野橘A类的种质距宽皮柑橘地方品种最远;宽皮柑橘地方品种中,茶枝柑与野橘种质聚在一起。
     4.系统发育分析所使用的3个序列中,trnL-trnF的序列长度为1009bp-1083bp,比对后序列长1157bp,其中,变异位点94个(0.081%),简约信息位点17个(0.015%)。matK区域的5’端3’端分别测序后合在一起用于进化树分析。5’端长733bp-748bp,3’端长779bp-789bp,合起来比对后的序列长1556bp,其中,变异位点136个(0.087%),简约信息位点26个(0.017%)。FLint2的序列长度为766bp-783bp,比对后的序列长795bp,其中变异位点91个(0.1145%),简约信息位点36个(0.0452%)。
     5.对3个DNA数据集进行的数据集间相容性分析结果表明,三个数据集间差异较大,不相容性较高。因此,分别构建了最大简约树(排除gaps和将gaps处理为新性状)、最大似然树、邻接距离树和trnL-trnF与matK联合数据集的最大简约树。根据建树的结果,对核DNA序列与叶绿体DNA序列间的不相容性与相关种质的杂种起源进行了讨论。
     6.构树的结果表明,尽管3个序列数据集构建出的进化树在拓扑结构上有些差异,但他们之间存在很多共同点。其中,大多数宽皮柑橘地方品种与大多数野橘种质能形成一个单系分支,即宽皮柑橘分支。宽皮柑橘地方品种中,滑皮柑、臭皮柑、夔柑、本地广橘、瓯柑5份种质为宽皮柑橘作父本,柚类或橙类作母本的杂种。宽皮柑橘地方品种中的青皮应与香橙为同一类种质。野橘种质中,莽山野橘A1和道县大果野橘5与宽皮柑橘分支成姐妹系。位于宽皮柑橘分支中的莽山野橘B0和江永野橘4与宽皮柑橘地方品种成并列分支,而道县小果野橘1、崇义野橘A1、江永粗皮野橘1和崇义野橘A2则在宽皮柑橘分支中形成一个进一步分化的单系分支。
     7.根据序列数据分析结果对与宽皮柑橘有关的一些生物型的起源进行了讨论。大多数结果与前人研究结果一致,但通过叶绿体基因组证据和核基因组证据的结合可进一步明确他们的父母本来源。在这些结果中,值得注意的有:1)大翼橙类的3份种质中,大种橙、宜昌橙与红河大翼橙在叶绿体基因组和核基因组上都有区别,并且能分别与其他种质形成分支,他们可能分别与宽皮柑橘、柚类或枸橼类的起源有关;2)金柑类种质宁波金柑和四季橘在叶绿体DNA数据集和核DNA数据集中都能形成一个分支,因此本研究中的3个DNA数据集不支持四季橘的起源与宽皮柑橘有关的假说。
     此外,本文还对人工合成柑橘嵌合体红江橙的几种分离类型进行了分子标记鉴定。研究中,使用了5种红江橙嵌合体材料,和叶绿体SSR、核SSR及RAPD等DNA分子标记。结果表明,1对叶绿体SSR引物和1个RAPD引物分别在5种红江橙材料中表现出多态性,谱带模式与嵌合体的结构有一定的联系。对RAPD特异引物片段回收测序后,根据序列丌发出相应的SCAR标记,可用于进一步的嵌合机理研究。
Wild mandarins played important roles both in caltivar breeding and citrus phylogenetic relationship analysis. In the first chapter of this thesis, genetic diversity of mandarin accessions and phylogenetic relationships among them and related citrus species were studied. Hongjiangcheng is a valuable cutivar in China, and as a citrus synthetic chimera, in the second chapter of this thesis, its genetic background were studied. The main results were as follows:
     1. In the genetic diversity study of 33 loose skin mandarin landraces and 19 wild mandarin accessions, ten nuclear simple sequence repeat(nSSR) and eight chloroplast simple sequence repeat(cpSSR) markers were seleted as polymorphic markers. These primers amplified 60 nuclear SSR polymorphic bands and 19 choloroplast SSR polymorphic bands. Except for accessions in 3 groups formed by 7 accessions, nuclear SSR primers could discriminated all accessions studied, even two differently distributed'Shatangju' accessions.
     2. Our analysis of nuclear and chloroplast genome polymorphism showed that the genetic diversity in wild accessions was slightly higher than that found in landraces, with polymorphic information content values of 0.6138 and 0.5091 at nSSR loci, and 0.4921 and 0.3769 at cpSSR loci, respectively.
     3. Five groups of landrace and two groups of wild mandarin were identified based on the nSSR data and two groups each of landraces and wild mandarins were identified at the cpSSR loci. Different distribution patterns of landraces and wild mandarins were observed between dendrograms constructed using these two marker systems, and hybrid origins of several landraces were suggested by these results. Combined analysis also suggested that, among wild mandarin,'Chongyi' showed the closest relationship to landraces, and that'Chazhigan' landrace was the primary genotype among landraces.
     4. Of the 1157 aligned positions in the trnL-trnF regions, 94 sites were variable, pairwise sequence divergences ranged from 0 to 2.8%. Of the 1556 aligned positions in the matK regions, 136 sites were variable, pairwise sequence divergences ranged from 0 to 2.6%. Of the 795 aligned positions in the Flint2 region, 91 were variable, pairwise divergence ranged from 0 to 3.4%.
     5. Compatibility analysis of three DNA sequence dataset showed difference among three dataset. Therefore, maximum parsimony, maximum likelihood and neighbor join distance phylogenetic trees were constructed using three dataset sperately and using combinated dataset of trnL-trnF and matK sequence dataset. Incompatiablity between nuclear DNA sequence dataset and chloroplast DNA sequence dataset were used to analysize hybrid origination of related accessions.
     6. Sequence data showed that most of landraces and most of wild accessions form a manophyletic clade. Among other landraces,'Choupigan','Huapigan','Kuigan','Bendiguangju' and'Ougan' were of hybrid orign with mandrin as male parent and pummelo or orange as female parent; Qingpi is a variety of Yuzu(Citrus junos Sieb. Ex Tanaka). Two other wild accessions,'Mangshan wild mandarin Al' and'Daoxian wild mandarin No. 5' were sister to loose skin mandarin clade.'Mangshan wild mandarin B0','Jangyong wild mandarin No. 4' was sister to landraces in loose skin mandarin clade.'Daoxian wild mandarin No. 1','Chongyi wild mandarin Al','Jiangyong wild mandarin No. 1' and'Chongyi wild mandarin A2' formed a clade in loose skin mandarin clade.
     7. Several genotypes related to mandarin were also discussed in this thesis, and their possible paternal and mathernal origins were also proposed. Two kinds of pepada were identified according their phylogenetic relationships to species of genera Citrus. No phylogenetic relationships were found between calamadin and loose skin mandarin.
     8. In addition, SSR and RAPD molecular markers were employed to study chimerism of five'Hongjiangcheng' chimeras. One pair of cpSSR primers and one RAPD primer amplified polymorhic bands in five materials, and the distribution of polymorhic bands could be explained by chimera itselves. One polymorhic RAPDs was sequenced, and results showed that it was 61.9% homologous to Poncirus trifoliata citrus tristeza virus resistance gene locus.
引文
1.曹庆芹.柑橘线粒体遗传多样性与细胞质雄性不育.[博士学位论文].武汉:华中农业大学图书馆,2003
    2.陈进,苏应春,陈贵清,王文端,胡建湘.云南西双版纳大翼厚皮橙的研究.中国柑橘,1993,22(3):3-5
    3.陈力耕,大村三男,日高哲志.应用GOT同工酶进行柑橘分类的研究.园艺学报,1991,18(1):27-32
    4.陈梦龙,陈喜文,李润唐.柑与橘的分类学探讨.湖南农学院学报,1992,18(1):33-45
    5.陈熹,施清,陈勉,叶少荫.用过氧化物同工酶分析改良橙果实的嵌合结构.福建农科院学报,1995,10(2):30-34
    6.陈喜文,陈梦龙.湖南柑橘资源的植物血清学研究.湖南农学院学报,1991,17(4):714-719
    7.丁素琴,张显努,暴卓然,梁明清.中国枳属一新种.云南植物学研究,1984,6(3):292-293
    8.丁素琴.云南香橼—柑橘属枸橼的一个新变种.园艺学报,1979,6(2):85
    9.方德秋,章文才,萧顺元.温州蜜柑起源新探—同工酶证据.果树科学,1995,12(增刊):16-20
    10.方德秋,章文才,削顺元.柑橘同工酶及其在分类中应用的研究.植物学报,1994,36(增刊):124-138
    11.方德秋.富民枳的分类地位及其在进化中的作用研究—叶片同工酶证据.武汉植物学研究,1993a,11(1):34-40
    12.方德秋,章文才.应用同工酶进行柑橘分类和进化研究.植物分类学报,1993b,31(4):329-352
    13.方德秋,章文才.四种聚类分析方法在柑橘化学分类中的应用.华中农业大学学报,1992a,11(3):256-262
    14.方德秋,章文才.应用同工酶进行宽皮柑橘分类及其进化研究.武汉植物学研究,1992b,10(4):305-312
    15.郭天池,叶荫民.中国柑橘属(芸香科)一新种.植物分类学报,1997,35(4):353-355
    16.郭天池.中国的枸橼.中国柑橘,1993,22(4):3-6
    17.贺善文.柑橘类种质资源中心问题的初步探讨.园艺学报,1979,6(1):20-24
    18.贺善文.中国柑橘分类若干问题的讨论.中国果树,1962,(2):28-30
    19.胡春根.柑橘遗传多样性和亲缘关系的分子标记研究.[博士学位论文].武汉:华中农业大学图书馆,1998
    20.胡桂兵,陈大成,蔡明段.“早蜜橙”的来源、结构及其果实性状的研究.华南农业大学学报,1996,17(3):85-90
    21.黄远征,陈全友.110个种和品种的柑橘属植物叶精油的化学成分.植物学报,1998,40(9):846-852
    22.蒋聪强.柑橘分类研究.西南农学院学报,1982,58-61
    23.蒋聪强.论柑橘三属左右线分类系统.西南农学院学报,1983,4:10-23
    24.景蕊莲,昌小平.SSR标记在小麦种质资源研究中的应用.作物品种资源,1999,(2):17-20
    25.赖钟雄,陈振光.福建若干柚种质资源的初步研究.福建农学院学报(自然科学版),1993,22(1):41-48
    26.李道高.柑橘学.北京:中国农业出版社,1996,3-25
    27.李瑶,陈和荣,段盛良,晋美多吉.青藏高原的栽培植物野生种.科学通报,1980,19:921
    28.李华荣,李文模,邓香兰.柑橘嫁接嵌合体—澧州红脐橙.福建果树,2004,(2):34-34
    29.李晶炤,何平,郑先武,鲁润龙,朱立煌.利用水稻重组自交系群体对一些重要农艺性状进行基因定位和互作分析.植物学报,1999,41(11):1199-1203
    30.李润唐.湖南几种野生宽皮柑橘的植物学性状调查.湖南农业科学,2000,5:30-31
    31.李润唐.湖南野生宽皮柑橘花粉形态研究.湖南农业大学学报,1998,24(5):365-369
    32.李润唐.湖南野生宽皮柑橘同工酶分析.湖南农学院学报,1992,18(4):923-928
    33.李文斌,贺善文,刘庚峰.湖南野生柑橘类种质过氧化物酶同工酶的分析.园艺学报,1987,14(3):153-160
    34.李文斌,刘庚峰,贺善文,张映南.中国宽皮橘类起源与演化同工酶分析.湖南农业科学,1993,3:3-6
    35.梁国鲁,陈全友.柑橘属随体染色体系统演化研究.西南农业大学学报,1994,16(2):106-110
    36.梁国鲁,殷智勇,曾晓雄,王奇,贺化财,徐永宁.宽皮柑橘两个分类群的核型及C带带型分析.西南农业大学学报,1992,14(4):320-322
    37.梁国鲁.柑橘类的细胞分类学研究:Ⅰ.柑橘属30个分类群的核型及进化.武汉植物学研究,1990,8(1):1-7
    38.梁国鲁.部分柑橘属及其近缘属Giemsa C-带带型研究.遗传学报,1988,15 (6):409-415
    39.林正奎,华映芳.柑橘属11个类群叶精油成分与系统进化关系.植物学报,1992a,34(2):133-139
    40.林正奎,华映芳.莱檬叶精油化学成分研究.四川日化,1992b,3:11-13
    41.林正奎,华映芳.藜檬叶精油化学成分研究.四川日化,1992c,2:13-15
    42.林正奎,华映芳.中国特有的宜昌橙叶精油成分及其分类地位.四川日化,1994,(4):9-12
    43.刘庚峰,贺善文,李文斌.中国柑橘属二新种.云南植物研究,1990,12(3):287-289
    44.刘庚峰,李文斌,张映南,贺善文.宽皮柑橘野生种花粉形态的研究.园艺学报,1992,19(3):203-208
    45.刘庚峰.试论道县野橘的分类地位.中国柑橘,1985,(4):2-4
    46.吕柳新,俞长河.蕉柑起源与分类地位的研究.园艺学报,1995,22(2):105-109
    47.蒙忻,刘学义,方宣钧.利用大豆分子连锁图定位大豆孢囊线虫4号生理小种抗性QTL.分子植物育种,2003,1(1):6-21
    48.聂纯清,胡俊.江西崇义的野生橘.园艺学报,1987,14(3):174-178
    49.庞晓明,胡春根,邓秀新.用SSR标记研究柑橘属及其近缘属植物的亲缘关系.遗传学报,2003a,30(1):81-87
    50.庞晓明,邓秀新,胡春根.枳属36份特异种质的AFLP指纹图谱构建与分析.园艺学报,2003b,30(4):394-398
    51.沈德绪,王元裕,陈力耕.柑橘遗传育种学.北京:科学出版社,1998,3-30
    52.石键泉,沈丽娟,肖敏茀,卢美玲,蒋运宁.广西柑橘种质资源调查收集研究.中国柑橘,1988,(4):36-37
    53.魏文娜.从染色体核型及G显带探讨柑橘类的演化.园艺学报,1988,15(4):223-228
    54.吴安仁,张进仁,王大元,叶荫民.用过氧化物同工酶对柑橘分类的探讨.园艺学报,1985,12(2):80-87
    55.吴耕民.中国温带果树分类学.北京:农业出版社,1984,381-457
    56.吴洪明.一个新发现的柑橘嵌合体—枳合芦.福建果树,1992,(4):51-51
    57.武耀廷,张天真,郭旺珍,殷剑美.陆地棉品种SSR标记的多态性及用于杂交种纯度检测的研究.棉花学报,2001,13(3):131-133
    58.肖尊安.试评《论柑橘三属左右线分类系统》.西南农学院学报,1984,(3):44-50
    59.萧顺元,章文才.RFLP在柑橘遗传多样性研究上的应用.果树科学,1995,12(1):1-4
    60.熊兴跃,李润唐.柑橘染色体组型及G带型的研究初报.湖南农学院学报,1982,(2):61-67
    61.杨世杰.新发现的木里柠檬.植物杂志,1987,(5):8
    62.叶春海,吕庆芳.红江橙嵌合特点的扫描电镜观察.福建农业大学学报,1997,26(2):173-176
    63.叶春海.红江橙的嵌合体现象及其在生产上的利用.中国柑橘,1990,(4):26-27
    64.叶荫民,孔焱,郑向红.柑橘花粉形态的研究.中国农业科学,1982,(5):62-65
    65.叶荫民,刘晓东,丁素琴.云南红河橙—柑橘属大翼橙亚属的一个新种.植物分类学报,1976,(1):57-59
    66.叶荫民.柚Citrus grandis(L.)Osbeck种质多样化中心的探讨.中国南方果树,1997,26(1):3-5
    67.叶自行.红江橙果实与叶片变异的初步研究.华南农业大学学报,1989,10(1):40-48
    68.俞长河,吕柳新.嵌合体和柑橘育种.福建果树,1992,(4):28-31,13
    69.俞德浚.中国果树分类学.北京:农业出版社,1979,279-304
    70.曾勉.对柑橘分类的认识体会和整理意见.中国果树,1960,2:31-37
    71.张进仁.用过氧化物酶同工酶分析探讨温州蜜柑亲缘关系.中国柑橘,1988,17(2):6-7
    72.张映南,李润唐,蒋开军.几种柑橘属植物花粉外壁超微结构比较研究.果树学报,2003,20(3):165-168
    73.张映南,刘庚峰.野生柑橘新类型—道县Ⅱ号.湖南农业科学,1994,(2):29
    74.钟广炎,叶荫民.柑橘植物的数值分类学研究.植物分类学报,1993a,31(3):252-260
    75.钟广炎,叶荫民,陈竹生,吴云伦.柑橘种质资源谷氨酸草酰乙酸转氨酶同工酶研究.植物分类学报,1993b,31(2):162-169
    76.钟广炎,叶荫民.柑橘种质资源过氧化物酶同工酶分析.植物分类学报,1991,29(5):418-422
    77.周志钦,蒋聪强.柑橘属植物若干分类群的分支分析.中国柑橘,1994,23 (1):3-6
    78.周志钦.柑橘属植物的系统演化研究.西南农大学报,1992a,14(2):95-99
    79.周志钦.中国宽皮柑橘系统演化关系研究.西南农大学报,1992b,14(5):451-453
    80.周志钦.真正柑橘果树群植物的分支学研究.武汉植物学研究,1991,9(2):130-133
    81.朱立武.中国柑橘数量化学分类研究.植物分类学报,1988,26(5):353-361
    82. Akkaya M S, Buyukunal-Bal E B. Assessment of genetic variation of bread wheat varieties using microsatellite markers. Euphytica, 2004, 135:179-185
    83. Alvarez I, Wendel J F.Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol, 2003, 29:417-434
    84. Araujo E F de, Queiroz L P de, Machado M A. What is Citrus? Taxonomic implications from a study of cp-DNA evolution in the tribe Citreae (Rutaceae subfamily Aurantioideae). Org Divers Evol, 2003, 3:55-62
    85. Asad Abkenar A, Shiro I, Yosuke T. Phylogenetic relationships in the "true citrus fruit trees" revealed by PCR-RFLP analysis of cpDNA. Sci Hortic, 2004, 102: 233-242
    86. Asadi Abkenar A, Isshiki S. Molecular characterization and genetic diversity among Japanese acid citrus (Citrus spp.) based on RAPD markers. J Hortic Sci Biotechnol, 2003, 78, 108-112
    87. Ashari S D, Aspinall D, Sedgley M. Identification and investigation of relationships of mandarin types using isozyme analysis. Sci Hortic, 1989, 40: 305-315
    88. Asins M J, Mestre P F, Herrero R, Navarro L, Carbonell E A. Molecular markers: a continuously growing biotechnology area to help Citrus improvement. Fruits, 1998, 53: 293-302
    89. Bailey C D, Doyle J J. Potential phylogenetic utility of the low-copy nuclear gene pistillata in dicotyledonous plants: comparison to nrDNA ITS and trnL intron in Sphaerocardamum and other Brassicaceae. Mol Phylogenet Evol, 1999, 13: 20-30
    90. Baker W J, Hedderson T A, Dransfield J. Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. Mol Phylogenet Evol, 2000, 14: 195-217
    91. Barrett H C, Rhodes A M. A numerical taxomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot, 1976, 1: 105-136
    92. Beckman J S, Soller M. Toward a unified approach to the genetic mapping of eukaryotes based on sequence-tagged microsatellite sites. Biotechnology, 1990, 8: 930-932
    93. Bortiri E, Oh S H, Gao E Y, Potter D. The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prunus (Rosaceae). Am J Bot, 2002,89: 1697-1708
    94. Breto M P, Ruiz C, Pina J A, Asins M J. The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Mol Phylogenet Evol, 2001, 21:285-293
    95. Bryan G J, McNicoll J, Ramsay G, Meyer R C, Jong W S D. Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. Theor Appl Genet, 1999,99(5): 859-867
    96. Callum J B, Joseph R E. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics, 1994, 19(1): 137-144
    97. Cameron J W, Frost H B. Genetics, breeding, and nuclear embryony. In: Reuther W, Batchelor L D, Webber H D eds., The Citrus Industry. Volume 2. California: University of California Press, 1968, 325-389
    98. Chase M W, Morton C M, Kallunki J A. Phylogenetic relationships of Rutaceae: a cladistic analysis of the subfamilies using evidence from rbcL and atpB sequence variatiaon. J Am Bot, 1999,86: 1191-1199
    99. Cheng Y J, De Carmen V M, Meng H J, Guo W W, Tao N G, Deng X X. A set of primers to analyze the chloroplast DNA diversity in Citrus and its relatives. Tree Physiol, 2005,25: 661-672
    100. Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep, 2003, 21: 177a-177g
    101. Chom chalow N. Citrus germplasm in Southeast Asia. BPGR New letter, 1984, 8 (3): 3
    102. Chung S M, Staub J E. The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. Theor Appl Genet, 2003, 107: 757-767
    103. Clegg M T, Gaut B S, Learn G H, Morton B R. Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci USA, 1994,91: 6759-6801
    104. Coen E S, Romero J M, Doyle S, Elliott R, Murphy G, Carpenter R. Floricaula: a homeotic gene required for flower development in Antirrhinmu majus. Cell, 1990, 63: 1311-1322
    105. Coletta Filho H D, Machado M A, Targon M L P N, Moreira M C P Q D Q Pompeu Jr J. Analysis of the genetic diversity among mandarins (Citrus spp.) using RAPD markers. Euphytica, 1998, 102: 133-139
    106. Coletta Filho H D, Machado M A, Targon M L P N, Pompeu Jr J. The use of random amplified polymorphic DNA to evaluate the genetic variability of Ponkan mandarin (Citrus reticulata Blanco) accessions. Genet Mol Biol, 2000, 23: 169-172
    107. Corazza Nunes M J, Machado M A, Nunes W M C, Cristofani M, Targon M L P N. Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica, 2002,126: 169-176
    108. Cornelio M T M N, Figueiroa A R S, Santos K G B, Carvalho R, Soares Filho W S, Guerra M. Chromosomal relationships among cultivars of Citrus reticulata Blanco, its hybrids and related species. Plant Syst Evol, 2003, 240: 149-161
    109. Cronn R C, Small R L, Haselkorn T, Wendel J F. Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot, 2002, 89: 707-725
    110. Dass H C, Randhawa G S, Prakash D. Phylogenetic studies in citrus reticulata and related types. Euphytica, 1977,26: 805-810
    111. Dass H C. Leaf flavonoid patterns of some important citrus species. J Exp Biol, 1978,16: 62-65
    112. David A B, Ho-Sung Y, Rebecca L O. Molecular evolution of the transcription facter LEAFY in Brassicaceae. Mol Phylogenet Evol, 2005, 37: 1-14
    113. Dayanandan S, Kamaljit S B, Rick K. Conservation of microsatellites among tropical trees (Leguminosae). Am J Bot, 1997,84(12): 1658-1663
    114. Dean R E, Dahlberg J A, Hopkins M S, Mitchell S E, Kresovich S. Genetic redundancy and diversity among 'Orange' accessions in the US national sorghum collection as assessed with simple sequence repeat (SSR) markers. Crop Sci, 1999, 39: 1215-1221
    115. Di Rienzo A, Peterson A C, Garza J C, Valdes A M, Slatkin M, Freimer N B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA, 1994,91: 3166-3170
    116. Doust A N, Kellogg E A. Inflorescence diversification in the Panicoid "bristle grass" clade (Paniceae, Poaceae): evidence from molecular phylogenies and developmental morphology. Am J Bot, 2002, 89: 1203-1222
    117. Downie S R, Olmstead R G, Zurawski G Z, Soltis D E, Soltis P S, Watson J, Palmer J D. Six independent losses of the chloroplast DNA rpl2 intron in dicotyledons: molecular and phylogenetic implications. Evolution, 1991, 45: 1245-1259
    118. Dowton M, Austin A D. Increased congruence does not necessarily indicate increased phylogenetic accuracy-the behavior of the incongruence length difference test in mixed-model analyses. Syst Biol, 2002, 51:9-31
    119. Doyle J J, Doyle J L. Nuclear protein-coding genes in phylogeny reconstruction and homology assessment: Some examples from Leguminosae. In: Hollingsworth P, Bateman R, Gornall R eds., Molecular Systematics and Plant Evolution. London: Taylor and Francis, 1999
    120. Doyle J J, Morganate M, Tingey S V, Powell W. Size homoplasy in chloroplast microsatelites of wild perennial relatives of soybean (Glyctne subgenus Glyctne). Mol Biol Evol, 1998,15:215-218
    121. Estoup A, Garnery L, Solignac M, Cornuet J M. Microsatellite variation in honey bee (Apts mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and Stepwise mutation models. Genetics, 1995,140: 679-695
    122. Fang D Q, Roose M L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet, 1997,95: 408-417
    123. Fang D Q, Krueger R R, Roose M L. Phylogenetic relationships among selected citrus germplasm accessions revealed by inter-simple sequence repeat (ISSR) markers. J Am Soc Hortic Sci, 1998,123: 612-617
    124. FAOSTAT data. (2005). Last accessed November 2005.
    125. Federici C T, Fang D Q, Scora R W, Roose M L. Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet, 1998, 96: 812-822
    126. Felsenstein J. Confidence limits on phytogenies: an approach using the bootstrap. Evolution, 1985, 39: 783-791
    127. Frohlich M W, Meyerowitz, E M. The search for flower homeotic gene homologs in basal Angiosperms and Gnetales: a potential new source of data on the evolutionary origin of flowers. Int J Plant Sci, 1997,158: S131-S142
    128. Garza J C, Slatkin M, Freimer N B. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol, 1995, 12: 594-603
    129. Gielly L, Taberlet P. The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequence. Mol Biol Evol, 1994, 11: 769-777
    130. Goffreda J, Szymkowiak E J, Sussex I M, Mutchler M A. Chimeric tomato plants show that aphid resistance and triacyl-glucose production are epidermal autonomous characters. Plant Cell, 1990,2: 643-649
    131. Goldstein D B, Pollock D D. Launching microsatellites: a review of mutation process and methods of phylogenetic inference. J Hered, 1997, 88: 335-342
    132. Goldstein D B, Ruiz-Linares A, Cavalli-Sforza L L, Feldman M W. An evaluation of genetic distances for use with microsatellite loci. Genetics, 1995, 139: 463-471
    133. Grob G B J, Gravendeel B, Eurlings M C M. Potential phylogenetic utility of the nuclear FLORICAULA/LEAFY second intron: comparison with three chloroplast DNA regions in Amorphophallus (Araceae). Mol Phylogenet Evol, 2004, 30:13-23
    134. Green R M, Vardi A, Galun E. The plastome of Citrus. Physical map, variation among Citrus cultivars and species and comparison with related genera. Theor Appl Genet, 1986,72:170-177
    135. Guerra M, dos Santos K G B, e Silva A E B, Ehrendorfer F. Heterochromatin banding patterns in Rutaceae-Aurantioideae~A case of parallel chromosomal evolution. Ame J Bot, 2000, 87:135-141
    136. Handa T, Ishizawa Y, Oogaki C. Phylogenetic study of fraction I protein in the genus Citrus and its close related genera. Jpn J Genet, 1986, 61:15-24
    137. Herrero R, Asins M J, Pina J A, Carbonell E A, Navarro, L. Genetic diversity in the orange subfamily Aurantioideae. II .Genetic relationships among genera and species. Theor Appl Genet, 1996, 93: 1327-1334
    138. Higuehi R, Bowman B, Frieberger M, Ryder A O, Wilson A C. DNA sequences from the quagga, an extinct member of the horse species. Nature, 1984, 213: 282-284
    139. Hilu K W, Liang H. The matK gene: sequence variation and application in plant systematics. Am J Bot, 1997, 84: 830-839
    140. Himi S, Sano R, Nishiyama T, Tanahashi T, Kato M, Ueda K, Hasebe M. Evolution of MADS-Box gene induction by FLO/LFY genes. J Mol Evol, 2001, 53: 387-393
    141. Hirai M, Kajiura J. Genetic analysis of leaf isozymes in Citrus. Jpn J Breed, 1987, 37: 377-388
    142. Hirai M, Kozaki I, Kajiura I. Isozyme analysis and phylogenic relationship of Citrus. Jpn J Breed, 1986, 36: 377-389
    143. Hirata Y, Motegi T, Takeda Y, Morikawa K. Induction of cytoplasmic male sterility in the seed progeny derived from artificially synthesized interspecific chimera in Brassica. Euphytica, 2001,117: 143-149
    144. Hirata Y, Noguchi N, Yagishta N, Sugmoto M. Interspecific graft chimera formation between Brassica oleracea and B. campestris. Japn J Breed, 1992, 42: 203-212
    145. Hirata Y, Yagishita N, Sugimoto M, Yamamoto K. Intervarietal chimera formation in cabbage (Brassica oleracea L.). Jpn J Breed, 1990, 40: 419-428
    146. Huelsenbeck J P, Bull J J. A likelihood ratio test to detect conflicting phylogenetic signal. Syst Biol, 1996,45: 92-98
    147. Jaccard P. Nouvelles rescherches sur la distribution florale. Bull Soc Vaud Sci Nat, 1908,44:223-270
    148. Johnson L A, Soltis D E. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot, 1994, 19: 143-156
    149. Jon E W L, Graeme M B, Robert A F. A method for creating chromosome-specific plasmid libraries enriched in clones containing [CA]_n microsatellite repeat sequences directly from flow-sorted chromosomes. Nucleic Acids Res, 1993, 21(19): 4641-4642
    150. Jorgensen R A, Cluster P D. Modes and tempos in the evolution of nuclear ribosomal DNA: new characters for evolutionary studies and new markers for genetic and population studies. Ann Missouri Bot Gars, 1988, 75: 1238-1247
    151. Jung Y H, Kwon H M, Kang S H, Kang J H, Kim S C. Investigation of the phylogenetic relationships within the genus Citrus (Rutaceae) and related species in Korea using plastid trnL-trnF sequences. Sci Hortic, 2005, 104: 179-188
    152. Kelchner S A, Clark L G Molecular evolution and phylogenetc utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol Phylogenet Evol, 1997, 8: 385-397
    153. Kijas J M H, Fowler J C S, Thomas M R. An evaluation of sequence-tagged microsatellite site markers for genetic analysis within Citrus and related species. Genome, 1995, 38: 349-355
    154. Kijas J M H, Thomas M R, Fowler J C S, Roose M L. Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet, 1997, 94: 701-706
    155. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 1980, 16: 111-120
    156. Kuhara S. Artificial production of the synthetic periclinal chimera in citrus. Kyushu Agr Res, 1988, 50:222
    157. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform, 2004, 5:150-163
    158. Levinson G, Gutman G A. High frequencies of short frame-shifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichta colt K-12. Nucleic Acids Res, 1989,15: 5323-5338
    159. Levinson G, Gutman G A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol, 1987,4: 203-221
    160. Lewis C D, Doyle J J. Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae). Mol Phylogenet Evol, 2001,19: 409-420
    161. Li Y Z, Cheng Y J, Yi H L, Deng X X. Genetic diversity in mandarin landraces and wild mandarins from China based on nuclear and chloroplast simple sequence repeat markers. J Hort Sci Bio, 2006,81: 371-378
    162. Linda C, Luke R, Dan M, Malcolm M, David M, Robbie W. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 2000,156: 847-854
    163. Liston A, Robinson W A, Oliphant J M, Alvarez-Buylla E R. Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering seed plants. Syst Bot, 1996,21: 109-120
    164. Luro F, Laigret F, Bove J M, Ollitrault P. DNA-amplified fingerprinting, a useful tool for determination of genetic origin and diversity analysis in Citrus. HortScience, 1995, 30:1063-1067
    165. Machado M A, Coletta Filho H D, Targon M L P N, Pompeu Jr J. Genetic relationship of Mediterranean mandarins (Citrus deliciosa Tenore) using RAPD markers. Euphytica, 1996, 92: 321-326
    166. Mason-Gamer R J, Weil C F, Kellogg E A. Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol Biol Evol, 1998, 15: 1658-1673
    167. McDade L A, Moody M L. Phylogenetic relationships among Acanthaceae: evidence from noncoding trnL-trnV chloroplast DNA sequence. Am J Bot, 1999, 86: 70-80
    168. Meerow A W, Wisser S J, Brown S J, Kuhn D N, Schnell R J, Broschat T K. Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) germplasm using microsatellite DNA, with special emphasis on the Fiji Dwarf cultivar. Theor Appl Genet, 2003, 106: 715-726
    169. Morton C M, Grant M, Blackmore S. Phylogenetic relationships on the Aurantioideae inferred from chloroplast DNA sequence data. Am J Bot, 2003, 90: 1463-1469
    170. Moore G A. Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends Genet, 2001, 17: 536-540
    171. Nei M, Kumar S. Molecular Evolution and Phylogenetics. Oxford University Press, New York. 2000. 33
    172. Nicolosi E, Deng Z N, Gentile A, La Malfa S, Continella G, Tribulato E. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet, 2000,100: 1155-1166
    173. Orti G, Pearse D E, Avise J. Phylogenetic assessment of length variation at a microsatellites locus. Proc Natl Acad Sci USA, 1997,94: 10745-10749
    174. Palmer J D, Herbon L A. Plant mitochondrial DNA evolves rapidly in structure but slowly in sequence. J Mol Evol, 1988,28: 87-97
    175. Palmer J D, Thompson W F. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell, 1982,29: 537-550
    176. Pedrosa A, Schweizer D, Guerra M. Cytological heterozygosity and the hybrid origin of sweet orange [Citrus sinensis (L.) Osbeck]. Theor Appl Genet, 2000, 100: 361-367
    177. Posada D, Crandall K A. Modeltest: testing the model of DNA substitution. Bioinformatics, 1998,14(9): 817-818
    178. Potvin C, Bergeron Y, Simon J P. A numerical taxonomic study of selected Citrus species (Rutaceae) based on biochemical characters. Syst Bot, 1983, 8: 127-133
    179. Powell W, Machray G, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci, 1996a, 1: 215-222
    180. Powell W, Morganate M, Andre C, McNicol J W, Machray G C, Doyle J J, Tingey S V, Rafalski J A. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr Biol, 1995a, 5: 1023-1029
    181. Powell W, Morganate M, McDevitt R, Vendranin G G Rafalski J A. Polymorphic simple sequence repeats regions in chloroplast genomes: Application to the population genetics of pines. Proc Natl Acad Sci USA, 1995b, 92: 7759-7763
    182. Powell W, Morgante M, Andre C, Hanafey M, Vogel M I, Tingey S V, Rafalski J A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breeding, 1996b, 2: 225-238
    183. Provan J, Powell W, Waugh R. Microsatellite analysis of relationships within cultivated potato (Solarium tuberosum). Theor Appl Genet, 1996, 92(8): 1078-7084
    184. Rahman M M, Nito N. Phylogenetic relationships among the "true citrus fruit trees" by glutamate oxaloacetate transaminase isozymes analysis. J Jpn Soc Hortic Sci, 1994,62: 755-760
    185. Rogers S O, Bendich A J. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol Biol, 1987, 9: 509-520
    186. Rohlf F J. NTSYS-pc: numerical taxonomy and multivariate analysis system. Version 2.1. Setauket, New York: Exeter Software, 2000
    187. Roose M L. Isozymes and DNA restriction fragment length polymorphisms in citrus breeding and systematics. In: Goren R, Mendel K (eds), Proc 6th Int Citrus Congr. Margraf Scientific Books, Weikersheim, 1988, pp 155-165
    188. Ruiz C, Breto M P, Asins M J. A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica, 2000, 112: 89-94
    189. Saitou N, Nei M. The neighbor-joinong method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406-425
    190. Samuel R, Ehrendorfer F, Chase M W, Greger H. Phylogenetic analyses of Aurantioideae (Rutaceae) based on non-coding plastid DNA sequences and phytochemical features. Plant Biol, 2001, 3: 77-87
    191. Sang T, Crawford D J, Stuessy T F. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot, 1997, 84: 1120-1136
    192. Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol Biol, 2002, 37: 121-147
    193. Sang-Hun O, Daniel P. Phylogenetic utility of the second intron of LEAFY in Neillia and Stephanandra (Rosaceae) and implications for the origin of Stephanandra. Mol Phylogenet Evol, 2003, 29: 203-215
    194. Sauer J D. Rutaceae-Citrus family. In: Historical geography of crop plants: a select roster. CRC, EUA, 1994, pp 138-144
    195. Schaal B A, Learn G H. Ribosomal DNA variation within and among plant populations. Ann Mo Bot Gard, 1988,75: 1207-1216
    196. SchlStterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res 1992,20:211-215
    197. Schonenberger J, Conti E. Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Rhynchocalycaceae, and Alzateaceae (Myrtales). Am J Bot, 2003, 90: 293-309
    198. Schultz E A, Haughn G W. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell, 1991,3: 771-781
    199. Scora R W, Malk M N. Chemical characterization of Citrus as a tool in phylogeny. Taxon, 1970,19:215-228
    200. Scora R W. On the history and origin of citrus. Bull Tor Bot Club, 1975, 102 (6): 369-375
    201. Scott K D, McIntyre C L, Playford J. Molecular analyses suggest a need for a significant rearrangement of Rutaceae subfamilies and a minor reassessment of species relationships within Flindersia. Plant Syst Eovl, 2000, 223: 15-27
    202. Sefc K M, Regner F, Turetschek E, Glossl J, Steinkellner H. Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis speces. Genome, 1999, 42: 367-373
    203. Shriver M D, Jin L, Chakraborty R, Boervinkle E. VNTR allele frequency distributions under the Stepwise mutation model: a computer simulation approach. Genetics, 1993, 134: 983-993
    204. Sierra D S H, Lucie H, Petr B. Indel patterns of the plastid DNA trnL-trnF region within the genus Poa (Poaceae). J Plant Res, 2004, 117: 393-407
    205. Singh D, Schroeder, C A. Taxonomic and physiological relationships of the so-called mandarin-lime group of Citrus. J Am Soc Hortic Sci, 1961, 80: 291-295
    206. Soltis P S, Soltis D E, Doyle J J. Molecular Systematics of plants. New York and London: Chapman and Hall, 1992,434
    207. Soost P K, Williams T E. Leaf isozymes as genetic markers in Citrus. Proc Int Soc Citricult, 1978,I: 7-10
    208. Sousa Silva C R, Figueira A. Phylogenetic analysis of Theobroma (Sterculiaceae) based on Kunitz-like trypsin inhibitor sequences. Plant Syst Evol, 2005, 250: 93-104
    209. Stewart R N, Meyer F G, Dermen H. Camellia+'Daisy Eagleson' a graft chimera of Camellia sasanqua and C.japonica. Am J Bot, 1972, 59: 515-542
    210. Sugiura M. The chloroplast chromosomes in land plants. Ann Rev Cell Biol, 1989, 5:51-70
    211. Sugawara K, Oowada A, Moriguchi T, Omura M. Identification of citrus chimera by RAPD markers. HortScience, 1995, 30(6): 1276-1278
    212. Swingle W T, Reece P C. The botany of citrus and its wild relatives. In: Reuther W, Batchelor L D, Webber H D eds., The citrus industry. Volume 1. California: University of California Press, 1967,190-430
    213. Swingle W T. The botany of Cirtrus and its relatives of the orange subfamily. In: Webber H J, Batchelor L D eds., The citrus industry. California: University of California Press, 1943, Berkeley
    214. Swofford D L. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA, 2000
    215. Szymkowiak E J, Sussex I M. What chimeras can tell us about plant development? Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 351 -376
    216. Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol, 1991, 17: 1105-1109
    217. Takeda Y, Hirata Y, Motegi T, Kita M. Analysis of mitochondrial DNA in the progenies derived from interspecific chimeras between Brassica oleracea and B. campestris. Breed Sci, 1997, 47(2): 347
    218. Takeda Y, Hirata Y, Noguchi T, Kimura Y. Variation in the progenies derived from interspecific chimeras between Brassica oleracea and B. campestris. Breed Sci, 1996,46 (2): 226.
    219. Tanaka T. Bizzaria - a clear case of periclinal chimera. J Genetics, 1927,18: 77-85
    220. Tanaka T. Fundamental discussion of citrus classification. Studia Citrogia, 1977, 14: 1-6
    221. Tanaka T. Misunderstanding with regards citrus classification and nomenclature. Bull Univ Osaka Prefect (Ser B Agric), 1969a, 21: 139-145
    222. Tanaka T. Taxonomic problem of citrus in the orient. Bull Univ Osaka Pref(Ser B), 1969b, 21: 133-138
    223. Thomas M R, Scott N S, Botta R, Kijas J M H. Sequence-tagged site markers in grapevine and citrus. J Jpn Soc Hortic Sci, 1998,67: 1189-1192
    224. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G The clustal-X windows interface-flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997,25: 4876-4882
    225. Torres A M, Soost R K, Diendenhofen V. Leaf isozymes as genetic markers in Citrus. Am J Bot, 1978, 65: 869-887
    226. Ulf Lagercrantz, Hans Ellegren, Leif Andersson. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res, 1993,21(5): 1111-1115
    227. Weber L J, Wong C. Mutation of human short tandem repeats. Hum Mol Genet, 1993,2: 1123-1128
    228. Weising K, Gardner RC. A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome, 1999,42: 9-19
    229. Whitcher I N, Wen J. Phylogeney and biogeography of Corylus (Betulaceae): inferences from ITS sequences. Syst Bot, 2001,26: 283-298
    230. Whitlock B A, Baum D A. Phylogenetic relationships of Theobroma and Herrania (Sterculiaceae) based on sequences of the nuclear gene. Vicilin Syst Bot, 1999, 24: 128-138
    231. Wierdl M, Dominska M, Petes T D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics, 1997, 146: 769-779
    232. Wilson C A. Phylogenetic relationships in Iris series Californicae based on ITS sequences of nuclear ribosomal DNA. Syst Bot, 2003,28: 39-46
    233. Wolfe K H, Sharp P M, Li W H. Rates of synonymous substitution in plant nuclear genes. J Mol Evol, 1989, 29: 208-211
    234. Xu D H, Abe J, Gai J Y, Shimamoto Y. Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor Appl Genet, 2002, 105:645-653
    235. Yamamoto M, Kobayashi S, Nakamura Y, Yamada Y. Phylogenic relationships of citrus revealed by RFLP analysis of mitochondrial and chloroplast DNA. Jpn J Breed, 1993, 43:355-365
    236. Yamamoto M, Kobayashi S. Polymorphism of chloroplast DNA in citrus. J Jpn Soc Hortic Sci, 1996, 65:291-296
    237. Yamamoto M, Tominaga S. High chromosomal variability of mandarins (Citrus spp.) revealed by CMA banding. Euphytica, 2003, 129:267-294
    238. Yang Z N, Ye X R, Molina J, Roose M L, Mirkov T E. Sequence analysis of a 282-kilobase region surrounding the citrus tristeza virus resistance gene (CTV) locus in Poncirus trifoliata L. Raf. Plant Physiol, 2003, 131: 482-492
    239. Zhou J, Hirata Y, Nou Ⅲ-Sup, Shiotani H, Ito T. Interactions between different genotypic tissues in citurs graft chimeras. Euphytica, 2002, 126(3): 355-364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700