糖尿病患者左心功能与冠状动脉血流动力学的超声多普勒研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:应用彩色多普勒超声心动图诊断技术对糖尿病患者基础状态下左室功能的变化进行了分析,了解其病理生理变化。
     方法:1、对36例糖尿病患者和24例健康人进行常规超声心动图检查。2、用脉冲多普勒超声心动图(Pulse Doppler Echocardiography,PDE)法在心尖左心长轴切面上记录二尖瓣口血流频谱,分别测量二尖瓣口血流的快速充盈速度(Ep),左房收缩充盈速度(Ap)以及E/A峰速比值(Ep /Ap)。3、在同一切面上用PW-DTI在左室后壁二尖瓣环处测量收缩期峰值速度(Vs),舒张期峰值速度(Ve),左房收缩速度(Va)及Ve/ Va,计算Ep与二尖瓣环Ve的比值。
     结果:比较糖尿病组和健康对照组之间反映舒张功能的多项指标:Ep /Ap、Ve/ Va以及Ep /Ve比值差异均有显著性意义(P<0.05);若分别以Ep/Ap<1,Ve/Va<1为异常诊断标准,36例2型糖尿病患者PDE检测二尖瓣口和PW-DTI检测二尖瓣环运动速度对左心室舒张功能异常的检出率分别为55.6%(20/36)和83.3%(30/36);而反映收缩功能的指标EF、FS和Vs二组间比较差异无显著性意义。
     结论:糖尿病可影响患者心脏功能,舒张功能异常是早期受损的表现,糖尿病早期心脏功能的变化可能与心肌微血管病变之间存在联系。
     目的:应用冠脉血流显像技术(TTDE)观察分析糖尿病患者静息状态下左前降支(LAD)远段血流动力学改变,了解该变化与心肌微血管损害之间的关系。
     方法:对31例非胰岛素依赖性糖尿病患者进行冠脉多普勒血流显像检查,观察LAD远段在静息状态下的冠脉血流信号,记录流速曲线,测定收缩期峰值速度(SPV),收缩期速度时间积分(VTIs),舒张期峰值速度(DPV),舒张期速度时间积分(VTId),舒张期加速时间(TPVd),舒张期减速度(DDR)以及舒张期减速时间(DDD),并与正常对照组进行比较。
     结果:31例患者中有2例未测及前降支远段血流,其余29例均能较清晰显示,SPV﹑DPV与正常对照组比较无显著性意义,VTIs﹑VTId﹑TPVd和DDD明显低于正常对照组(P<0.01),DDR高于正常对照组(P<0.05)。
     结论:糖尿病患者心肌内微血管的损害可以影响心外膜冠脉的血流动力学,而经胸冠脉多普勒血流显像技术能直接观测前降支远段冠脉血流,早期发现糖尿病患者潜在的心肌缺血。
     第三部分糖尿病患者心肌内冠状动脉的血流动力学变化
     目的:应用冠脉血流显像技术(TTDE)观察糖尿病患者静息状态下心肌内冠脉分支血流,分析糖尿病患者发生的冠状动脉微血管病变带来的血流动力学改变。
     方法:对50例糖尿病患者和27例健康人分别进行冠脉多普勒血流显像检查,仔细探查左室前壁,后壁,前侧壁,前间壁以及心尖部心肌内血流,然后应用脉冲多普勒记录血流频谱,测量如下指标:舒张期峰值速度(Vm),舒张期速度时间积分(VTId),舒张期加速时间(TPVd),舒张期减速时间(DDD)。
     结果:前间壁以及前侧壁心肌内血流最易显示。静息状态下,糖尿病组Vm大于对照组,TPVd、DDD均小于对照组,两组间差异有显著性意义(P<0.01),其中前间壁心肌内血流的VTId小于对照组,两组间差异有显著性意义(P<0.01),而左室前侧壁心肌内血流的VTId稍低于对照组,但两组间差异无显著性意义(P>0.05)。
     结论:糖尿病早期心肌微血管的病变使心肌内冠脉血流动力学发生了变化,造成糖尿病心肌在无冠脉病变时的缺血损伤。TTDE技术为早期发现糖尿病患者中潜在的心肌缺血提供了一种好方法。
Objectives: To analyze the changes of the left ventricular(LV) function in diabetes mellitus at rest by color Doppler Echocardiography, so as to realize its pathological and physiological changs.
     Methods: After detecting 36 DM patients and 24 healthy subjects with routine echocardiography, transmitral inflow velocity Ep and Ap were obtained from the apical long-aixs view using Pulse Doppler Echocardiography and Ep /Ap was calculated. From the same apical long-axis view, peak systolic velocity(Vs), peak early diastolic velocity(Ve) and peak late diastolic velocity(Va) of posterior mitral annulus were obtained using PW-DTI, then Ve/ Va and Ep/ Ve ratio were calculated.
     Results: indexes of LV diastolic function: the ratio Ep /Ap、Ve/ Va and Ep /Ve between DM group and normal group are all significantly different(P<0.05); if taking Ep/Ap<1,Ve/Va<1 as abnormal diagnosis standard respectively, the detection rate of LV diastolic dysfunction in 36 DM patients using PDE and PW-DTI are respectively 55.6%(20/36)and 83.3% (30/36);indexes of LV systolic function: EF、FS and Vs between DM group and normal group are neither significantly different.
     Conclusion: LV dysfunction is present in diabetic patients without overt cardiac disease, LV diastolic dysfunction happens earlier, myocardial ischemic contributes to the changes of heart function in diabetic patients.
     Part two: Hemodynamic changes of the distal left anterior descending artery by ultrasound in diabetic patients
     Objectives: To observe and analyze the hemodynamic changes of the distal left anterior descending artery by transthoracic color Doppler echocardiography(TTDE) and to determine the relations between those changs and the microvascular impairments.
     Methods: 24 normal subjects and 31 patients were studied. The distal LAD flow signal was observed and the pulsed-Doppler velocity curve was recorded by TTDE. Systolic peak velocity(SPV), systolic velocity time integrity(VTIs), diastolic peak velocity(DPV), diastolic velocity time integrity(VTId), time from the beginning of diastole to diastolic peak velocity(TPVd), diastolic deceleration rate (DDR), diastolic deceleration duration(DDD) were measured.
     Results: The distal LAD flow signal could be observed in all cases of normal subjects and 29 cases in patients. SPV DPV had no significant difference between the patients and the controls. VTIs VTId TPVd and DDD were significantly lower in patients than those in controls(P<0.01), DDR was higher in patients than in controls(P<0.05).
     Conclusion: the intramyocardial microvascular impairments in diabetic patients may affect the flow dynamics of epicardial coronary artery. The increased microcirculation resistance and decreased coronary perfused capacity may contribute to the changes. Monitoring of The distal LAD flow velocity by TTDE was useful in early detecting latent myocardial ischemia in diabetic patients.
     Part three: Hemodynamic changes of intramyocardial microvascular by ultrasound in diabetic patients
     Objectives: To observe and analyze the hemodynamic changes of intramyocardial microvascular which is caused by intramyocardial microvasculopathy in diabetic patients using TTDE.
     Methods: 27 normal subjects and 50 patients were studied. The intramyocardial coronary artery flow signal of the left ventricular anterior wall, posterior wall, anterior lateral wall, anterior septum and the apical part was carefully observed, and the pulsed-Doppler velocity curve was recorded by TTDE. diastolic peak velocity(Vm), diastolic velocity time integrity(VTId), time from the beginning of diastole to diastolic peak velocity(TPVd), diastolic deceleration duration(DDD) were measured.
     Results: The intramyocardial coronary artery flow signal of the left ventricular anterior lateral wall and anterior septum was observed more easily. At rest, Vm in diabetic group is higher than that of normal group, and TPVd、DDD in diabetic group are all less than normal group, and there are notable differences(P<0.01)in the two groups. Among these, VTId in the intramyocardial coronary artery flow of the anterior septum is significantly less than normal group(P<0.01),but VTId in the left ventricular anterior lateral wall is just a little bit less than normal group,and there is no statistical difference between them(P>0.05).
     Conclusion: intramyocardial microvasculopathy on the early stage of diabetic patients may affect the flow dynamics of intramyocardial microvascular, and lead to myocardial ischemia impairments when no any coronary pathological changes exist in diabetic patients. TTDE offers a good measure in early detecting latent myocardial ischemia in diabetic patients.
引文
1. Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors and 12-year cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care, 1993, 16(2) : 434-444.
    2. Butler R, MacDonald TM, StruthersAD, et al. The clinical implications of diabetic heart disease. Eur Heart J, 1998, 19 (11) : 1617-1627.
    3. BellDS. Heart failure: the frequent, forgotten and often fatal complication of diabetes. Diabetes Care, 2003, 26 (8) : 2433-2441.
    4. Bell DS. Heart Failure: A serious and common comorbidity of diabetes. Clin Diabet, 2004, 22: 61-65.
    5. 郭沫化,倪锐志,顾云,李佐才.应用超声心动图对2型糖尿病患者左心室舒张功能变化的研究. 现代诊断与治疗,2005 16 (4): 201-204.
    6. 倪海祥,罗苏生,董蓓莉等.2 型糖尿病患者左心室功能评价的临床研究. 中华内分泌代谢杂志,2003(19)6:464-465.
    7. Chinami Miyazaki, Masaaki Takeuchi, et al. Optimum Hypoglycemic Therapy can Improve Coronary Flow Velocity Reserve in Diabetic Patients: Demonstration by Transthoracic Doppler Echocardiography. Circ J, 2003, 67:945-950.
    8. Alain Nitenberg, Se′verine Ledoux, et al. Impairment of Coronary Microvascular Dilation in Response to Cold Pressor–Induced Sympathetic Stimulation in Type 2 Diabetic Patients With Abnormal Stress Thallium Imaging. Diabetes, 2001, 50:1180-1185.
    9. Palka P, Lange A, Flaming AD, et al. Differences in myocardial velocity gradient measured throughout the cardiac cycle in patient with hypertrophic cardiomopathy, athletes and patients with left ventricular hypertrophy due to hypertension. J Am Coll Cardiol, 1997, 30: 760-768.
    10. Kim Y-J, Sohn D-W. Mitral annulus velocity in the estimation of left ventricular filling pressure: prospective study in 200 patients. J Am Soc Echocardiogr, 2000, 13: 980-985.
    11. Nagueh SF, Lakkis NM, Middleton KJ, et al. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation, 1999, 99: 254-261.
    12. Nagueh SF, Mikati I, Kopelen HA, et al. Doppler estimation of left ventricular filling pressure in sinus tachycardia: a new application of tissue Doppler imaging. Circulation, 1998, 98: 1644-1650.
    13. Boeck LD, Cramer MJ, Ronald JK, et al. Spectral pulsed tissue Doppler imaging in diastole: A tool to increase our insight in and assessment of diastolic relaxation of the left ventricle. Am Heart J, 2003, 146: 411-419.
    14. Mahmoud A, Mahgoub AS, Abd-Elfattah M. Diabetes mellitus and cardiac function. Mol Cell Biochem , 1998 ,180 :59-64.
    15. Piccini JP, Klein L, Gheorghiade M, Bonow RO, New insights into diastolic heart failure: role of diabetes mellitus. Am J Med, 2004 Mar 8; 116 Suppl 5: 64-75.
    16. Jaffar Ali Raza, Assad Movahed. Current concepts of cardiovascular diseases in diabetes mellitus. International Journal of Cardiology, 2003, 89: 123–134.
    17. Hamby R I. Diabetic myocardiopathy. JAMA, 1974, 229(8):1749.
    18. Strauer BE, Motz W, Vogt M, et al. Impaired coronary flow reserve in NIDDM: a possible role for diabetic cardiopathy in humans. Diabetes, 1997, 46: 119-123.
    19. Nahser PJ, Brown RE, Oskarsson H, et al. Maximal coronary flow reserve and metabollic coronary vasodialation in patients with diabetes mellitus. Circulation, 1995, 91: 635-640.
    1. Gaddi O, Tortorella G, et al. Diagnostic and prognostic value of vasodilator stress echocardiography in asymptomatic Type 2 diabetic patients with positive exercise thallium scintigraphy: a pilot study. Diabet Med, 1999, 16(9):762-766.
    2. Chinami Miyazaki, Masaaki Takeuchi, et al. Optimum Hypoglycemic Therapy can Improve Coronary Flow Velocity Reserve in Diabetic Patients: Demonstration by Transthoracic Doppler Echocardiography. Circ J, 2003, 67:945-950.
    3. Alain N, Se′verine Ledoux, et al. Impairment of Coronary Microvascular Dilation in Response to Cold Pressor–Induced Sympathetic Stimulation in Type 2 Diabetic Patients With Abnormal Stress Thallium Imaging. Diabetes, 2001, 50:1180-1185.
    4. Katsuomi Iwakura, Hiroshi Ito, Shigeo Kawano, et al. Assessing myocardial perfusion with the transthoracic Doppler technique in patients with reperfused anterior myocardial infarction: comparison with angiographic, enzymatic and electrocardiographic indices. Eur Heart J, 2004,25:1526-1533.
    5. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature,2001,414:813-820.
    6. 古世芳,侯淑康 彩色多普勒超声心动图对糖尿病患者左室结构及功能的探讨. 临床超声医学杂志, 2001, 3(3):167-170.
    7. 李爱莉,李治安,王新房,等 应用冠脉血流显像技术检测猪心外膜和心肌内冠脉血流特征的实验研究. 上海医学影像杂志, 2002, 11(1):59-61.
    8. Kersten JR, Brooks LA, Dellsperger KC. Impaired microvascular response to graded coronary occlusion in diabetic and hyperglycemic dogs. Am J Physiol, 1995, 268: H1667-H1674.
    9. Kessler L, Wiesel ML, Attali P, et al. Von Willebrand factor in diabetic angiopathy. Diabetes Metab, 1998, 24:327-336.
    10. Iwakura K, Ito H, Takiuchis,et al. Alteration in the coronary blood flow velocity pattern in patients with no reflow and reperfused acute myocardial infarction. Circulation 1996, 94: 1269-1275.
    1. Carlos Garcia Del Rio, Gregg W Taylor, Navin C Nanda, et al. Doppler visualization of intramyocardial coronary arteries using a new echo system. Effect of contrast enhancement and vasodilation. Echocardiography, 1996, 13(6):645-650.
    2. Chinami Miyazaki, Masaaki Takeuchi, et al. Optimum Hypoglycemic Therapy can Improve Coronary Flow Velocity Reserve in Diabetic Patients: Demonstration by Transthoracic Doppler Echocardiography. Circ J, 2003, 67:945-950.
    3. Alain Nitenberg, Se′verine Ledoux, et al. Impairment of Coronary Microvascular Dilation in Response to Cold Pressor–Induced Sympathetic Stimulation in Type 2 Diabetic Patients With Abnormal Stress Thallium Imaging. Diabetes, 2001, 50:1180-1185.
    4. 张朝佑. 人体解剖学. 北京:人民卫生出版社,1998,701。
    5. Chilian WM, Eastham CL, Layne SM, et al. Small vessel phenomena in the coronary microirculation: phasic intramyocardial perfusion and coronary microvascular dynamics. Prog Cardiovasc Disease, 1988, 31 (1):17-38.
    6. Hu FB, Stampfer MJ, Haffner SM, et al. Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care, 2002, 25:1129-1134.
    7. Pajunen P, Nieminen MS, Tasskinen N, et al. Quantitative comparison of angiographic characteristic of coronary artery disease in patients with noninsulin-dependent diabetes mellitus compared with matched nondiabetic control subjects. Am J Cardiol, 1997, 80:550-556.
    8. 姚依群,田玉旺,刘光,朱志琴. 糖尿病心肌微血管的病理变化. 中华内分泌代谢杂志. 1999, 15(1):41-43.
    9. Shintani Y, Ito H, Iwakura K, Sugimoto K, Yamamoto K, Masuyama T, et al. Prediction of wall motion recovery from the left anterior descending coronary artery velocity pattern recorded by transthoracic Doppler echocardiography in patients with anterior wall myocardial infarction retrospective and prospective studies. Jpn Circ J, 2001, 65:717-22.
    10. Yarom R , Zirkin H , Stammler G, et al. Human coronary microvessels in diabetes and ischaemia. J Pathol, 1992, 166:265-270.
    11. Bartel T, Muller S, Baumgart D, Mathew BT, Haude M, Erbel R. Improved high-frequency transthoracic flow velocity measurement in the left anterior descending coronary artery after intravenous peripheral injection of levovist. J Am Soc Echocardiogr, 1999, 12:252-6.
    12. Caiati C, Zedda N, Montaldo C, Montisci R, Iliceto S. Contrast-enhanced transthoracic second harmonic echo Doppler with adenosine: a noninvasive, rapid and effective method for coronary flow reserve assessment. J Am Coll Cardiol 1999, 34:122-30.
    13. Ho-Joong Youn, Elyse Foster, et al. Demonstration of Coronary Artery Flow Using Transthoracic Doppler Echocardiography. J Am Soc Echocardiogr, 2004, 17:178-85.
    14. Rio CGD, Taylor GW, Nanda NC, et al. Color Doppler visualization of intramyocardial coronary arteries using a new echo system: Effect of contrast enhancement and vasosilation. Echocardiography, 1996 ,13 (6) :645-650.
    1. Hanumanth K, Santhosh K.G, Jason Foerst, et al. Remodeling of coronary arteries in diabetic patients - an intravascular ultrasound study. Echocardiography, 2004,21(2):139-144.
    2. Gahz W, Tamura K, Marcus HS, Donoso R, Yoshida S, Swan HJC. Measurements of coronary sinus blood flow by continuous ther-modilution in man. Circulation, 1971,44:181–189.
    3. Nitenberg A, Ledoux S, Valensi P, et al. Dysfunction of the coronary microcirculation in type 2 diabetic patients. Arch Mal Coeur Vaiss, 2000, 93(8):937-941.
    4. Athanassios K, Nikolaos Z, et al. Coronary microcirculation evaluation with transesophageal echocardiography Doppler in type II diabetics. Inter J Cardiol, 1997,59:119–124.
    5. Chinami M, Masaaki T, Hidetoshi Y, et al. Optimum Hypoglycemic Therapy can improve Coronary Flow Velocity Reserve in Diabetic Patients-Demonstration by Transthoracic Doppler Echocardiography. Circ J, 2003, 67:945-950.
    6. 李治安,陈婉姿.心肌内冠状动脉血流显像技术及其临床应用.世界医疗器械,1998,4(7): 20-25.
    7. M. RUSCAZIO, R. MONTISCI,S. ILICETO. Expanding the Non-invasive coronary Physiology Assessment with Transthoracic Doppler Echocardiography. Eur J Echocardiography, 2003,4:159–161.
    8. 迟东升,刘伊丽,刘俭,等.心肌造影超声心动图诊断犬急性高血糖心肌微血管功能损害的实验研究. 中华超声影像学杂志,2004,13(4):284-287.
    9. Yokoyama I, Yonekura K, Ohtake T, et al. Coronary microangiopathy in type 2 diabetic patients:relation to glycemic control, sex, and microvascular angina rather than to coronary artery disease. J Nucl Med, 2000,41:978-985.
    10. Kersten JR, Brooks LA, Dellsperger KC. Impaired microvascular response to graded coronary occlusion in diabetic and hyperglycemic dogs. Am J Physiol, 1995,268:H1667-H1674.
    11. Saraste M, Koskenvuo J, Knuuti J, Toikka J, Laine H, Niemi P, Sakuma H and Hartiala J. Coronary flow reserve: measurement with transthoracic Doppler echocardiography is reproducible and comparable with positron emission tomography. Clin Physiol, 2001,21:114-122.
    12. Caiati C, Montaldo C, Zedda N, Montisci R, Ruscazio M, Lai G, Cadeddu M,Meloni L and Iliceto S. Validation of a new noninvasive method (contrast-enhanced transthoracic second harmonic echo Doppler) for the evaluation of coronary flow reserve: comparison with intracoronary Doppler flow wire. J Am Coll Cardiol, 1999,34:1193-1200.
    13. Hildick-Smith DJ, Johnson PJ, Wisbey CR, Winter EM and Shapiro LM. Coronary flow reserve is supranormal in endurance athletes:an adenosine transthoracic echocardiographic study. Heart, 2000,84:383-389.
    14. Dimitrow PP, Krzanowski M, Grodecki J, Malecka B, Lelakowski J, Kawecka-Jaszcz K, Szczeklik A and Dubiel JS. Verapamil improves the endothelium-dependent vasodilatation in patients with hypertrophic cardiomyopathy. International J Cardiol, 2002,83:239-247.
    15. Pizzuto F, Voci P, Mariano E, Puddu PE, Sardella G and Nigri A.Assessment of flow velocity reserve by transthoracic Doppler echocardiography and venous adenosine infusion before and after left anterior descending coronary artery stenting. J Am Coll Cardiol, 2001, 38:155-162.
    16. 李爱莉,李治安. 经胸冠状动脉多普勒血流显像测定前降支支架植入术后远端血流的临床研究. 中华超声影像学杂志,2004,13(4):252-255.
    17. Caiati C, Montaldo C, Zedda N, Bina A and Iliceto S. New noninvasive method for coronary flow reserve assessment: contrast enhanced transthoracic second harmonic echo Doppler. Circulation, 1999, 99:771-778.
    18. Crowley JJ and Shapiro LM. Transthoracic echocardiographic measurement of coronary blood flow and reserve. J Am Soc Echocardiogr, 1997, 10:337-343.
    19. A.Auriti, C.anfrocca, C.Pristipino, et al. Improving Feasibility of Posterior Descending Coronary Artery Flow Recording by Transthoracic Doppler Echocardiography. Eur J Echocardiography, 2003,4:214–220.
    20. Yoshiki Ueno, Yasuyuki Nakamura, et al. Noninvasive assessment of significant right coronary artery stenosis based on coronary flow velocity reserve in the right coronary artery by transthoracic doppler echocardiography. Echocardiography, 2003,20(6):495-501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700