电力系统连锁故障及相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以超高压、长距离输电、大容量机组、大范围互联和大容量的区域间交换为显著特征的现代电力系统,其稳定性一旦遭受破坏,必将造成巨大的经济损失和灾难性的后果,致使电力系统安全稳定问题一直是研究的热点。近年来,国内外发生的多次严重大停电事故充分地暴露了大型互联电网的脆弱性,因此对大停电事故的原因、发展机理以及预防措施的研究愈发重要和迫切。为此,国内外学者做了大量研究工作并提出了多种连锁故障模型,如OPA、CASCADE及隐性故障等,但与系统的实际情况存在一定的偏差,各电气元件的动态特性、电气参量的时域动态过程等问题都尚未解决。本文针对这些问题提出了电力系统的动态连锁故障模型,并分析了电力系统连锁故障及其自组织临界性。在此方面,本文做了如下主要工作:
     1.提出了一种基于频率稳定性的电力系统连锁故障模型。该模型用以研究电力系统短期频率随机动态特性,考虑了机组频率保护、低频减载装置以及元件切除时间等随机因素,并基于蒙特卡罗模拟方法分别予以分析。仿真结果初步揭示了电力系统连锁故障中频率动态的统计特性,对比分析了一次调频、起始故障规模、旋转备用容量以及不同低频减载方案对频率动态过程和停电规模及其概率的影响。
     2.提出了一种基于交流潮流及长期动态仿真的连锁故障模型。该模型考虑了含发电机组及负荷的全系统动态行为,同时考虑了在动态过程中机组保护、低频/低压减载、变压器过励磁、线路过载/短路保护及解列等自动装置受随机因素的影响。该模型可以较为准确的模拟电力系统动态行为及连锁故障。以PSS/E软件为仿真平台采用蒙特卡罗方法对我国某省实际电网予以仿真,仿真结果证实了所提模型可以较为准确、有效地模拟系统连锁故障,并较真实地反映了该电网实际存在的问题,仿真结果的统计数据表明系统停电规模及其概率基本符合幂率特性。与以往结论不同,根据仿真结果发现了系统存在故障规模临界点,在临界点前后系统的幂率特性会发生变化,并指出了临界点对大停电预防的重要意义。
     3.根据所提的动态连锁故障模型,对电网的参数做了灵敏度分析。比较了不同的减载方案、减载原理、负荷构成、一次调频以及区外联络线传输功率等因素对系统的自组织临界性、临界点以及停电概率的影响,最后根据仿真结果对预防大停电所需采取的措施提出了一些建议。
     4.提出了不同孤岛反措下确定性的分布式电源最大准入容量计算方法。该模型考虑了机组频率和电压保护、低频减载、低压减载以及线路过载等约束条件,比较了不同的孤岛反措方案对最大准入容量的影响,为分析分布式电源对连锁故障的影响提供了一些理论基础。
     5.建立了计及分布式电源的动态连锁故障模型,研究了不同DG接入水平及孤岛反措对系统连锁故障及自组织临界性的影响,仿真结果表明停电概率随关闭主力机组且DG接入水平的增大而波动,并根据系统停电概率讨论了DG的最大准入容量,为确定适当的DG接入水平提供了新的方法和思路。
The insecurity and instability problems will certainly cause enormous losses and catastrophic results for modern power systems with the feature of extra high voltage and long-distance transmission lines, large capacity generators, cross-regional inter-connections and huge inter-area power exchanges. Therefore, studies on the power system security and stability have been received much attention for a long time. Several blackouts in the past few years fully reveal the vulnerability of large inter-connection power system. It's important and urgent to research on the reason, evolvement and preventive measures of blackouts. Many works have been done and some of cascading outage model, such as OPA, CASCADE and Hidden Failures were present by the researchers. However, these cascading outage models are imprecise and some factors, such as time-domain dynamic characteristic of electric components are not included. To solve these problems, dynamic cascading outage models are present in this thesis and self-organized criticality(SOC) of power system is analysed. Contributions are summarized as follows:
     1. A cascading outage model with its stochastic counterparts are present for cascading failure investigation. Stochastic factors associated with generator frequency relay, u.f. load shedding and breaker tripping time, etc. are explicitly modeled. Using a Monte Carlo simulation tool, the risk of frequency-induced cascading failures is assessed. The influences of relevant factors on statistic characteristic of power system cascading failures, such as frequency primary regulation, AGC (spinning reserve), the size of initial disturbance and u.f. load shedding schemes, are also analyzed. The results presented demonstrate interesting values of the model in identifying the factors that contribute to cascading failures and blackouts.
     2. A cascading outage model based on dynamic simulation has been developed and analyzed in this work together with its stochastic counterpart. The factors, such as stochastic characters of generator frequency/voltage protection, under-frequency/under-voltage protection, over-excitation, overload, short circuit and its tripping time, are considered. The model captures the fundamental dynamic characteristics of power system and its validity and accuracy for studying system cascading are confirmed based on PSS/E with Monte Carlo simulation. The results show the existence of the power law with critical points. When the critical point is exceeded, the outage size and its probability rise rapidly and the power law characteristic is changed. Critical points provide helpful information for blackout prevention.
     3. Based on dynamic cascading outage model, the influence of simulation parmaters, such as under-freqency/voltage load shedding, load components, primary regulation and tie-line power flow on power system SOC, critical points and blackouts probability is analysed. Some suggestions for blackout prevention is present hereby.
     4. The maximum penetration level of distributed generation under different anti-islanding methods is calculated using dynamic simulation. The frequency/voltage protection, under-frequency/volage load shedding and capacity constrains of transmission lines are fully consided. The influency of anti-landing methods on maximum peretration level of DG is discussed. These provide theoretical basis for analyzing the influence of DG on cascading outages.
     5. A cascading outages dynamic model with DG comprised is present. Influency of Different penetration levels of DG and aiti-landing methods on cascading outages and its SOC is analysed. The simulation results reveal that probability of blackout changes periodically with increasing of DG penetration level and main generator shutdown. The maximum penetration level of DG is discussed based on blackout probability.
引文
[1]卢强.我国电力系统灾变防治与经济运行的重大科学问题的研究项目介绍.电力系统自动化,2000,24(1):6
    [2]陈珩.电力系统稳态分析.电力系统稳态分析(第二版).北京:中国电力出版社,1995
    [3]王梅义,吴竞昌,蒙定中.大电网系统技术(第二版).北京:中国电力出版社,1995
    [4]袁季修.防御大停电的广域保护和紧急控制.北京:中国电力出版社,2007
    [5]卢强,梅生伟.面向21世纪的电力系统重大基础研究.自然科学进展,2000,10(10):870-876
    [6]U.S.-Canada Power System Outage Task Force.Final Report on the August 14,2003Blackout in the United States and Canada:causes and Recommendations.April 2004
    [7]Union for the Coordination of Electricity Transmission(UCTE).Interim Report of the Investigation Committee on the 28 September 2003 Blackout in Italy.October 23,2003.http://www.pserc.wisc.edu/
    [8]Ekraft Systems.Power Failure in Eastern Denmark and Southern Sweden on 23 September 2003-Final Report on the Courses of Events.2003-11-04.http://www.pserc.wise.edu/
    [9]National Grid Company.Investigation Report into the Loss of Supply Incident Affecting Parts of South London at 18:20 on Thursday,28 August 2003.2003-09-10
    [10]Union for the coordination of electricity transmission(UCTE).UCTE releases detailed interim reoort on the disturbance of 4 Nov.2006-11-30.http://www.ucte.org
    [11]华中电网“7.1”事故调查组技术组.华中电网“7.1”事故调查报告—技术报告.2006-07
    [12]G.Andersson,P.Donalek,R.Farmer,et al.Causes of the 2003 major grid blackouts in North America and Europe,and recommended means to improve system dynamic performance.IEEE Transactions on Power Systems,2005,20(4),1922-1928
    [13]甘德强,胡江溢,韩祯祥.2003年国际若干大停电事故思考.电力系统自动化,2004,28(3):1-4
    [14]周孝信,郑键超,沈国荣,等.从美加东北部电网大面积停电事故中吸取教训.电网技术,2003,27(9):T1
    [15]薛禹胜.综合防御由偶然故障演化为电力灾难—北美“8.14”大停电的警示.电力系统自动化,2003,27(18):1-5
    [16]胡学浩.美加联合电网大面积停电事故的反思和启示.电网技术,2003,27(9):2-6
    [17]鲁宗相,蒋锦峰,袁德等.从”8.14”美加大停电思考电力可靠性.中国电力,2003,36(12):1-6
    [18]李再华,白晓民,丁剑 等.西欧大停电事故分析.电力系统自动化,2007,31(1):1-3,32
    [19]陈向宜,陈允平,李春艳等.西欧大停电事故分析.电力系统自动化,2007,31(1):4-8
    [20]鲁宗相.莫斯科“5.25”大停电的事故调查及简析.电力设备,2005,6(8):14-17
    [21]唐葆生.伦敦南部地区大停电及教训.电网技术,2003,27(11):1-15,12
    [22]R.Billinton(周家启等译).电力系统可靠性评估.重庆:科学技术出版社重庆分社.1984
    [23]李文沅(周家启等译).电力系统风险评估:模型、方法和应用.北京:科学出版社,2006
    [24]于洋.华东电网备用容量评估方法的研究[硕士学位论文],浙江杭州,浙江大学,2005
    [25]DL/T 861-2004.电力可靠性基本名词术语.北京:中国电力出版社,2004
    [26]P.Kundur.Power system stability and control.New York:McGraw-Hill,1994
    [27]IEEE/CIGRE Joint T.F Definition and classification of power system stability.Tech Brochure No.231,2003-06
    [28]孙华东,汤涌,马世英.电力系统稳定的定义与分类评述.电网技术,2006,30(7):31-35
    [29]DL755-2001.电力系统安全稳定导则.北京:中国电力出版社,2001
    [30]袁季修.电力系统稳定控制.北京:中国电力出版社,1996
    [31]1EEE Standard C37.106-2003,IEEE Guide for Abnormal Frequency Protection for Power Generating Plants,2004
    [32]DL/T723-2000.电力系统安全稳定控制技术导则.北京:中国电力出版社,2000
    [33]CIGRE TF38.02.19.System protection schemes in power networks.Tech Brochure No.187,2001
    [34]GB 14285-1993.继电保护和安全自动装置技术规程.北京:水利电力出版社,1993
    [35]高鹏,王建全,甘德强等.电力系统失步解列综述.电力系统自动化,2005,29(19):90-96
    [36]P.Bak.How nature works:the science of self-organized criticality.New York:Copernicus Press,1996
    [37]P.Bak.Self-organized criticality.Cambridge:Cambridge University Press,1998
    [38]D.J.Watts,S.H.Strogatz.Collective dynamics of "small-world" networks.Nature,Jun.41998,349:440-442
    [39]R.Albert,A.L.Barab h si.Statistical mechanics of complex networks.Reviews of modern physics,Jan.2002,74:47-97
    [40]IEEE system dynamic performance subcommittee of the power system engineering committee of the PES.Voltage Stability of Power Systems:Concepts,Analytical Tools and Industry Experience.Technical report 90 TH 0358-2PWRS.IEEE.1990
    [41]梅生伟,薛安成,张雪敏.电力系统自组织临界性与大电网安全.北京:清华大学出版社,2008(待出版)
    [42]J.Ma.On complexity of power system.Journal of science and comolexity.16(3):391-403
    [43]陈洁,许田,何大韧.中国电力网的复杂网络共性.科学导报.2004,4:11-14
    [44]J.Chen,J.S.Thorp,M.Parashar.Analysis of electric power system disturbance data.Proceedings of the 34~(th) Hawaii International Conference on System Sciences.2001.
    [45]B.A.Carreras,V.E.Lynch,I.Dobson,et al.Dynamics,criticality and self-organization in a model for blackouts in power transmission systems.Proceedings of the 35~(th) Hawaii International Conference on System Sciences-2002
    [46]B.A.Carreras,D.E.Newman,I.Dobson et al.Initial evidence for self-organized criticality in electric power system blackouts.Proceedings of the 33~(th) Hawaii International Conference on System Sciences-2000
    [47]于群,郭剑波.中国电网停电事故统计与自组织临界性特征.电力系统自动化,2006,30(2):16-21
    [48]于群,郭剑波.我国电力系统停电事故自组织临界性的研究.电网技术,2006,30(6):1-5
    [49]P.Home.Edge overload breakdown in evolving networks.Physical review E,2002,66(2):036119
    [50]P.Home,B.J.Kim,C.N.Yoon,et al.Attack vulnerability of complex networks.Physical review E,2002,66(2):056109
    [51]Y.C.Lai,A.E.Motter,T.Nishikawa.Attacks and cascades in complex networks.Lecture Notes in Physics,2004,650:299-310
    [52]A.E.Motter,Y.C.Lai.Cascade-based attacks on complex networks.Physical review E,2002,66(2):055102
    [53]P.Cructiti,V.Latora,M.Marchiori.Model for cascading failure in complex networks.Physical review E,2004,69(4):045101-1
    [54]I.Dobson,Jie Chen,J.S.Thorp,et al.Examining criticality of blackouts in power system models with cascading events.Proceedings of the 35~(th) Annual Hawaii International Conference on System Sciences,Jan.2002:7-10
    [55]I.Dobson,B.A.Carreras,D.E.Newman.A loading-dependent model of probabilistic cascading failure.Probability in the Engineering and Informational Sciences.2005,19(1):15-32
    [56]I.Dobson,B.A.Carreras,V.E.Lynch,et al.An initial model for complex dynamics in electric power system blackouts.Hawaii International Conference on System Sciences,Jan.3-6,2001:710-718
    [57]J.Chen,J.S.Thorp.Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model.Electrical Power and Energy Systems,2005,27(4):318-326
    [58]S.Tamaronglak.Analysis of power system disturbance due to relay hidden failure.Virginia Polytechnic and State University,Blacksburg,Virginia,1994
    [59]A.G.Phadeke,J.S.Thorp.Expose hidden failures to prevent cascading outages.IEEE Computer Application in Power.1996,9(3):20-23
    [60]B.Koeunyi,J.S.Thorp.An Importance Sampling Application:179 Bus WSCC System under Voltage Based Hidden Failures and Relay Misoperations.Proceedings of the 31~(th) Hawaii International Conference on System Sciences,1998
    [61]D.P.Nedic,I.Dobson,D.S.Kirschen.Criticality in a cascading failure blackout model.Electrical Power and Energy Systems,2006,28(9):627-633
    [62]A.R Mario,S.K.Daniel,D.Jayaweera,et al.Value of security modeling time dependent pheno-mena and weather conditions.IEEE Transactions on Power Systems,2002,17(3):543-548
    [63]D.S.Kirschen,D.Jayaweera,D.P.Nedic,et al.A probabilistic indicator of system stress.IEEE Transactions on Power Systems,2004,19(3):1650-1657
    [64]梅生伟,翁晓峰,薛安成 等.基于最优潮流的电力系统停电模型及自组织临界性分析.电力系统自动化,2006,30(13):1-5
    [65]夏德明,梅生伟,侯云鹤.基于OTS的停电模型及其自组织临界性分析.电力系统自动化,2007,31(12):9-13
    [66]梅生伟,何飞,薛安成等.基于直流潮流的电力系统停电分布及自组织临界性分析.电网技术,2006,30(14):7-12
    [67]A.J.Wood,B.F.Wollenberg.Power generation,operation and control(Second Edition).Beijing:Tsinghua University press,2003
    [68]P.M.Anderson,M.Mirheydar.A low-order system frequency response model,IEEE Trans.on Power Systems,1990,5(3):720-729
    [69]E.J.Thalassinakis,E.N.Dialynas.A Monte-Carlo simulation method for setting the underfrequency load shedding relays and selecting the spinning reserve policy in autonomous power systems,IEEE Trans.on Power Systems,2004,19(4):2044-2052
    [70]X.B.Yu,C.Singh.A practical approach for integrated power system vulnerability analysis with protection failures,IEEE Trans.on Power Systems,2004,19(4):1811-1820
    [71]M.Larsson,C.Rehtanz.Predictive frequency stability control based on wide-area phasor measurements.Proceedings of power system society 2001 summer meeting,Vancouver (Canada),2001:233-238
    [72]孙元章,程林,刘海涛.基于实时运行状态的电力系统运行可靠性评估.电网技术,2005,29(15):6-12
    [73]S.Tamronglak,S.H.Hormowitz,A.G.Phadke,et al.Anatomy of Power system blackouts:preventive relaying strategies.IEEE Trans.on power delivery,1996,11(2):708-715
    [74]T.S.Norman.Dynamic Testing of Frequency Relays.IEEE Trans.on industry applications.1996,32(4):766-777
    [75]D.Prasetijo,W.R.Lachs,D.Sutanto.A new load shedding scheme for limiting underfrequency.IEEE Trans.on Power Systems,1994,9(3):1371-1378
    [76]P.M.Anderson,M.Mirheydar.An adaptive method for setting underfrequency load shedding relays.IEEE Trans.on Power Systems,1992,7(2):647-655
    [77]魏珍,张军,张来等.天津电网低压减载可行性方案研究.华北电力技术.2007,6:22-25
    [78]周双喜,朱凌志,郭锡久等.电力系统电压稳定性及其控制.北京:中国电力出版社,2004
    [79]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002
    [80]王大光,张明建,林因等.福建电力系统失步和失步解列研究.电力系统自动化,2001,25(19):41-44
    [81]鲁宗相.电网复杂性及大停电事故的可靠性研究.电力系统自动化,2005,29(12):93-97
    [82]林章岁,叶谨,余希.福建与华东联网对福建电网安全稳定影响的研究.电网技术,2000,24(9):26-30
    [83]C.W.Taylor(王伟胜 译).电力系统电压稳定.北京:中国电力出版社,2002
    [84]W.EI-Khattam,M.M.A.Salama.Distributed generation technologies,definitions and benefits.Electric Power System Research,2004,71:119-128
    [85]R.Lawrence,S.Middlekawff.Distributed generation-the new guy on the block.IEEE industry applications society 50th annual:IEEE,2003:223-228
    [86]C10/11.Technical requirements for connection of dispersed generating systems operating in parallel on the distribution network.FPE/BFE,Belgium,Technical Requirement Document C10/11,August 2003
    [87]T.Vu Van and R.Belmans.Comparison of international and regional DG interconnection standards.Distribution Europe Conference,Berlin,Germany,April 2005
    [88]T.Kim,J.Kim.A method for determining the introduction limit of distributed generation system in distribution system.Proc.IEEE Power Engineering Society General Meeting,July 2001,1:456-461
    [89]A.Bhowmik,A.Maitra,S.Halpin,et al.Determination of allowable penetration levels of distributed generation resources based on harmonic limit considerations.IEEE Transaction on Power Delivery,April 2003,18:619-624
    [90]M.Reza,P.H.Schavemaker,J.G.Slootweg et al.Impacts of distributed generation penetration levels on power systems transient stability.Proc.IEEE Power Engineering Society General Meeting,Denver,USA,June 2004
    [91]V.V.Thong,D.V.Dommelen,R.Belmans.Penetration level of distributed energy resources with anti-islanding criteria and secure operation of power system.IEEE Power Engineering Society General Meeting,2006,7-13
    [92]胡骅,吴汕,夏翔,甘德强.考虑电压调整约束的多个分布式电源准入功率计算.中国电机工程学报,2006,26(19):13-17
    [93]IEEE Std 929-2000.IEEE Recommended Practice for Utility Electronics Engineers.Inc.,New York,NY
    [94]IEEE Std 1547-2003.IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.Standards Coordinating Committee 21
    [95]易新,陆于平.分布式发电条件下的配电网孤岛划分算法.电网技术,2006,30(7):50-54
    [96]鹿婷,段善旭,康勇.逆变器并网的孤岛检测方法.通信电源技术,2006,23(3):38-41,52
    [97]R.Br(u|¨) ndlinger,B.Bletterie.Unintentional islanding in distribution grids with a high penetration of inverter-based DG:Probability for islanding and protection methods.Available at http://www.arsenal.ac.at/downloads/products/st_petersburg.pdf
    [98]R.Guttromson.Modeling distributed energy resource dynamics on the transmission system.IEEE Transactions on Power Systems,2002,17(4):1148-1153
    [99]Woyte,De Brabandere K,Van Dommelen D,et al.International harmonization of grid connection guidelines:adequate requirements for the prevention of unintentional islanding.Progress in Photovoltaics:Research and Applications,2003,11(6):407-424
    [100]C.L.Wagner,W.E.Feero,et al.Relay performance in DSG islands.IEEE Transactions On Power Delivery,1989,4(1):122-131
    [101]梅天华.分布式发电闪变研究与管理[硕士论文].浙江杭州:浙江大学,2006
    [102]俞华军,潘俊民.并网发电逆变系统孤岛检测新方法的研究.电力系统及其自动化学报,2005,17(5):55-59
    [103]L.Kumpulainen,K.Kauhaniemi.Distributed generation and reclosing coordination.NORDAC 2004-Nordic Distribution and Asset Management Conference,Espoo,2004
    [104]王志群,朱守真 等.分布式发电对配电网电压分布的影响.电力系统自动化,2004,18(16):56-60
    [105]F.Katiraei,M.R.lravani,P.W.Lehn.Micro-grid autonomous operation during and subsequent to islanding process.IEEE Transactions on Power Delivery,2005,20(1):248-257
    [106]R.A.Walling,N.W.Miller.Distributed generation islanding-implications on power system dynamic performance.Power Engineering Society Summer Meeting,2002
    [107]P.Du,J.K.Nelson,Z.Ye.Active anti-islanding schemes for synchronous-machine-based distributed generators,IEE Proceedings of Generation,Transmission and Distribution,2005,152(5):597-606
    [108]C.S.Morina.Interconnection protection of IPP generators at Commercial industrial facilities.IEEE Transaction on industry and applications,2001,37(3):681-687
    [109]J.Stevens,R.Bonn,et al.Development and testing of an approach to anti-islanding in utility-interconnected photovoltaic systems,http://www.sandia.gov/pv/lib/syspub.htm
    [110]Z.Ye,R.Walling,L.Garces,et al.Study and development of anti-islanding control for grid-connected inverters,http://www.nre.gov/docs/fy04osti/36243.pdf
    [111]W.Freitas,Z.Huang,W.Xu.A practical method for assessing the effectiveness of vector surge relays for distributed generation applications,IEEE Transactions on Power Delivery,2005,20(1):57-63
    [112]W.Freitas,W.Xu,Z.Huang.Characteristics of vector surge relays for distributed synchronous generator protection.Electric power systems research,2007,77(2):170-180
    [113]Z.Ye,A.Kolwalkar,et al.Evaluation of anti-islanding schemes based on Non-detection zone concept.IEEE Transactions on Power Electronics,2004,19(5):1171-1176
    [114]郑诗程,丁明等.光伏发电系统及其孤岛效应的仿真与实验研究.系统仿真学报,2005,17(12):3084-3088
    [115]D.Asber,S.Lefebvre,M.Huneault.Transient behavior of a distribution network incorporating decentralized generation.Electrical power and Energy Systems,2005,27(3):195-203
    [116]S.Jang,K.H.Kim.An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current.IEEE Transactions on Power Delivery,2004,19(2):745-752
    [117]M.A.Pai.Enenrgy function analysis for power system stability.USA:Kluwer Academic Publishers,1989
    [118]PSS/E Program Operation Manual.SIMENS,2005
    [119]夏德明,梅生伟,沈沉等.基于暂态稳定裕度指标的最优潮流求解.电力系统自动化,2006,30(24):5-10
    [120]Niklas Strath.Islanding Detection in Power Systems[Licentiate Thesis].Sweden:Lund University,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700