PdCl_2、Hb敏化的纳米SiO_2膜CO传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用溶胶—凝胶盐酸催化法成功制备纳米SiO_2溶胶,并用浸渍法在经过超声的载玻片上制得SiO_2薄膜。将薄膜浸入氯化钯、氯化铜混合溶液,匀速提拉,干燥后制得敏感膜。利用钯盐与一氧化碳反应,生成钯单质,引起吸光度变化。实验中在510nm波长下测量吸光度的变化,发现在20min反应时间内,吸光度的变化随着CO气体浓度的增加而增大。实验表明基于3倍信噪比(3S/N)可估算,该敏感膜检测极限为1.8×10~(-5)(体积分数,下同),完全可用于6×10~(-4)CO气体临界报警浓度的检测。而氯化铜能在空气中将钯氧化成钯盐,使该敏感膜可反复使用。用一些家庭常见的易挥发有机溶剂所做的干扰实验表明此敏感膜受干扰程度小。为了提高传感器的响应灵敏度,还把3~4片同规格的膜排成阵列式进行了讨论。
     此外还研制了血红蛋白的光学型CO传感器。用纳米SiO_2包埋Hb作成CO敏感膜,同时结合光学信号转换器,利用Hb与CO反应后吸收光谱的变化来检测CO浓度。实验证明这种传感器具有灵敏度高、响应速度快、选择性好等优点。本研究对提取和保存血红蛋白的方法进行了改进,Hb提取液的浓度为0.274g/ml,确定传感器的工作波长620nm,探讨了血红蛋白固定化方法。
Silicon dioxide thin film prepared by a sol-gel technique, was used as a sensing layer after treatment of solution of palladium chloride and copper chloride,because the reduction of Pd2+ ions by CO gas resulted in change of the layer absorbance.With photocurrent measurement at 510nm wavelength, an obvious photocurrent response was observed for 6 10-1 CO gas in comparison with the blank sample and it can be expected that the present sensing layer can detect the concentration of CO gas below 1.8 X 10~5 based on three times of Signal-to-Noise.The sensing layer could be recovered through copper chloride oxidizing Pd. Interferential experiments showed that no obvious response was found for the organic odor in living surroundings. For the improvement of the performence of CO sensors, It was discussed that 3 ~4 pieces of identical standard film were arrayed.
    Moreover,the optical CO sensor based on sensing layer of hemoglobin/nano-sized SiO2 particles was explored.The sensing element was prepared by embeding hemoglobin in nano-SiO2 film. Using the optical transducer, the concentration of CO was determined based on the change of the spectrum of Hb. Experiment results showed that the present CO sensor possesses high sensitivity and selectivity, fast response, etc. In this study, the method for purification and storage of Hb was improved, and the concentration of the Hb extract was 0.274g/ml.The working wavelengh of the sensor was 620nm, which was optimized by experiments, and the response of Hb to CO was investigated.Finally.the immobilization of Hb was also dissussed.
引文
[1] 王海燕.一氧化碳中毒不容忽视.劳动保护科学技术,2000,20(5):58~59
    [2] 赵大华.一氧化碳生理作用研究进展.临床荟萃,2002,17(9):553~554
    [3] 赵亮.一氧化碳中毒治疗与预防.辽宁化工,2002,31(6):251~253
    [4] 崔书杰,赵金垣.急性一氧化碳中毒迟发脑病的治疗研究进展.职业卫生与应急救援,2002,20(1):35~38
    [5] 王超帝.一氧化碳中毒的CT诊断.医用放射技术杂志,2002,(6):92~93
    [6] 崔忠林,王启龙.锅炉烟气的危害及防治.煤炭技术,2002,21(3):53~54
    [7] 刘雪梅.汽车排放污染物的危害及其控制措施.煤炭技术,2002,21(4):49~50
    [8] 黄金生.浅谈一氧化碳与环境污染.思茅师范高等专科学校学报,2000,16(3):83~84
    [9] 谭志宣.一氧化碳对人体的危害.能源工程,1999,(1):59~60
    [10] 林华,刘艳.一氧化碳的存在及检测.哈尔滨学院学报,2002,23(8):99~100
    [11] 杨邦朝,段建华.一氧化碳传感器的原理及应用.万像元器件,2001,(2):39~40
    [12] 杨邦朝,段建华.一氧化碳传感器的应用与进展.传感器技术,2001,20(12):1~4
    [13] Anton M,Budy B. The influence of rhodium on SnO_2-CO gas sensor. Sensors and Actuators, 1991, (18) : 500~504
    [14] 吴雄.用超微粒金和掺α-Fe-2O_3共沉淀所制备的选择性CO传感器.传感器技术,1990,(1):36~39
    [15] 吴家琨,孙良彦.γ-Fe_2O_3的CO气敏特性的研究.传感技术学报,1997,10(1):18~22
    [16] 金剑波,李本会.β-Fe_2O_3气敏元件可靠性工艺设计.传感器技术,1998,17(2):19~23
    [17] 孙良彦,刘正绣.常温振荡式CO气敏元件的研制.传感器技术,1995,
    
    (1):10~13
    [18] 王利,祁志美.微结构气敏传感器制造工艺的研究.仪表技术与传感器,1998,(3):10~13
    [19] Dang Hyok Yoon, Ji Haeng Yu. CO gas sensing properties of ZnO-CuO composite. Sensors and Actuators, 1998,46:15~23
    [20] 刘文利,俞琳.一种新型CO气敏双层薄膜材料.中国环境监测,2001,17(5):46~48
    [21] 陆凡,王小平.低功耗常温CO气敏元件.传感器技术,1997,16(3):5~8
    [22] 易家保.新型一氧化碳敏感元件研究.传感器世界,2001,7(1):23~26
    [23] 武卫华,何自力.新型一氧化碳传感器的应用研究.矿业快报,2001,(14):20~21
    [24] 王岚,何敬文.常温一氧化碳气敏元件制备及气敏机理研究.传感器技术,2001,20(9):16~17
    [25] 崔志武,陈晓阳.一种基于纳米SnO_2材料CO气敏器件的研制.仪表技术与传感器,1999,(6):15~16
    [26] 陆凡,陈诵英.二氧化锡在气敏材料中的应用.石油化工,1994,23(9):617~624
    [27] Torvela, H, Harkoma A, Leppavuori S. Detection of the concentration of CO using SnO_2 gas sensors in combustion gas of different fuels. Sensors and Actuators, 1989, (17): 369~372
    [28] 李惠萍,崔战华,崔光照,等.CO气敏传感器在全功能CO测试报警中的应用研究.郑州轻工业学院学报,1994,9(1):110~114
    [29] Nitta M, Haradome M. CO gas dection by ThO_2-doped SnO_2. Journal of Electronic Materials, 1979, (8): 571~575
    [30] Ji Haeng Yu, Gyeong Man Choi. Select CO gas detection of CuO- and ZnO-doped ShO_2 gas sensor. Sensors and Actuators, 2001, 75:56~61
    [31] Serita R,Kawano T.A highly selective CO sensor screening of electrode materials.Sensors and Actuators, 1996, 36:274~278
    [32] 李昌兴.电化学KG3002一氧化碳连续监测传感器.矿业快报,1987,(2):15~18
    [33] 王玲生,贾仲春.XCOY—1型电极一氧化碳检测报警仪的研制.基础自
    
    动化,1995,2(1):47~50
    [34] 邵良彬,李幸俊.电化学胶体电解质一氧化碳传感元件的研制.云南大学学报,1997,19(1):37~39
    [35] 张殿国,张力新.胶体电化学CO元件性能剖析.煤矿安全,2000,31(10):26~27
    [36] Azad A M, Mhaisalkar S G, BirkDeteffeld L D, e tal. Behavior of a new ArO_2-MoO_3 sensors for carbon monoxide.J. Electrochem.Soc, 1993,139:2913~2917
    [37] Yan H, Liu C C. A solid polymer electrolyte-based electrochemical carbon monoxide sensor.Sensors and Actuators ,1994, (17) : 165~170
    [38] Lee S B, Cocco A, Keyvani D,e tal. Humidity dependence of carbon monoxide oxidation rateina nafion-based electrochemical cell. J.Electronchem. Soc,1995,142: 157~162
    [39] 刘卫国.定电位电解式一氧化碳传感器.传感器技术,1988,(4):11~13
    [40] 卢秀娟,王玉江.定电位电解低浓度一氧化碳气体传感器的研究,应用化学,1998,15(4):68~70
    [41] 冯业铭,陆天虹.控制电位电解一氧化碳监测仪的研究.中国矿业大学学报,1994,23(2):9~16
    [42] 付其琛,刘庆隆.电化学式一氧化碳传感器的探识.中国环境监测,1997,13(3):20~22
    [43] 赵孔新,王宏志.智能一氧化碳巡回检测仪.吉林工学院学报,1995,16(2):22~25
    [44] Morimoto Y, Yeager E B.CO oxidation smooth and high area Pt. Pt-Ru and Pt-Sn electrodes.J.Electronical chem,1998, 441:77~81
    [45] Williams E W, Keeling A G. Thick film tin oxide sensors for detecting carbon monoxide at room temperature. Journal of Materials,Science, 1998, (9): 51~55
    [46] Petrolekas P D, Metcalfe I S. Potentiometric sensor for monitoring the state of oxide catalysts. J. Electrochem. Soc, 1995, 142:952~956
    [47] Tang Z, Fung S, Wong S,et al. An integrated gas sensor based on tin oxide thin-film and improved micro-hotplate. Sensors and Actuators, 1998, 46 : 174~178
    
    
    [48] Yasuda A, Doi K, Yamaga N,e tal. Medhanism of the sensitivity of the planar CO sensor and its dependency on humidity. J. Electrochem. Soc, 1992,139: 3224~3228.
    [49] C. J. Briuker, G. W. Scherer. Sol—Gel Science—The Physics and Chemistry of S— G Processing.London:Academic Press, Inc, 1990.23~45
    [50] Larry L H,Jon K W.The sol-gel process.Chem.Rev,1990,90:33~70
    [51] Medonagh C.Charactefisation of sol-gel derived silica films.J.Non-cryst Solids, 1996,194:72~77
    [52] Sankur H,Gunning W.Crystallization and diffusion in composite TiO_2-SiO_2 thin film.J Appl Phys,1989,66(10):4747~4751
    [53] Syms R R A,Holmes A S.Deposition of thick silica-titania sol-gel films on Si substrates.J Non Cryst Solids, 1994,170(2):223~227
    [54] Imhof A,Pine D J.Ordered macroporous materials by emulsion templating. Nature, 1997,389:948~951
    [55] R. K. Iler. The Chemistry of Silica. N. Y: Wiley, 1979.13~32
    [56] B. E. Yoldas. Ultrastructure Processing of Adavance Ceramics. N. Y :Wiely, 1988. 333~345
    [57] Sumio Sakka. Ultrastructure Processing of Advanced Ceramics. N.Y: Wiely, 1988.159~170
    [58] Glaser P M,Pantano C G. Effect of H_2O/TEOS ratio upon the preparation and nitridation of silica sol-gel films.J.Non—Cryst Solids, 1984, 63:209~211
    [59] Strawefidge I,James P.Thin silica film prepared by dip coating.J.Non-Cryst solids, 1986,82: 366~372
    [60] Guglielmi M,Zenezini S.The thickness of sol-gel silica coatings obtained by dipping.J.Non-Cryst solids, 1990,121:303~309
    [61] C. J. Brinker,G. W. Schever. Sol—Gel Science—The Physics and Chemistry of S— G Procesing.London:Academic Press Inc, 1990. 500~507
    [62] S. P. MukherJee.Ultrastructure Processing of Adavance Ceramics.N.Y: Wiely,1988.747~759
    [63] 余锡宾,吴虹.正硅酸乙酯的水解、缩合过程研究.无机材料学报,1996,11(4):703~707
    [64] 赵永祥,吴志刚.前驱物对NiO/SiO_2气凝胶催化剂性能的影响.化学学
    
    报,2002,60(4):596~599
    [65] 郭国霖,桂琳琳.纳米微孔与纳米技术.大学化学,1994,9(5):6~9
    [66] 徐耀,李志宏.TEOS-MTES基SiO_2溶胶微结构的SAXS研究.物理化学学报,2002,18(9):781~785
    [67] 姚连增,李小毛.SiO_2气凝胶的制备与表征.硅酸盐学报,1998,26(3):319~323
    [68] 王一平,朱丽.气—液界面非担载SiO_2无机膜的仿生制备.无机材料学报,2002,17(1):175~179
    [69] 瞿其曙,何友昭.超细二氧化硅的制备及研究进展.硅酸盐通报,2002,30(5):57~62
    [70] 陈康,王志诚.非晶态SiO_2掺杂Fe~(2+)薄膜气敏性的研究.传感器技术,1996,(1):5~10
    [71] 贾宏,郭铠.用超重力法制备纳米二氧化硅.材料研究学报,2001,15(1):120~124
    [72] 何斌、王相田.纳米二氧化硅水溶胶的制备技术研究及应用.上海化工,2000,25(9):14~17
    [73] 杨南如,余桂郁.溶胶—凝胶法简介(第一讲).硅酸盐通报,1992,11(2):56~63
    [74] 罗伍文.溶胶—凝胶法简介(第二讲).硅酸盐通报,1993,12(4):60~67
    [75] 余桂郁,杨南如.溶胶—凝胶法简介(第三讲).硅酸盐通报,1993,12(6):60~66
    [76] 王剑华,郭玉忠.溶胶—凝胶法制备SiO_2薄膜的研究.材料科学与工艺,1999,7(3):1~5
    [77] 秦小铃,张立文.猪血红蛋白液制备及在血红蛋白质控液的应用.中华医学检验杂志,1991,14(3):183~184
    [78] 司士辉.生物传感器.北京:化学工业出版社,2003.16~33
    [79] 孔德领,贾永会.固定化血红蛋白的研究(Ⅱ).高等学校化学报,1998,19(10):1584~1588
    [80] 梁曙光,童明容.多聚磷酸吡哆醛血红蛋白的制备及其研究.离子交换与吸附,1994,10(4):294~299
    [81] 贾永会,孔德领.固定化血红蛋白氧载体的研究(Ⅰ)—聚乙烯醇包埋
    
    血红蛋白.功能高分子学报,1998,11(9):381~384
    [82] 程哲明.血红蛋白.北京:科学出版社,1980.18~23
    [83] 苏拔哲.7 生物制备技术.北京:科学出版社,1986.5~10
    [84] 郭顶力,白悦.生物敏感膜的研究现状与发展.传感器技术学报,1992,(2):48~52
    [85] 樊晶,陈连旺.应用萃取—超滤法提纯血红蛋白.天津药学,2002,14(1):33~35
    [86] 朱永宁.血红蛋白(Hb)的低温保护剂.吉林大学自然科学学报,1999,(3):88~92
    [87] 周广业,陈坚刚,周玉祥.脱辅基血红蛋白的制备和重组.化学通报,1998,(8):54~55
    [88] 张锦柱.工业分析.重庆:重庆大学出版社,1997.45~56
    [89] Alan Wilson,John D,Julian J.Murphy.Sol-gel materials for gas-sensing applications. Sensors and Actuators, 1994, 19: 500~504

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700