中国典型地区碳质气溶胶及二次有机气溶胶特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气气溶胶是我国最主要的空气污染物之一,而碳质气溶胶是其中的主要组分。大气碳质气溶胶对全球气候变化、太阳辐射平衡、温室效应、大气能见度和人体健康等方面都有重要的影响。由于华北地区能源消耗强度和气溶胶排放强度较大,导致此区域是全球气溶胶浓度最高的地区之一。因此全面阐明我国高污染条件下大气气溶胶和碳质气溶胶的污染现状和变化特征,并了解其来源和形成机制,对制定控制对策具有重要意义。
     本研究选择中国气溶胶污染较重的典型地区,在济南、青岛、淄博和枣庄等典型城市分别设立4个城区和1个郊区(济南苗圃)观测点,并在泰山建立高山大气观测站,对大气气溶胶和碳质气溶胶进行了连续观测。对区域范围内城市及边界层大气气溶胶和碳质气溶胶的污染特征和时空分布进行了研究,探讨了其传输和来源,并对二次有机气溶胶(SOA)的含量、形成和变化特征进行了研究。此外,本研究还考察了云雾对碳质气溶胶的清除作用和液相SOA生成过程,研究了气溶胶的云凝结核(CCN)特性和SOA对气溶胶CCN活性的影响,并系统地测定了NaCl(?)内米颗粒的形状因子。
     济南市区、济南郊区、青岛、淄博、枣庄和泰山六个观测点PM2.5、有机碳(OC)和元素碳(EC)浓度均值范围分别为44.7-191.0μg m-3、15.93-38.03μgm-3和1.31-5.03μg m-3。PM2.5和碳质气溶胶浓度都高于国内外其它城市和背景站观测浓度,而且济南城区长期观测结果显示PM2.5和碳质气溶胶浓度都呈现缓慢增长趋势。PM2.5和碳质气溶胶浓度都表现出明显的季节变化,冬春季较高而夏季最低,表明燃煤排放仍然是我国北方地区PM2.5和碳质气溶胶的主要来源之一。本研究在华北地区首次连续观测了边界层顶大气半挥发性有机碳(SVOC),结果显示,春、夏季平均浓度分别为6.26、13.33μg m-3,占总有机碳(TOC)浓度的51%和72%,说明半挥发性有机气溶胶是此区域边界层内大气有机气溶胶中的主要组成。六个观测点有机气溶胶占PM2.5质量浓度的平均比例范围在19.9-66.0%,反映出区域范围内有机污染物排放量较大,碳质气溶胶污染较重。
     对碳质气溶胶的日变化特征分析发现,城市地区黑碳(BC)浓度主要受人为活动、交通源排放和气象条件的影响,而泰山地区碳质气溶胶浓度主要受传输和二次生成来源影响,并且在传输过程中混合了多种不同来源,包括燃煤排放、交通排放、生物质燃烧等。利用PCA和HCA分析发现泰山春、夏季高浓度的NVOC和EC主要来自于边界层内污染物的传输,而来自自由对流层的干净气团中碳质气溶胶浓度较低。高浓度的SVOC与云雾过程相关,并且由光化学氧化和液相反应生成的SOA在夏季都有所增强。研究还证实,我国华北地区生物质燃烧和韩国地区污染物的排放对我国华北地区和东亚地区碳质气溶胶浓度都有明显的影响。此外,还得到区域边界层顶碳质气溶胶的背景浓度,NVOC为2.13±1.05μg m-3,EC为0.43±0.29μgm-3,而SVOC在2.40-6.80μgm-3范围内。
     分别利用EC约束示踪法和改进的多元回归方法对典型城市和泰山站大气中二次有机气溶胶浓度进行了测算,结果显示,各城市大气中二次有机碳(SOC)浓度范围为8.25-23.46μg m-3,占TOC总量的40.13-58.91%,枣庄浓度最高而青岛最低。泰山春、夏季总SOC的浓度分别为8.19和13.26μgm-3,占TOC总量的57.3%和71.2%,其中半挥发性二次有机碳(SV-SOC)占总SOC的60.4%和74.9%。结果表明观测期间有大量的SOA形成,也反映出华北地区边界层内较高的SOA通量和前体物排放量。对SOC和光化学寿命关系分析发现,NV-SOC和SV-SOC与光化学寿命关系不同且两者均表现出明显的季节差异。春季NV-SOC与光化学寿命呈正相关关系,而SV-SOC则表现出单峰形态,说明随光化学寿命的增加NV-SOC不断的生成,而SV-SOC则受气态前体物生成和向更低挥发性组分转化的动态平衡控制。夏季更加老化的气团中NV-SOC与光化学寿命的关系不明显,而SV-SOC则继续向不挥发性组分转化而表现出浓度下降的趋势。
     泰山观测期间发现云雾对NVOC和EC有明显的清除作用,清除效率范围分别为0.33-0.93和0.62-0.94。与不挥发组分变化相反,SVOC浓度在云雾过程中表现出上升趋势,净增长浓度范围在3.67到19.04μgm-3,说明有大量的SVOC在云雾过程中生成和增长。利用云雾-气溶胶作用模型获得NVOC和EC的清除系数常数KNVOC和KEC,以及SVOC的生成速率常数JSVOC和汇机制常数SSVOC。KNVOC夏季低而春季高,范围为0.07-0.55 h-1,春、夏季平均值分别为0.16和0.11 h-1。KEC范围为0.11-0.90 h-1,与KNVOC表现出相似的季节变化,但大部分KEC值都高于KNVOC,说明EC颗粒在传输过程中与吸湿性颗粒(硫酸盐、硝酸盐等)发生了内部混合。JSVOC范围为0.09-1.39 h-1,春、夏季平均值分别为0.88和0.45 h-1,其中夏季波动相对较大。SSVOC表现出与JSVOC同样的季节变化,范围为0.001-1.07 h-1。SVOC在云雾过程中的增长速率受已存在气溶胶浓度、前体物浓度、氧化剂浓度和汇机制的共同影响,SVOC的增长曲线主要取决于源和汇机制的相互竞争。
     本研究还利用CCNC仪器研究了NaCl和(NH4)2SO4颗粒的CCN活性,发现在相同超饱和度下NaCl的临界活性直径小于(NH4)2S04,表明气溶胶粒子的CCN活性取决于其粒径和化学成分的共同作用。利用烟雾箱研究了由α-pinene和isoprene生成的SOA对颗粒CCN性质的影响,结果发现随SOA在(NH4)2SO4颗粒上的生成,CCN活性有了较大提高。不同来源和种类的SOA对CCN活性影响不同,由α-pinene生成的SOA比isoprene生成的SOA对颗粒CCN活性增强作用更加显著。而随有机物体积分数的升高,SOA-(NH4)2SO4内混粒子的临界超饱和度也随之上升。此外,本研究利用Flow tube-DMA-CCNC系统测得干燥速率在5.5±0.9到101±3 RH s-1范围内的NaCl颗粒的形状因子χ在1.02到1.26之间。NaCl形状因子χ受粒径和干燥速率的共同影响,相同粒径下,χ随干燥速率的增加而降低,而相同干燥速率下,χ在35-40nm粒径最高。NaCl形状因子χ随粒径和干燥速率的变化主要取决于颗粒相水的扩散运动和NaCl单体运动的特征时间的相互竞争,以及体系大小的影响。
Atmospheric aerosol is one of the major pollutants in the atmosphere, having significant effects on air quality and human health. Carbonaceous aerosols are known to contribute significantly to the atmospheric fine particles, and not only have crucial impacts on human health and environment, but also play important roles on climate change, radiation balance, greenhouse effect, and visibility. Due to the large energy consumption and emission, the North China is among the areas with the highest aerosol concentrations in the world. Thus, the study on physical and chemical characteristics of carbonaceous aerosols, and understanding of the sources and formation mechanism of carbonaceous aerosols in this region is therefore needed, which clould further promote the control strategy of government.
     In this work, representative areas were chosen to conduct measurement campaigns on atmospheric carbonaceous aerosols. The measurement studies were performed at four urban sites (Jinan, Qingdao, Zibo, Zaozhuang), one suburban site, and one mountain site (Mount Tai). In the present study, we report the concentrations and temporal variations of fine particles and carbonaceous species in urban cities and in the planetary boundary layer (PBL), investigate the sources and processes that affect the variation of carbonaceous aerosols, examine the cloud scavenging of carbonaceous aerosols and SVOC formation through aqueous-phase reactions in clouds. We also study the cloud condensation nuclei (CCN) activity of both inorganic and organic aerosols, and quantitatively determine the dynamic shaper factor of NaCl nanoparticles.
     The results showed that the concentrations of PM2.5, OC and EC in Jinan, Qingdao, Zibo and Zaozhuang were much higher than other urban cities in the world, and the concentrations at Mt. Tai were also higher than other background and mountain sites in the world, suggesting the serious atmospheric pollution in this region. The concentrations of PM2.5 and carbonaceous species exhibited clear seasonal variation, with higher concentration in winter and spring but lowest concentration in summer. The semi-volatile organic carbon (SVOC) was measured at Mt. Tai for the first time, and its concentration accounted for 51% and 72% of total OC in spring and summer, respectively, suggesting the predominance of semi-volatile species in organic aerosol in this region. The contribution of organic aerosol to PM2.5 mass in six sites ranged from 19.9% to 66.0%, indicating the large emission and serious pollution of carbonaceous aerosols. The long-term observation in Jinan also indicated that the concentrations of PM2.5 and carbonaceous species all exhibited a slightly increasing trend, highlighting the significance of aerosol pollution control in this region.
     The diurnal variation of carbonaceous species suggested that the BC concentration in urban area was related to the human activities, traffic emission and meterological parameters, whereas the carbonaceous concentrations at Mt. Tai were dominated by transport and secondary formation. The results suggested the combined sources for the transported aerosols at Mt. Tai, including coal combustion, traffic exhaust, biomass burning and photochemical production. Source analysis based on PCA and HCA indicated that high carbonaceous concentrations were dominated by transport of PBL pollutions in both seasons, and clean air masses from the free troposphere provided the general background condition with 2.13±1.05μg m-3 of NVOC,0.43±0.29μg m-3 of EC and 2.40 to 6.80μg m-3 of SVOC in the study area. Besides the biomass burning in north China, the influence of emission from Korea was observed during the campaigns, and was thought to partially contribute to the regional carbonaceous aerosol budget. Increased SVOC was associated with both cloud processing and photochemical production.
     The constrained EC-tracer and multiple regression method were used to estimate SOC formation at urban areas and Mt. Tai. The average concentration of SOC at four cities ranged from 8.25 to 23.46μg m-3, accounting for 40.13% to 58.19% of total OC. The average total SOC concentrations at Mt. Tai were 8.19 and 13.26 ug m-3 in spring and summer, respectively, accounting for 57.3% and 71.2% of TOC. The contributions of semi-volatile secondary organic carbon (SV-SOC) to SOC were 60.4% and 74.9% in spring and summer, respectively. The results indicated strong SOA formation during campaigns and high SOA loading in the PBL of the North China Plain. An examination of SOC with photochemical age reveals different relationships of non-volatile and semi-volatile SOC with age and also a different seasonal dependence. NV-SOC increased with photochemical age in spring, while SV-SOC exhibited a mono-peak pattern. These results indicated continuing formation of NV-SOC and SV-SOC being determined by the dynamic equilibrium between formation from gas-phase precursors and conversion to the non-volatile phase in spring. This dependence was not significant in more aged air masses observed in summer, revealing that the aerosol had been fully processed before being transported to Mt. Tai.
     The clear scavenging of NVOC and EC by clouds was observed at Mt. Tai, and the scavenging efficiencies of NVOC and EC were in the range of 0.33-0.93 and 0.62-0.94, respectively. In contrast to the non-volatile species, SVOC concentration showed increasing trend during clouds, with net increase ranged from 3.67 to 19.04μg m-3 for all cloud events, suggesting in-cloud formation of semi-volatile organic species. A mass balance model was proposed to quantify the scavenging coefficients for NVOC, EC and formation rate of SVOC during clouds. The derived scavenging coefficient constant for NVOC (KNVOC) varied from 0.07 to 0.55 h-1, with averages of 0.16 and 0.11 h-1 in spring and summer, respectively. The scavenging coefficient constant of EC (KEC) ranged from 0.11 to 0.90 h-1, and was higher than that of NVOC, implying internal mixing of EC with more hygroscopic species. The formation rate constant (JSVOC) and sink constant (SSVOC) of SVOC ranged from 0.09 to 1.39 h-1 and 0.001 to 1.07 h-1, respectively. The results suggest that the SVOC growth rate in cloud processing depends on both pre-existing aerosol concentration and sink mechanism, and the growth curve is determined by the competing formation and sink processes.
     The CCN activity of NaCl and (NH4)2SO4 particles was studied by using CCNC, and the results showed that the critical diameter of NaCl was much smaller than that of (NH4)2SO4 under the same supersaturation. The CCN activity of particles depends on both size distribution and chemical composition of particles. The SOA formed from a-pinene and isoprene in Environmental Chamber was studied, and the CCN activity was remarkably altered by SOA formed on seed particles (i.e., (NH4)2SO4). The SOA formed from a-pinene increased the CCN activity of particles more significantly than that of isoprene, suggesting that the impacts of SOA on CCN property of particles were related to its source and composition. The results also indicated that the critical supersaturation was increased for greater SOA volume fraction. The dynamic shape factor x of NaCl nanoparticles was investigated with a Flow tube-DMA-CCNC system. The drying rate at efflorescence RH was quantified and varied from 5.5±0.9 to 101±3 RH s-1, and the derived x ranged from 1.02 to 1.26. The dynamic shape factors of NaCl particles depended on both particle size and drying rate. For fixed particle diameter, theχvalue decreased with increasing drying rate. For fixed drying rate, a maximum occurred in x between 35-and 40-nm diameter, with a lower x from both smaller and larger particles. The dependence of x on particle size and drying rate could be attributed to the competing effects of the dominant characteristic time of particle-phase diffusion of water and diffusive movement of NaCl monomers, coupled to system size.
引文
[1]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,2006.
    [2]Kulmala M., Vehkamaki H., Petaja T., Dal Maso M., Lauri A., Kerminen V. M., Birmili W., McMurry P. H. Formation and growth rates of ultrafine atmospheric particles:a review of observations. Journal of Aerosol Science,2004,35 (2):143-176.
    [3]魏复盛,滕恩江,吴国平,胡伟,W.E.Wilson, R.S.Chapman, J.C.Pau, J.Zhang我国4个大城市空气PM2.5、PM10污染及其化学组成.中国环境监测,2001,(S1):1-6.
    [4]彭林,梁丽明,孙建星.太原市大气颗粒物中有机物浓度的分布特征[J].沉积学报,1999,(04).
    [5]Seinfeld J. H., Pandis S. N. Atmospheric Chemistry and Physics:From air pollution to climate change. New York: John Wiley,1998.
    [6]杨圣杰,陈莎,袁波祥.北京市2.5μm小颗粒大气气溶胶特征及来源.北方交通大学学报,2001,(06):50-53.
    [7]Ramanathan V., Crutzen P. J., Kiehl J. T., Rosenfeld D. Atmosphere-Aerosols, climate, and the hydrological cycle. Science,2001,294 (5549):2119-2124.
    [8]秦瑜,赵春生.大气化学基础[M].北京:气象出版社,2003.
    [9]周震峰.苏南城乡地区大气可吸入颗粒物研究[D].西北大学,2003.
    [10]陈思龙,陈桂元,尹华川,赵大为,徐放,张冬保,高世东,孟梅,任丽新.重庆大气颗粒物与酸性降水关系研究[J].重庆环境科学,1991,(05):26-32.
    [11]孙庆瑞,王美蓉,王彤文,林俊.大气颗粒物对酸雨的作用.环境化学,1991,(01):14-25.
    [12]王文兴.中国酸雨成因研究.中国环境科学,1994,(05).
    [13]Ostro B., Chestnut L., Vichit-Vadakan N., Laixuthai A. The impact of particulate matter on daily mortality in Bangkok, Thailand. Journal of the Air & Waste Management Association, 1999,49:100-107.
    [14]任丽新,游荣高,吕位秀,张文,王秀玲.城市大气气溶胶的物理化学特性及其对人体健康的影响[J].气候与环境研究,1999,(01):67-73.
    [15]葛启坛,谷清,徐长松,苗凡举.北京市大气质量控制研究.中国环境科学,1988,8(2).
    [16]Kim Y. P., Moon K. C., Lee J. H., Baik N. J. Concentrations of carbonaceous species in particles at Seoul and Cheju in Korea. Atmospheric Environment,1999,33 (17):2751-2758.
    [17]Molnar A., Meszaros E., Hansson H. C., Karlsson H., Gelencser A., Kiss G. Y., Krivacsy Z. The importance of organic and elemental carbon in the fine atmospheric aerosol particles. Atmospheric Environment,1999,33 (17):2745-2750.
    [18]Jacobson M. Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature,2001,409 (6821):695-697.
    [19]IPCC. Climate change 2001:the scientific basis, Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press., Cambridge,2001.
    [20]Engelhart G. J., Asa-Awuku A., Nenes A., Pandis S. N. CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol. Atmospheric Chemistry and Physics,2008,8 (14):3937-3949.
    [21]Novakov T., Penner J. E. Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature,1993,365 (6449).
    [22]Berner A., Sidla S., Galambos Z., Kruisz C., Hitzengberger R., ten Brink H. M., Kos G. P. A. Modal character of atmospheric black carbon size distributions. Journal of Geophysical Research,1996,101 (D14).
    [23]秦世广.我国大陆地区大气黑碳气溶胶观测研究[D].中国气象科学研究院博士学位论文,2001.
    [24]Bond T. C., Streets D. G., Yarber K. F., Nelson S. M., Woo J. H., Klimont Z. A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research-Atmospheres,2004,109 (D14).
    [25]Zhang Q., Streets D. G., Carmichael G. R., He K. B., Huo H., Kannari A., Klimont Z., Park I. S., Reddy S., Fu J. S., Chen D., Duan L., Lei Y., Wang L. T., Yao Z. L. Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics,2009,9 (14): 5131-5153.
    [26]Gelencser A. Carbonaceous Aerosol. Dordrecht, The Netherlands:Springer,2004.
    [27]Beauford W., Barber J., Barringer A. R. Heavy metal release from plants into the atmosphere. Nature,1975,256 (5512):35-7.
    [28]Duce R. A. Speculations on the budget of particulate and vapor phase non-methane organic carbon in the global troposphere. Pure and Applied Geophysics,1978,116 (2-3).
    [29]Crutzen P. J., Andreae M. O. Biomass burning in the tropics:impact on atmospheric chemistry and biogeochemical cycles. Science (New York, N.Y.),1990,250 (4988):1669-78.
    [30]Cooke W. F., Liousse C., Cachier H., Feichter J. Construction of a 1 degrees x 1 degrees fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. Journal of Geophysical Research-Atmospheres,1999,104 (D18):22137-22162.
    [31]Turpin B. J., Huntzicker J. J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment,1995,29 (23):3527-3544.
    [32]Heald C. L., Henze D. K., Horowitz L. W., Feddema J., Lamarque J. F., Guenther A., Hess P. G., Vitt F., Seinfeld J. H., Goldstein A. H., Fung I. Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. Journal of Geophysical Research-Atmospheres,2008,113 (D5).
    [33]Tsigaridis K., Kanakidou M. Secondary organic aerosol importance in the future atmosphere. Atmospheric Environment,2007,41 (22):4682-4692.
    [34]Monks P. S., Granier C., Fuzzi S., Stohl A., Williams M. L., Akimoto H., Amann M., Baklanov A., Baltensperger U., Bey I., Blake N., Blake R. S., Carslaw K., Cooper O. R., Dentener F., Fowler D., Fragkou E., Frost G. J., Generoso S., Ginoux P., Grewe V., Guenther A., Hansson H. C., Henne S., Hjorth J., Hofzumahaus A., Huntrieser H., Isaksen I. S. A., Jenkin M. E., Kaiser J., Kanakidou M., Klimont Z., Kulmala M., Laj P., Lawrence M. G., Lee J. D., Liousse C., Maione M., McFiggans G., Metzger A., Mieville A., Moussiopoulos N., Orlando J. J., O'Dowd C. D., Palmer P. I., Parrish D. D., Petzold A., Platt U., Poeschl U., Prevot A. S. H., Reeves C. E., Reimann S., Rudich Y., Sellegri K., Steinbrecher R., Simpson D., ten Brink H., Theloke J., van der Werf G. R., Vautard R., Vestreng V., Vlachokostas C., von Glasow R. Atmospheric composition change-global and regional air quality. Atmospheric Environment,2009,43 (33):5268-5350.
    [35]Hallquist M., Wenger J. C., Baltensperger U., Rudich Y., Simpson D., Claeys M., Dommen J., Donahue N. M., George C., Goldstein A. H., Hamilton J. F., Herrmann H., Hoffmann T., Iinuma Y., Jang M., Jenkin M. E., Jimenez J. L., Kiendler-Scharr A., Maenhaut W., McFiggans G., Mentel T. F., Monod A., Prevot A. S. H., Seinfeld J. H., Surratt J. D., Szmigielski R., Wildt J. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics,2009,9 (14):5155-5236.
    [36]Goldstein A. H., Galbally I. E. Known and unexplored organic constituents in the earth's atmosphere. Environmental Science & Technology,2007,41 (5):1514-1521.
    [37]Blando J. D., Turpin B. J. Secondary organic aerosol formation in cloud and fog droplets:a literature evaluation of plausibility. Atmospheric Environment,2000,34 (10):1623-1632.
    [38]赵喆.α-蒎烯氧化生成二次有机气溶胶的实验研究[D].清华大学,2008.
    [39]Jacobson M. C., Hansson H. C., Noone K. J., Charlson R. J. Organic atmospheric aerosols: Review and state of the science. Reviews of Geophysics,2000,38 (2):267-294.
    [40]Hoffmann T., Odum J. R., Bowman F., Collins D., Klockow D., Flagan R. C., Seinfeld J. H. Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons. Journal of Atmospheric Chemistry,1997,26 (2):189-222.
    [41]Guenther A., Hewitt N. C., Erickson D., Fall R., Geron C., Graedel T., Harley P., Klinger L., Lerdau M., McKay W. A., Pierce T., Scholes B., Steinbrecher R., Tallamraju R., Taylor J., Zimmerman P. A global model of natural volatile organic compound emissions. Journal of Geophysical Research,1995,100 (D5).
    [42]Yu J. Z., Cocker D. R., Griffin R. J., Flagan R. C., Seinfeld J. H. Gas-phase ozone oxidation of monoterpenes: Gaseous and particulate products. Journal of Atmospheric Chemistry, 1999,34 (2):207-258.
    [43]Tolocka M. P., Heaton K. J., Dreyfus M. A., Wang S. Y., Zordan C. A., Saul T. D., Johnston M. V. Chemistry of particle inception and growth during alpha-pinene ozonolysis. Environmental Science & Technology,2006,40 (6):1843-1848.
    [44]Waengberg I., Barnes I., Becker K. H. Product and mechanistic study of the reaction of NO-3 radicals with alpha-pinene. Environmental Science and Technology,1997,31 (7):2130-2135.
    [45]Hakola H., Arey J., Aschmann S. M., Atkinson R. Product formation from the gas-phase reactions of OH radicals and O<sub>3</sub> with a series of monoterpenes. Journal of Atmospheric Chemistry,1994,18 (1):75-102.
    [46]王伟江.天然活性单萜——柠檬烯的研究进展.中国食品添加剂,2005,(01):33-37.
    [47]Bonn B., Lawrence M. G. Influence of biogenic secondary organic aerosol formation approaches on atmospheric chemistry. Journal of Atmospheric Chemistry,2005,51 (3): 235-270.
    [48]Claeys M., Graham B., Vas G., Wang W., Vermeylen R., Pashynska V., Cafmeyer J., Guyon P., Andreae M. O., Artaxo P., Maenhaut W. Formation of secondary organic aerosols through photooxidation of isoprene. Science,2004,303 (5661):1173-1176.
    [49]Reisen F., Aschmann S. M., Atkinson R., Arey J.1,4-hydroxycarbonyl products of the OH radical initiated reactions of C-5-C-8 n-alkanes in the presence of NO. Environmental Science & Technology,2005,39 (12):4447-4453.
    [50]王振亚,郝立庆,张为俊.二次有机气溶胶形成的化学过程.化学进展,2005,(04):732-739.
    [51]李黎.天然源二次气溶胶组成、分布以及来源研究[D].上海大学,2009.
    [52]Pandis S. N., Harley R. A., Cass G. R., Seinfeld J. H. Secondary organic aerosol formation and transport. Atmospheric Environment 1992,26A (26A):2269-2282.
    [53]Odum J. R., Hoffmann T., Bowman F., Collins D., Flagan R. C., Seinfeld J. H. Gas/particle partitioning and secondary organic aerosol yields. Environmental Science and Technology, 1996,30 (8):2580-2585.
    [54]McIntire T. M., Lea A. S., Gaspar D. J., Jaitly N., Dubowski Y., Li Q. Q., Finlayson-Pitts B. J. Unusual aggregates from the oxidation of alkene self-assembled monolayers: a previously unrecognized mechanism for SAM ozonolysis? Physical Chemistry Chemical Physics,2005, 7 (20):3605-3609.
    [55]Kalberer M., Paulsen D., Sax M., Steinbacher M., Dommen J., Prevot A. S. H., Fisseha R., Weingartner E., Frankevich V., Zenobi R., Baltensperger U. Identification of polymers as major components of atmospheric organic aerosols. Science,2004,303 (5664):1659-1662.
    [56]Holmes B. J., Petrucci G. A. Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols. Environmental Science & Technology,2006,40 (16):4983-4989.
    [57]Heaton K. J., Dreyfus M. A., Wang S., Johnston M. V. Oligomers in the early stage of biogenic secondary organic aerosol formation and growth. Environmental Science & Technology,2007,41(17):6129-6136.
    [58]Szmigielski R., Surratt J. D., Vermeylen R., Szmigielska K., Kroll J. H., Ng N. L., Murphy S. M., Sorooshian A., Seinfeld J. H., Claeys M. Characterization of 2-methylglyceric acid oligomers in secondary organic aerosol formed from the photooxidation of isoprene using trimethylsilylation and gas chromatography/ion trap mass spectrometry. Journal of Mass Spectrometry,2007,42 (1):101-116.
    [59]Sato K., Hatakeyama S., Imamura T. Secondary organic aerosol formation during the photooxidation of toluene: NOx dependence of chemical composition. Journal of Physical Chemistry A,2007,111 (39):9796-9808.
    [60]Zahardis J., Petrucci G. A. The oleic acid-ozone heterogeneous reaction system:products, kinetics, secondary chemistry, and atmospheric implications of a model system-a review. Atmospheric Chemistry and Physics,2007,7:1237-1274.
    [61]Chen J., Griffin R. J., Grini A., Tulet P. Modeling secondary organic aerosol formation through cloud processing of organic compounds. Atmospheric Chemistry and Physics,2007, 7 (20):5343-5355.
    [62]Wang Z., Wang T., Guo J., Gao R., Xue L., Zhang J., Zhou Y., Zhou X., Zhang Q., Wang W. Formation of secondary organic carbon and cloud impact on carbonaceous aerosols at Mount Tai, North China. Atmospheric Environment,2011, doi: 10.1016/j.atmosenv.2011.08.019.
    [63]Yu L. E., Shulman M. L., Kopperud R., Hildemann L. M. Characterization of organic compounds collected during Southeastern Aerosol and Visibility Study: Water-soluble organic species. Environmental Science & Technology,2005,39 (3):707-715.
    [64]Sorooshian A., Ng N. L., Chan A. W. H., Feingold G., Flagan R. C., Seinfeld J. H. Particulate organic acids and overall water-soluble aerosol composition measurements from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Journal of Geophysical Research-Atmospheres,2007,112 (D13).
    [65]Legrand M., Puxbaum H. Summary of the CARBOSOL project:Present and retrospective state of organic versus inorganic aerosol over Europe. Journal of Geophysical Research-Atmospheres,2007,112 (D23).
    [66]Arakaki T., Kuroki Y., Okada K., Nakama Y., Ikota H., Kinjo M., Higuchi T., Uehara M., Tanahara A. Chemical composition and photochemical formation of hydroxyl radicals in aqueous extracts of aerosol particles collected in Okinawa, Japan. Atmospheric Environment,2006,40 (25):4764-4774.
    [67]Lim H. J., Carlton A. G., Turpin B. J. Isoprene forms secondary organic aerosol through cloud processing:Model simulations. Environmental Science & Technology,2005,39 (12): 4441-4446.
    [68]Fu T. M., Jacob D. J., Wittrock F., Burrows J. P., Vrekoussis M., Henze D. K. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. Journal of Geophysical Research-Atmospheres,2008,113(D15), doi: 10.1029/2007jd009505.
    [69]秦世广,汤洁,温玉璞.黑碳气溶胶及其在气候变化研究中的意义[J].气象,2001,(11):3-7.
    [70]IPCC. Climate change 2007:The Physical Science Basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Press C. U., Cambridge,2007.
    [71]张华,王志立.黑碳气溶胶气候效应的研究进展.气候变化研究进展,2009,(06):311-317.
    [72]King S. M., Rosenoern T., Shilling J. E., Chen Q., Martin S. T. Cloud condensation nucleus activity of secondary organic aerosol particles mixed with sulfate. Geophysical Research Letters,2007,34 (24):L24806.
    [73]苏维瀚.大气污染物的非均相化学反应.环境化学,1985,(06):1-12.
    [74]Lary D. J., Lee A. M., Toumi R., Newchurch M. J., Pirre M., Renard J. B. Carbon aerosols and atmospheric photochemistry. Journal of Geophysical Research,1997,102 (D3).
    [75]Babu S. S., Satheesh S. K., Moorthy K. K. Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophysical Research Letters,2002,29 (18).
    [76]Sellegri K., Laj P., Dupuy R., Legrand M., Preunkert S., Putaud J. P. Size-dependent scavenging efficiencies of multicomponent atmospheric aerosols in clouds. Journal of Geophysical Research-Atmospheres,2003,108(D11), doi: 10.1029/2002jd002749.
    [77]Summerhays J. Evaluation of risks from urban air pollutants in the southeast Chicago area. Journal of the Air & Waste Management Association,1991,41 (6):844-50.
    [78]Long R. W., Eatough N. L., Mangelson N. F., Thompson W., Fiet K., Smith S., Smith R., Eatough D. J., Pope C. A., Wilson W. E. The measurement of PM2.5, including semi-volatile components, in the EMPACT program:results from the Salt Lake City Study. Atmospheric Environment,2003,37 (31):4407-4417.
    [79]Rinehart L. R., Fujita E. M., Chow J. C., Magliano K., Zielinska B. Spatial distribution of PM2.5 associated organic compounds in central California. Atmospheric Environment, 2006,40 (2):290-303.
    [80]Hazenkamp-Von Arx M. E., Gotschi T., Ackermann-Liebrich U., Bono R., Burney P., Cyrys J., Jarvis D., Lillienberg L., Luczynska C., Maldonado J. A., Jaen A., de Marco R., Mi Y. H., Modig L., Bayer-Oglesby L., Payo F., Soon A., Sunyer J., Villani S., Weyler J., Kunzli N. PM2.5 and NO2 assessment in 21 European study centres of ECRHS Ⅱ:annual means and seasonal differences. Atmospheric Environment,2004,38 (13):1943-1953.
    [81]Sillanpaa M., Hillamo R., Saarikoski S., Frey A., Pennanen A., Makkonen U., Spolnik Z., Van Grieken R., Branis M., Brunekreef B., Chalbot M.-C., Kuhlbusch T., Sunyer J., Kerminen V.-M., Kulmala M., Salonen R. O. Chemical composition and mass closure of particulate matter at six urban sites in Europe. Atmospheric Environment,2006,40:S212-S223.
    [82]He K. B., Yang F. M., Ma Y. L., Zhang Q., Yao X. H., Chan C. K., Cadle S., Chan T., Mulawa P. The characteristics of PM2.5 in Beijing, China. Atmospheric Environment,2001, 35 (29):4959-4970.
    [83]王京丽,谢庄,张远航,邵敏,曾立民,程丛兰,徐晓峰,赵习方,孟燕军.北京市大气细粒子的质量浓度特征研究.气象学报,2004,(01):104-111.
    [84]Duan F. K., He K. B., Ma Y. L., Yang F. M., Yu X. C., Cadle S. H., Chan T., Mulawa P. A. Concentration and chemical characteristics of PM2.5 in Beijing, China:2001-2002. Science of The Total Environment,2006,355 (1-3):264-275.
    [85]Wang Y., Zhuang G. S., Tang A. H., Yuan H., Sun Y. L., Chen S. A., Zheng A. H. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmospheric Environment,2005,39 (21):3771-3784.
    [86]Yang F., Tan J., Zhao Q., Du Z., He K., Ma Y., Duan F., Chen G. Characteristics of PM(2.5) speciation in representative megacities and across China. Atmospheric Chemistry and Physics,2011,11 (11):5207-5219.
    [87]Ye B. M., Ji X. L., Yang H. Z., Yao X. H., Chan C. K., Cadle S. H., Chan T., Mulawa P. A. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmospheric Environment,2003,37 (4):499-510.
    [88]Wang Y., Zhuang G. S., Zhang X. Y., Huang K., Xu C., Tang A. H., Chen J. M., An Z. S. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmospheric Environment,2006,40 (16):2935-2952.
    [89]李龙凤,王新明,赵利容,何秋生,盛国英,傅家谟.广州市街道环境PM10和PM2.5质量浓度的变化特征.地球与环境,2005,(02):57-60.
    [90]黄虹.广州市住宅室内外大气PM25的化学组成特征、来源及暴露评价[D].中山大学博士学位论文,2005.
    [91]Niu Y., He L., Hu M., Zhang J., Zhao Y. Pollution characteristics of atmospheric fine particles and their secondary components in the atmosphere of Shenzhen in summer and in winter. Science in China Series B-Chemistry,2006,49 (5):466-474.
    [92]Hagler G. S. W., Bergin M. H., Salmon L. G., Yu J. Z., Wan E. C. H., Zheng M., Zeng L. M., Kiang C. S., Zhang Y. H., Lau A. K. H., Schauer J. J. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China. Atmospheric Environment,2006,40 (20):3802-3815.
    [93]Cao J. J., Lee S. C., Ho K. F., Zhang X. Y., Zou S. C., Fung K., Chow J. C., Watson J. G. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmospheric Environment,2003,37 (11):1451-1460.
    [94]Wang G. H., Wang H., Yu Y. J., Gao S. X., Feng J. F., Gao S. T., Wang L. S. Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China. Atmospheric Environment,2003,37 (21):2893-2902.
    [95]钟天翔.杭州市空气环境中挥发性有机物与PM2.5污染研究[D].浙江大学,2005.
    [96]Takami A., Wang W., Tang D., Hatakeyama S. Measurements of gas and aerosol for two weeks in northern China during the winter-spring period of 2000,2001 and 2002. Atmospheric Research,2006,82 (3-4):688-697.
    [97]Shen Z., Cao J., Arimoto R., Han Y., Zhu C., Tian J., Liu S. Chemical Characteristics of Fine Particles (PM1) fromXi'an, China. Aerosol Science and Technology,2010,44 (6):461-472.
    [98]王淑兰,柴发合,张远航,周来东,王琴玲.成都市大气颗粒物污染特征及其来源分析.地理科学,2004,(04):488-492.
    [99]陶燕.兰州市大气颗粒物理化特性及其对人群健康的影响[D].兰州大学,2009.
    [100]Meng Z. Y., Jiang X. M., Yan P., Lin W. L., Zhang H. D., Wang Y. Characteristics and sources of PM2.5 and carbonaceous species during winter in Taiyuan, China. Atmospheric Environment,2007,41 (32):6901-6908.
    [101]刘章现,蔡宝森,张江石,王国贞.河南省平顶山市大气PM10和PM2·5污染水平及其微量元素特征.环境化学,2006,(04):516-517.
    [102]朱易,胡衡生,张新英,黄劢,罗洪亮.南宁市大气颗粒物TSP、PM10、PM2.5污染水平研究.环境污染与防治,2004,(03):176-178+242.
    [103]Li J., Zhuang G., Huang K., Lin Y., Xu C., Yu S. Characteristics and sources of air-borne particulate in Urumqi, China, the upstream area of Asia dust. Atmospheric Environment, 2008,42 (4):776-787.
    [104]Shen Z. X., Cao J. J., Arimoto R., Zhang R. J., Jie D. M., Liu S. X., Zhu C. S. Chemical composition and source characterization of spring aerosol over Horqin sand land in northeastern China. Journal of Geophysical Research-Atmospheres,2007,112 (D14).
    [105]Li L., Wang W., Feng J., Zhang D., Li H., Gu Z., Wang B., Sheng G., Fu J. Composition, source, mass closure of PM(2.5) aerosols for four forests in eastern China. Journal of Environmental Sciences-China,2010,22 (3):405-412.
    [106]Feng J., Guo Z., Chan C. K., Fang M. Properties of organic matter in PM2.5 at Changdao Island, China-A rural site in the transport path of the Asian continental outflow. Atmospheric Environment,2007,41 (9):1924-1935.
    [107]Park S. S., Kim Y. J., Cho S. Y., Kim S. J. Characterization of PM2.5 aerosols dominated by local pollution and Asian dust observed at an urban site in Korea during Aerosol Characterization Experiments (ACE)-Asia Project. Journal of the Air & Waste Management Association,2007,57 (4):434-443.
    [108]Oanh N. T. K., Upadhyaya N., Zhuang Y. H., Hao Z. P., Murthy D. V. S., Lestari P., Villarin J. T., Chengchua K., Co H. X., Dung N. T., Lindgren E. S. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources. Atmospheric Environment,2006,40 (18):3367-3380.
    [109]Wu Y.-S., Fang G.-C., Lee W.-J., Lee J.-F., Chang C.-C., Lee C.-Z. A review of atmospheric fine particulate matter and its associated trace metal pollutants in Asian countries during the period 1995-2005. Journal of Hazardous Materials,2007,143 (1-2): 511-515.
    [110]Chan C. K., Yao X. Air pollution in mega cities in China. Atmospheric Environment,2008, 42(1):1-42.
    [111]胡敏,刘尚,吴志军,张静,赵云良,Wehner B., Wiedensohler A北京夏季高温高湿和降水过程对大气颗粒物谱分布的影响.环境科学,2006,(11):2293-2298.
    [112]Gao J., Wang T., Zhou X., Wu W., Wang W. Measurement of aerosol number size distributions in the Yangtze River delta in China: Formation and growth of particles under polluted conditions. Atmospheric Environment,2009,43 (4):829-836.
    [113]段凤魁,贺克斌,刘咸德,董树屏,杨复沫.含碳气溶胶研究进展:有机碳和元素碳.环境工程学报,2007,(08):1-8.
    [114]Novakov T., Bates T. S., Quinn P. K. Shipboard measurements of concentrations and properties of carbonaceous aerosols during ACE-2. Tellus Series B-Chemical and Physical Meteorology,2000,52 (2):228-238.
    [115]Ramanathan V., Crutzen P. J. New directions:Atmospheric brown "Clouds". Atmospheric Environment,2003,37 (28):4033-4035.
    [116]Jimenez J. L., Canagaratna M. R., Donahue N. M., Prevot A. S. H., Zhang Q., Kroll J. H., DeCarlo P. F., Allan J. D., Coe H., Ng N. L., Aiken A. C., Docherty K. S., Ulbrich I. M., Grieshop A. P., Robinson A. L., Duplissy J., Smith J. D., Wilson K. R., Lanz V. A., Hueglin C., Sun Y. L., Tian J., Laaksonen A., Raatikainen T., Rautiainen J., Vaattovaara P., Ehn M., Kulmala M., Tomlinson J. M., Collins D. R., Cubison M. J., Dunlea E. J., Huffman J. A., Onasch T. B., Alfarra M. R., Williams P. I., Bower K., Kondo Y., Schneider J., Drewnick F., Borrmann S., Weimer S., Demerjian K., Salcedo D., Cottrell L., Griffin R., Takami A., Miyoshi T., Hatakeyama S., Shimono A., Sun J. Y., Zhang Y. M., Dzepina K., Kimmel J. R., Sueper D., Jayne J. T., Hemdon S. C., Trimborn A. M., Williams L. R., Wood E. C., Middlebrook A. M., Kolb C. E., Baltensperger U., Worsnop D. R. Evolution of Organic Aerosols in the Atmosphere. Science,2009,326 (5959):1525-1529.
    [117]Fang G. C., Wu Y. S., Chou T. Y., Lee C. Z. Organic carbon and elemental carbon in Asia: A review from 1996 to 2006. Journal of Hazardous Materials,2008,150 (2):231-237.
    [118]Wang Z., Wang T., Gao R., Xue L., Guo J., Zhou Y., Nie W., Wang X., Xu P., Gao J., Zhou X., Wang W., Zhang Q. Source and variation of carbonaceous aerosols at Mount Tai, North China:Results from a semi-continuous instrument. Atmospheric Environment,2011,45 (9): 1655-1667.
    [119]Han Y. M., Han Z. W., Cao J. J., Chow J. C., Watson J. G., An Z. S., Liu S. X., Zhang R. J. Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance. Atmospheric Environment,2008,42 (10): 2405-2414.
    [120]罗运阔,陈尊裕,张轶男,Guenter E.,张智胜,桑雪芳,王雪梅.中国南部四背景地区春季大气碳质气溶胶特征与来源.中国环境科学,2010,(11):1543-1549.
    [121]Tolocka M. P., Solomon P. A., Mitchell W., Norris G. A., Gemmill D. B., Wiener R. W., Vanderpool R. W., Homolya J. B., Rice J. East versus West in the US:Chemical characteristics of PM2.5 during the winter of 1999. Aerosol Science and Technology,2001, 34(1):88-96.
    [122]Kim Y. P., Moon K. C., Lee J. H. Organic and elemental carbon in fine particles at Kosan, Korea. Atmospheric Environment,2000,34 (20):3309-3317.
    [123]Russell M., Allen D. T. Seasonal and spatial trends in primary and secondary organic carbon concentrations in southeast Texas. Atmospheric Environment,2004,38 (20):3225-3239.
    [124]Geron C. Carbonaceous aerosol over a Pinus taeda forest in Central North Carolina, USA. Atmospheric Environment,2009,43 (4):959-969.
    [125]Brook J. R., Dann T. F. Contribution of nitrate and carbonaceous species to PM2.5 observed in Canadian cities. Journal of the Air & Waste Management Association,1999,49 (2):193-199.
    [126]Saarikoski S., Timonen H., Saarnio K., Aurela M., Jarvi L., Keronen P., Kerminen V. M., Hillamo R. Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric Chemistry and Physics,2008,8 (20):6281-6295.
    [127]Yttri K. E., Dye C., Braathen O. A., Simpson D., Steinnes E. Carbonaceous aerosols in Norwegian urban areas. Atmospheric Chemistry and Physics,2009,9 (6):2007-2020.
    [128]von Schneidemesser E., Zhou J., Stone E. A., Schauer J. J., Qasrawi R., Abdeen Z., Shpund J., Vanger A., Sharf G., Moise T., Brenner S., Nassar K., Saleh R., Al-Mahasneh Q. M., Sarnat J. A. Seasonal and spatial trends in the sources of fine particle organic carbon in Israel, Jordan, and Palestine. Atmospheric Environment,2010,44 (30):3669-3678.
    [129]He Z., Kim Y. J., Ogunjobi K. O., Kim J. E., Ryu S. Y. Carbonaceous aerosol characteristics of PM2.5 particles in northeastern Asia in summer 2002. Atmospheric Environment,2004, 38(12):1795-1800.
    [130]Ram K., Sarin M. M., Hegde P. Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India:Sources and temporal variability. Atmospheric Environment,2008,42 (28):6785-6796.
    [131]Rengarajan R., Sarin M. M., Sudheer A. K. Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. Journal of Geophysical Research-Atmospheres,2007,112(D21), doi: 10.1029/2006jd008150.
    [132]Puxbaum H., Rendl J., Allabashi R., Otter L., Scholes M. C. Mass balance of the atmospheric aerosol in a South African subtropical savanna (Nylsvley, May 1997). Journal of Geophysical Research-Atmospheres,2000,105 (D16):20697-20706.
    [133]Carrico C. M., Bergin M. H., Shrestha A. B., Dibb J. E., Gomes L., Harris J. M. The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya. Atmospheric Environment,2003,37 (20):2811-2824.
    [134]Hitzenberger R., Berner A., Giebl H., Kromp R., Larson S. M., Rouc A., Koch A., Marischka S., Puxbaum H. Contribution of carbonaceous material to cloud condensation nuclei concentrations in European background (Mt. Sonnblick) and urban (Vienna) aerosols. Atmospheric Environment,1999,23 (17):2647-2659.
    [135]Yttri K. E., Aas W, Bjerke A., Cape J. N., Cavalli F., Ceburnis D., Dye C., Emblico L., Facchini M. C., Forster C., Hanssen J. E., Hansson H. C., Jennings S. G., Maenhaut W., Putaud J. P., Torseth K. Elemental and organic carbon in PM10:a one year measurement campaign within the European Monitoring and Evaluation Programme EMEP. Atmospheric Chemistry and Physics,2007,7 (22):5711-5725.
    [136]Gelencser A., May B., Simpson D., Sanchez-Ochoa A., Kasper-Giebl A., Puxbaum H., Caseiro A., Pio C., Legrand M. Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin. Journal of Geophysical Research-Atmospheres,2007,112(D23S04), doi:10.1029/2006jd008094.
    [137]Chow J. C., Watson J. G., Lowenthal D. H., Chen L. W. A., Magliano K. L. Particulate carbon measurements in California's San Joaquin Valley. Chemosphere,2006,62 (3):337-348.
    [138]Ye D., Zhao Q., Jiang C., Chen J., Meng X. Characteristics of elemental carbon and organic carbon in PM10 during spring and autumn in Chongqing, China. China Particuology,2007, 5 (4):255-260.
    [139]Dan M., Zhuang G. S., Li X. X., Tao H. R., Zhuang Y. H. The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmospheric Environment, 2004,38 (21):3443-3452.
    [140]张仁健,石磊,刘阳.北京冬季PM10中有机碳与元素碳的高分辨率观测及来源分析.中国粉体技术,2007,(06):1-4+8.
    [141]Feng Y., Chen Y., Guo H., Zhi G., Xiong S., Li J., Sheng G., Fu J. Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China. Atmospheric Research,2009, 92 (4):434-442.
    [142]王杨君,董亚萍,冯加良,管晶晶,赵伟,李怀建.上海市PM2.5中含碳物质的特征和影响因素分析.环境科学,2010,(08):1755-1761.
    [143]Yu J. Z., Tung J. W. T., Wu A. W. M., Lau A. K. H., Louie P. K. K., Fung J. C. H. Abundance and seasonal characteristics of elemental and organic carbon in Hong Kong PM10. Atmospheric Environment,2004,38 (10):1511-1521.
    [144]Louie P. K. K., Watson J. G., Chow J. C., Chen A., Sin D. W. M., Lau A. K. H. Seasonal characteristics and regional transport of PM2.5 in Hong Kong. Atmospheric Environment, 2005,39(9):1695-1710.
    [145]Cao J. J., Lee S. C., Ho K. F., Zou S. C., Fung K., Li Y., Watson J. G., Chow J. C. Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmospheric Environment,2004,38 (27):4447-4456.
    [146]朱李华,陶俊,张仁健,曹军骥,张涛,林泽健,许振成.冬夏季广州城区碳气溶胶特征及其与03和气象条件的关联.环境科学学报,2010,(10):1942-1949.
    [147]古金霞,白志鹏,刘爱霞,吴丽萍,解以扬,董海燕,张金娜.天津冬季PM2.5与PM10中有机碳、元素碳的污染特征.环境污染与防治,2009,(08):33-36.
    [148]包贞,焦荔,洪盛茂.杭州市大气PM2.5中碳分布特征及来源分析.环境化学,2009,(02):304-305.
    [149]李建军,沈振兴,同帜,曹军骥,韩月梅,刘随心,朱崇抒.西安冬春季PM10中碳气溶胶的昼夜变化特征.环境科学,2009,(05):1506-1513.
    [150]陈晓秋,俞是聃,傅彦斌.福州市春、冬季霾日与非霾日PM2.5及碳气溶胶污染水平与特征.中国环境监测,2008,(06):68-72.
    [151]赵雪艳,徐永海,刘永,姜华,姬亚芹,白志鹏.东营夏季PM10中有机碳、元素碳的污染特征.南开大学学报(自然科学版),2010,(05):83-88.
    [152]Cao J. J., Xu B. Q., He J. Q., Liu X. Q., Han Y. M., Wang G. H., Zhu C. S. Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote Mountainous region in western China. Atmospheric Environment,2009,43 (29):4444-4452.
    [153]Qu W.-J., Zhang X.-Y., Arimoto R., Wang Y.-Q., Wang D., Sheng L.-F., Fu G. Aerosol background at two remote CAWNET sites in western China. Science of The Total Environment,2009,407 (11):3518-3529.
    [154]Zhang X. Y., Wang Y. Q., Zhang X. C., Guo W., Gong S. L. Carbonaceous aerosol composition over various regions of China during 2006. Journal of Geophysical Research-Atmospheres,2008,113(D14),doi:10.1029/2007jd009525.
    [155]Wang W., Wu M. H., Li L., Zhang T., Liu X. D., Feng J. L., Li H. J., Wang Y. J., Sheng G. Y., Claeys M., Fu J. M. Polar organic tracers in PM(2.5) aerosols from forests in eastern China. Atmospheric Chemistry and Physics,2008,8 (24):7507-7518.
    [156]Funasaka K., Miyazaki T., Tsuruho K., Tamura K., Mizuno T., Kuroda K. Relationship between indoor and outdoor carbonaceous particulates in roadside households. Environmental Pollution,2000,110 (1):127-134.
    [157]Fung K. Particulate Carbon Speciation by MnO2 Oxidation. Aerosol Science and Technology,1990,12 (1):122-127.
    [158]Birch M. E., Cary R. A. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Science and Technology,1996,25 (3):221-241.
    [159]Chow J. C., Watson J. G., Pritchett L. C., Pierson W. R., Frazier C. A., Purcell R. G. The DRI thermal/optical reflectance carbon analysis system: description, evaluation, and applications in US air quality studies. Atmospheric Environment,1993,27 (8):1185-1201.
    [160]Lin J. J., Tai H.-S. Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan. Atmospheric Environment,2001,35 (15):2627-2636.
    [161]周学华,王哲,郝明途,杨凌霄,王文兴.济南市春季大气颗粒物污染研究.环境科学学报,2008,(04):755-763.
    [162]Baron P. A., Willeke K. Aerosol Measurement: Principles, Techniques, and Applications.second ed., New York: Wiley,2001.
    [163]Gundel L. A., Dod R. L., Rosen H., Novakov T. The relationship between optical attenuation and black carbon concentration for ambient and source particles. Science of The Total Environment,1984,36 (0):197-202.
    [164]Kanaya Y., Komazaki Y., Pochanart P., Liu Y., Akimoto H., Gao J., Wang T., Wang Z. Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006. Atmospheric Chemistry and Physics,2008,8 (24):7637-7649.
    [165]Hitzenberger R., Petzold A., Bauer H., Ctyroky P., Pouresmaeil P., Laskus L., Puxbaum H. Intercomparison of thermal and optical measurement methods for elemental carbon and black carbon at an urban location. Environmental Science & Technology,2006,40 (20): 6377-6383.
    [166]黄虹,李顺诚,曹军骥,邹长伟,陈新庚.大气气溶胶中有机碳和元素碳监测方法的进展.分析科学学报,2006,(02):225-229.
    [167]迟旭光,狄一安,董树屏,刘咸德.大气颗粒物样品中有机碳和元素碳的测定.中国环境监测,1999,(04):11-13.
    [1681 Holler R., Tohno S., Kasahara M., Hitzenberger R. Long-term characterization of carbonaceous aerosol in Uji, Japan. Atmospheric Environment,2002,36 (8):1267-1275.
    [169]Finlayson-Pitts B. J., James N. Pitts J. Chemistry of the Upper and Lower Atmosphere:Theory, Experiments, and Applications. San Diego, CA: Academic Press., 2000.
    [170]Turpin B. J., Huntzicker J. J. Secondary formation of organic aerosol in the Los Angeles Basin: a descriptive analysis of organic and elemental carbon concentrations. Atmospheric Environment,1991,25 (2):207-215.
    [171]Ferge T., Karg E., Schroeppel A., Coffee K. R., Tobias H. J., Frank M., Gard E. E., Zimmermann R. Fast determination of the relative elemental and organic carbon content of aerosol samples by on-line single-particle aerosol time-of-flight mass spectrometry. Environmental Science & Technology,2006,40 (10):3327-3335.
    [172]Cadle S., Groblicki P. An evaluation of methods for the determination of organic and elemental carbon in particulate samples. In Paniculate Carbon:Atmospheric Life Cycle. New York:Plenum Press.,1982.
    [173]Cadle S., Mulawa P. Atmospheric carbonaceous species measurement methods comparison study:General Motors Results. Aerosol Science and Technology,1990,12:128-141.
    [174]Bae M. S., Schauer J. J., DeMinter J. T., Turner J. R., Smith D., Cary R. A. Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method. Atmospheric Environment,2004,38 (18):2885-2893.
    [175]Bae M. S., Hong C. S., Kim Y. J., Han J. S., Moon K. J., Kondo Y., Komazaki Y., Miyazaki Y. Intercomparison of two different thermal-optical elemental carbons and optical black carbon during ABC-EAREX2005. Atmospheric Environment,2007,41 (13):2791-2803.
    [176]Husain L., Dutkiewicz V. A., Khan A., Ghauri B. M. Characterization of carbonaceous aerosols in urban air. Atmospheric Environment,2007,41 (32):6872-6883.
    [177]Jeong C. H., Hopke P. K., Kim E., Lee D. W. The comparison between thermal-optical transmittance elemental carbon and Aethalometer black carbon measured at multiple monitoring sites. Atmospheric Environment,2004,38 (31 Sp. Iss. SI):5193-5204.
    [178]Park K., Chow J. C., Watson J. G., Trimble D. L., Doraiswamy P., Arnott W. P., Stroud K. R., Bowers K., Bode R., Petzold A., Hansen A. D. A. Comparison of continuous and filter- based carbon measurements at the Fresno Supersite. Journal of the Air & Waste Management Association,2006,56 (4):474-491.
    [179]Chow J. C., Watson J. G., Crow D., Lowenthal D. H., Merrifield T. Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Science and Technology,2001,34 (1):23-34.
    [180]Cheng Y., He K. B., Duan F. K., Zheng M., Ma Y. L., Tan J. H., Du Z. Y. Improved measurement of carbonaceous aerosol:evaluation of the sampling artifacts and inter-comparison of the thermal-optical analysis methods. Atmospheric Chemistry and Physics, 2010,10 (6):8533-8548.
    [181]Subramanian R., Khlystov A. Y., Robinson A. L. Effect of peak inert-mode temperature on elemental carbon measured using thermal-optical analysis. Aerosol Science and Technology, 2006,40 (10):763-780.
    [182]胡敏,邓志强,王轶,林鹏,曾立民,Kondo Y.膜采样离线分析与在线测定大气细粒子中元素碳和有机碳的比较.环境科学,2008,(12):3297-3303.
    [183]Cheng Y., He K. B., Duan F. K., Zheng M., Ma Y. L., Tan J. H. Positive sampling artifact of carbonaceous aerosols and its influence on the thermal-optical split of OC/EC. Atmospheric Chemistry and Physics,2009,9(18):7243-7256.
    [184]Pachon J. E., Balachandran S., Hu Y. T., Weber R. J., Mulholland J. A., Russell A. G. Comparison of SOC estimates and uncertainties from aerosol chemical composition and gas phase data in Atlanta. Atmospheric Environment,2010,44 (32):3907-3914.
    [185]Blanchard C. L., Hidy G. M., Tanenbaum S., Edgerton E., Hartsell B., Jansen J. Carbon in southeastern US aerosol particles:Empirical estimates of secondary organic aerosol formation. Atmospheric Environment,2008,42 (27):6710-6720.
    [186]Chou C. C. K., Lee C. T., Cheng M. T., Yuan C. S., Chen S. J., Wu Y. L., Hsu W. C., Lung S. C., Hsu S. C., Lin C. Y., Liu S. C. Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan. Atmospheric Chemistry and Physics,2010,10 (19): 9563-9578.
    [187]Raman R. S., Hopke P. K., Holsen T. M. Carbonaceous aerosol at two rural locations in New York State: Characterization and behavior. Journal of Geophysical Research-Atmospheres,2008,113(D 12), doi:10.1029/2007jd009281.
    [188]Strader R., Lurmann F., Pandis S. N. Evaluation of secondary organic aerosol formation in winter. Atmospheric Environment,1999,33 (29):4849-4863.
    [189]Chu S. H. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment,2005,39 (8):1383-1392.
    [190]Lim H. J., Turpin B. J. Origins of primary and secondary organic aerosol in Atlanta:Results' of time-resolved measurements during the Atlanta supersite experiment. Environmental Science & Technology,2002,36 (21):4489-4496.
    [191]Castro L. M., Pio C. A., Harrison R. M., Smith D. J. T. Carbonaceous aerosol in urban and rural European atmospheres:estimation of secondary organic carbon concentrations. Atmospheric Environment,1999,33 (17):2771-2781.
    [192]Cao J. J., Lee S. C., Chow J. C., Watson J. G., Ho K. F., Zhang R. J., Jin Z. D., Shen Z. X., Chen G. C., Kang Y. M., Zou S. C., Zhang L. Z., Qi S. H., Dai M. H., Cheng Y., Hu K. Spatial and seasonal distributions of carbonaceous aerosols over China. Journal of Geophysical Research-Atmospheres,2007,112(D22S11), doi:10.1029/2006jd008205.
    [193]Hu W. W., Hu M., Deng Z. Q, Xiao R., Kondo Y., Takegawa N., Zhao Y. J., Guo S., Zhang Y. H. Characteristics and the origins of the carbonaceous aerosol at a rural site of PRD in summer 2006. Atmospheric Chemistry and Physics Discussion,2011,11:21601-21629.
    [194]Marmur A., Unal A., Mulholland J. A., Russell A. G. Optimization-based source apportionment of PM2.5 incorporating gas-to-particle ratios. Environmental Science & Technology,2005,39 (9):3245-3254.
    [195]Hu D., Bian Q. J., Lau A. K. H., Yu J. Z. Source apportioning of primary and secondary organic carbon in summer PM2.5 in Hong Kong using positive matrix factorization of secondary and primary organic tracer data. Journal of Geophysical Research-Atmospheres, 2010,115(doi:10.1029/2009jd012498.
    [196]Jaeckels J. M., Bae M.-S., Schauer J. J. Positive matrix factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols. Environmental Science & Technology,2007,41 (16):5763-5769.
    [197]Shrivastava M. K., Subramanian R., Rogge W. F., Robinson A. L. Sources of organic aerosol:Positive matrix factorization of molecular marker data and comparison of results from different source apportionment models. Atmospheric Environment,2007,41 (40): 9353-9369.
    [198]Yu S. C., Dennis R. L., Bhave P. V., Eder B. K. Primary and secondary organic aerosols over the United States:estimates on the basis of observed organic carbon (OC) and elemental carbon (EC), and air quality modeled primary OC/EC ratios. Atmospheric Environment,2004,38 (31):5257-5268.
    [199]Pandis S. N., Harley R. A., Cass G. R., Seinfeld J. H. Secondary organic aerosol formation and transport. Atmospheric Environment,1992,26 (13):2269-2282.
    [200]Hildemann L. M., Rogge W. F., Cass G. R., Mazurek M. A., Simoneit B. R. T. Contribution of primary aerosol emissions from vegetation-derived sources to fine particle concentrations in Los Angeles. Journal of Geophysical Research,1996,101 (D14).
    [201]Hu D., Bian Q., Li T. W. Y., Lau A. K. H., Yu J. Z. Contributions of isoprene, monoterpenes, beta-caryophyllene, and toluene to secondary organic aerosols in Hong Kong during the summer of 2006. Journal of Geophysical Research-Atmospheres,2008,113(doi: 10.1029/2008jd010437.
    [202]Fu P. Q., Kawamura K., Kanaya Y., Wang Z. F. Contributions of biogenic volatile organic compounds to the formation of secondary organic aerosols over Mt Tai, Central East China. Atmospheric Environment,2010,44 (38):4817-4826.
    [203]Kleindienst T. E., Jaoui M., Lewandowski M., Offenberg J. H., Lewis C. W., Bhave P. V., Edney E. O. Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmospheric Environment,2007, 41 (37):8288-8300.
    [204]Zheng M., Ke L., Edgerton E. S., Schauer J. J., Dong M. Y., Russell A. G. Spatial distribution of carbonaceous aerosol in the southeastern United States using molecular markers and carbon isotope data. Journal of Geophysical Research-Atmospheres,2006, 111 (D10), doi:10.1029/2005jd006777.
    [205]Zhang Q., Worsnop D. R., Canagaratna M. R., Jimenez J. L. Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh:insights into sources and processes of organic aerosols. Atmospheric Chemistry and Physics,2005,5:3289-3311.
    [206]Zhang Q., Alfarra M. R., Worsnop D. R., Allan J. D., Coe H., Canagaratna M. R., Jimenez J. L. Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environmental Science & Technology,2005,39 (13): 4938-4952.
    [207]Mohr C., Huffman J. A., Cubison M. J., Aiken A. C., Docherty K. S., Kimmel J. R., Ulbrich I. M., Hannigan M., Jimenez J. L. Characterization of Primary Organic Aerosol Emissions from Meat Cooking, Trash Burning, and Motor Vehicles with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and Chamber Observations. Environmental Science & Technology,2009,43 (7):2443-2449.
    [208]Volkamer R., Jimenez J. L., San Martini F., Dzepina K., Zhang Q., Salcedo D., Molina L. T., Worsnop D. R., Molina M. J. Secondary organic aerosol formation from anthropogenic air pollution:Rapid and higher than expected. Geophysical Research Letters,2006,33 (17).
    [209]吴兑,吴晓京,朱晓祥.雾与霾[M].北京:气象出版社,2009.
    [210]Sun Y. L., Zhuang G. S., Tang A. H., Wang Y., An Z. S. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environmental Science & Technology,2006,40 (10):3148-3155.
    [211]Wang Y., Zhuang G., Sun Y., An Z. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmospheric Environment, 2006,40 (34):6579-6591.
    [212]Shendrikar A. D., Steinmetz W. K. Integrating nephelometer measurements for the airborne fine particulate matter (PM2.5) mass concentrations. Atmospheric Environment,2003,37 (9-10):1383-1392.
    [213]Chan Y. C., Simpson R. W., McTainsh G. H., Vowles P. D., Cohen D. D., Bailey G. M. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmospheric Environment,1999,33 (19):3237-3250.
    [214]Kim K. W., Kim Y. J., Oh S. J. Visibility impairment during Yellow Sand periods in the urban atmosphere of Kwangju, Korea. Atmospheric Environment,2001,35 (30):5157-5167.
    [215]郭军.天津地区灰霾天气的气候特征分析.城市环境与城市生态,2008,(03):12-14+20.
    [216]中华人民共和国环境保护部.2008年环境统计年报.北京:中华人民共和国环境保护部,2009.
    [217]van Donkelaar A., Martin R. V., Brauer M., Kahn R., Levy R., Verduzco C., Villeneuve P. J. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth:Development and Application. Environmental Health Perspectives, 2010,118 (6):847-855.
    [218]中华人民共和国环境保护部.2007年环境统计年报.北京:中华人民共和国环境保护部,2008.
    [219]中花人民共和国国家统计局.中国统计年鉴2009.中国统计出版社,北京,2010.
    [220]董树屏,刘咸德,祁辉,张烃, Manhaunt W大气颗粒物中元素碳的直接测定.中国环境监测,2004,(03):20-23.
    [221]Harrison R. M., Yin J. X. Sources and processes affecting carbonaceous aerosol in central England. Atmospheric Environment,2008,42 (7):1413-1423.
    [222]Wang Z., King S. M., Freney E., Rosenoern T., Smith M. L., Chen Q., Kuwata M., Lewis E. R., Poschl U., Wang W., Buseck P. R., Martin S. T. The Dynamic Shape Factor of Sodium Chloride Nanoparticles as Regulated by Drying Rate. Aerosol Science and Technology, 2010,44 (11):939-953.
    [223]淡默.中国典型地区碳质气溶胶的理化特性及来源研究[D].北京师范大学博士学位论文,2006.
    [224]Chan T. W., Huang L., Leaitch W. R., Sharma S., Brook J. R., Slowik J. G., Abbatt J. P. D., Brickell P. C., Liggio J., Li S. M., Moosmuller H. Observations of OM/OC and specific attenuation coefficients (SAC) in ambient fine PM at a rural site in central Ontario, Canada. Atmospheric Chemistry and Physics,2010,10 (5):2393-2411.
    [225]Kim B. M., Teffera S., Zeldin M. D. Characterization of PM2.5 and PM10 in the South Coast Air Basin of southern California:Part 1-Spatial variations. Journal of the Air & Waste Management Association,2000,50 (12):2034-2044.
    [226]刘彦,崔玉东,杨淑梅.地理环境对济南市低层大气污染的影响.山东科学,2004,(03):40-42.
    [227]张美根,徐永福,张仁健,韩志伟.东亚地区春季黑碳气溶胶源排放及其浓度分布.地球物理学报,2005,(01):46-51.
    [228]Ho K. F., Lee S. C, Yu J. C, Zou S. C., Fung K. Carbonaceous characteristics of atmospheric particulate matter in Hong Kong. Science of the Total Environment,2002,300 (1-3):59-67.
    [229]Zhou Y., Wang T., Gao X., Xue L., Wang X., Wang Z., Gao J., Zhang Q., Wang W. Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534 m a.s.l.) in central-eastern China. Journal of Atmospheric Chemistry,2010,64:107-127.
    [230]Lonati G., Ozgen S., Giugliano M. Primary and secondary carbonaceous species in PM2.5 samples in Milan (Italy). Atmospheric Environment,2007,41 (22):4599-4610.
    [231]Pio C. A., Legrand M., Alves C. A., Oliveira T., Afonso J., Caseiro A., Puxbaum H., Sanchez-Ochoa A., Gelencser A. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment,2008,42 (32):7530-7543.
    [232]Plaza J., Gomez-Moreno F. J., Nunez L., Pujadas M., Artinano B. Estimation of secondary organic aerosol formation from semicontinuous OC-EC measurements in a Madrid suburban area. Atmospheric Environment,2006,40 (6):1134-1147.
    [233]Ren Y., Ding A., Wang T., Shen X., Guo J., Zhang J., Wang Y., Xu P., Wang X., Gao J., Collett Jr J. L. Measurement of gas-phase total peroxides at the summit of Mount Tai in China. Atmospheric Environment,2009,43 (9):1702-1711.
    [234]Gao J., Wang T., Ding A., Liu C. Observational study of ozone and carbon monoxide at the summit of mount Tai (1534 m a.s.l.) in central-eastern China. Atmospheric Environment, 2005,39 (26):4779-4791.
    [235]Morgan W. T., Allan J. D., Bower K. N., Esselborn M., Harris B., Henzing J. S., Highwood E. J., Kiendler-Scharr A., McMeeking G. R., Mensah A. A., Northway M. J., Osborne S., Williams P. I., Krejci R., Coe H. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components:airborne measurements in North-Western Europe. Atmospheric Chemistry and Physics,2010,10 (17):8151-8171.
    [236]Novakov T., Menon S., Kirchstetter T. W., Koch D., Hansen J. E. Aerosol organic carbon to black carbon ratios:Analysis of published data and implications for climate forcing. Journal of Geophysical Research-Atmospheres,2005,110(D21), doi:10.1029/2005jd005977.
    [237]Viana M., Maenhaut W., ten Brink H. M., Chi X., Weijers E., Querol X., Alastuey A., Mikuska P., Vecera Z. Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmospheric Environment, 2007,41 (28):5972-5983.
    [238]Watson J. G., Chow J. C., Houck J. E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere,2001,43(8):1141-1151.
    [239]Pio C. A., Legrand M., Oliveira T., Afonso J., Santos C., Caseiro A., Fialho P., Barata F., Puxbaum H., Sanchez-Ochoa A., Kasper-Giebl A., Gelencser A., Preunkert S., Schock M. Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe. Journal of Geophysical Research-Atmospheres,2007,112(D23), doi:10.1029/2006jd008038.
    [240]Herckes P., Chang H., Lee T., Collett J. L. Air pollution processing by radiation fogs. Water Air and Soil Pollution,2007,181 (1-4):65-75.
    [241]Hennigan C. J., Bergin M. H., Weber R. J. Correlations between Water-Soluble Organic Aerosol and Water Vapor:A Synergistic Effect from Biogenic Emissions? Environmental Science & Technology,2008,42 (24):9079-9085.
    [242]Docherty K. S., Stone E. A., Ulbrich I. M., DeCarlo P. F., Snyder D. C., Schauer J. J., Peltier R. E., Weber R. J., Murphy S. M., Seinfeld J. H., Grover B. D., Eatough D. J., Jimenez J. L. Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1). Environmental Science & Technology,2008,42 (20):7655-7662.
    [243]Saylor R. D., Edgerton E. S., Hartsell B. E. Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation. Atmospheric Environment,2006,40 (39):7546-7556.
    [244]Wang T., Nie W., Gao J., Xue L. K., Gao X. M., Wang X. F., Qiu J., Poon C. N., Meinardi S., Blake D., Wang S. L., Ding A. J., Chai F. H., Zhang Q. Z., Wang W. X. Air quality during the 2008 Beijing Olympics:secondary pollutants and regional impact. Atmospheric Chemistry and Physics,2010,10 (16):7603-7615.
    [245]Xue L. K., Wang T., Zhang J. M., Zhang X. C., Deliger, Poon C. N., Ding A. J., Zhou X. H., Wu W. S., Tang J., Zhang Q. Z., Wang W. X. Source of surface ozone and reactive nitrogen speciation at Mount Waliguan in western China:New insights from the 2006 summer study. Journal of Geophysical Research-Atmospheres,2011,116.
    [246]Shrivastava M. K., Lipsky E. M., Stanier C. O., Robinson A. L. Modeling semivolatile organic aerosol mass emissions from combustion systems. Environmental Science & Technology,2006,40 (8):2671-2677.
    [247]Sheehan P. E., Bowman F. M. Estimated Effects of Temperature on Secondary Organic Aerosol Concentrations. Environmental Science & Technology,2001,35(11):2129-2135.
    [248]Kleinman L. I., Springston S. R., Daum P. H., Lee Y. N., Nunnermacker L. J., Senum G. I., Wang J., Weinstein-Lloyd J., Alexander M. L., Hubbe J., Ortega J., Canagaratna M. R., Jayne J. The time evolution of aerosol composition over the Mexico City plateau. Atmospheric Chemistry and Physics,2008,8 (6):1559-1575.
    [249]Slowik J. G., Brook J., Chang R. Y. W., Evans G. J., Hayden K., Jeong C. H., Li S. M., Liggio J., Liu P. S. K., McGuire M., Mihele C., Sjostedt S., Vlasenko A., Abbatt J. P. D. Photochemical processing of organic aerosol at nearby continental sites:contrast between urban plumes and regional aerosol. Atmospheric Chemistry and Physics,2011,11 (6): 2991-3006.
    [250]Collett J. L., Herckes P., Youngster S., Lee T. Processing of atmospheric organic matter by California radiation fogs. Atmospheric Research,2008,87 (3-4):232-241.
    [251]Cozic J., Verheggen B., Mertes S., Connolly P., Bower K., Petzold A., Baltensperger U., Weingartner E. Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics,2007,7 (7):1797-1807.
    [252]Lelieveld J., Heintzenberg J. Sulfate Cooling Effect on Climate Through In-Cloud Oxidation of Anthropogenic SO2. Science (New York, N.Y.),1992,258 (5079):117-20.
    [253]Kasper-Giebl A., Koch A., Hitzenberger R., Puxbaum H. Scavenging efficiency of'aerosol carbon'and sulfate in supercooled clouds at Mt. Sonnblick (3106 m a.s.l., Austria). Journal of Atmospheric Chemistry,2000,35 (1):33-46.
    [254]Limbeck A., Puxbaum H. Dependence of in-cloud scavenging of polar organic aerosol compounds on the water solubility. Journal of Geophysical Research-Atmospheres,2000, 105 (D15):19857-19867.
    [255]Hitzenberger R., Berner A., Glebl H., Drobesch K., Kasper-Giebl A., Loeflund M, Urban H., Puxbaum H. Black carbon (BC) in alpine aerosols and cloud water-concentrations and scavenging efficiencies. Atmospheric Environment,2001,35 (30):5135-5141.
    [256]Croft B., Lohmann U., Martin R. V., Stier P., Wurzler S., Feichter J., Hoose C, Heikkila U., van Donkelaar A., Ferrachat S. Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM. Atmospheric Chemistry and Physics,2010,10(4):1511-1543.
    [257]Loeffler K. W., Koehler C. A., Paul N. M., De Haan D. O. Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions. Environmental Science & Technology,2006,40 (20):6318-6323.
    [258]De Haan D. O., Hawkins L. N., Kononenko J. A., Turley J. J., Corrigan A. L., Tolbert M. A., Jimenez J. L. Formation of Nitrogen-Containing Oligomers by Methylglyoxal and Amines in Simulated Evaporating Cloud Droplets. Environmental Science & Technology,2011,45 (3):984-991.
    [259]Wang Y., Guo J., Wang T., Ding A. J., Gao J. A., Zhou Y., Collett J. L., Wang W. X. Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China. Atmospheric Research,2011,99 (3-4):434-442.
    [260]Bae S. Y., Jung C. H., Kim Y. P. Relative contributions of individual phoretic effect in the below-cloud scavenging process. Journal of Aerosol Science,2009,40 (7):621-632.
    [261]van Pinxteren D., Plewka A., Hofmann D., Muller K., Kramberger H., Svrcina B., Bachmann K., Jaeschke W., Mertes S., Collett J. L., Herrmann H. Schmucke hill cap cloud and valley stations aerosol characterisation during FEBUKO (Ⅱ):Organic compounds. Atmospheric Environment,2005,39 (23-24):4305-4320.
    [262]Wang G. H., Kawamura K., Umemoto N., Xie M. J., Hu S. Y., Wang Z. F. Water-soluble organic compounds in PM2.5 and size-segregated aerosols over Mount Tai in North China Plain. Journal of Geophysical Research-Atmospheres,2009,114(doi: 10.1029/2008jd011390.
    [263]Lim H. J., Turpin B. J., Russell L. M., Bates T. S. Organic and elemental carbon measurements during ACE-Asia suggest a longer atmospheric lifetime for elemental carbon. Environmental Science & Technology,2003,37 (14):3055-3061.
    [264]Acker K., Mertes S., Moller D., Wieprecht W., Auel R., Kalass D. Case study of cloud physical and chemical processes in low clouds at Mt. Brocken. Atmospheric Research,2002, 64 (1-4):41-51.
    [265]Facchini M. C., Fuzzi S., Zappoli S., Andracchio A., Gelencser A., Kiss G., Krivacsy Z., Meszaros E., Hansson H. C., Alsberg T., Zebuhr Y. Partitioning of the organic aerosol component between fog droplets and interstitial air. Journal of Geophysical Research-Atmospheres,1999,104 (D21):26821-26832.
    [266]El Haddad I., Yao L., Nieto-Gligorovski L., Michaud V., Temime-Roussel B., Quivet E., Marchand N., Sellegri K., Monod A. In-cloud processes of methacrolein under simulated conditions-Part 2:Formation of secondary organic aerosol. Atmospheric Chemistry and Physics,2009,9 (14):5107-5117.
    [267]Raja S., Valsaraj K. T. Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) at the air-water interface of micron-size water droplets. Journal of the Air & Waste Management Association,2004,54 (12):1550-1559.
    [268]Volkamer R., Ziemann P. J., Molina M. J. Secondary Organic Aerosol Formation from Acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmospheric Chemistry and Physics,2009,9 (6):1907-1928.
    [269]Tilgner A., Herrmann H. Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM. Atmospheric Environment,2010,44 (40):5415-5422.
    [270]Tan Y., Carlton A. G., Seitzinger S. P., Turpin B. J. SOA from methylglyoxal in clouds and wet aerosols:Measurement and prediction of key products. Atmospheric Environment, 2010,44 (39):5218-5226.
    [271]Anttila T., Kerminen V. M. Aerosol formation via aqueous-phase chemical reactions. Journal of Geophysical Research-Atmospheres,2003,108(D4), doi:10.1029/2002jd002764.
    [272]Sun J. M., Ariya P. A. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN):A review. Atmospheric Environment,2006,40 (5):795-820.
    [273]Prenni A. J., Petters M. D., Kreidenweis S. M., DeMott P. J., Ziemann P. J. Cloud droplet activation of secondary organic aerosol. J. Geophys. Res.,2007,112 (D10):D10223.
    [274]Broekhuizen K., Kumar P. P., Abbatt J. P. D. Partially soluble organics as cloud condensation nuclei:Role of trace soluble and surface active species. Geophysical Research Letters,2004,31 (1).
    [275]Petters M. D., Kreidenweis S. M., Snider J. R., Koehler K. A., Wang Q., Prenni A. J., Demott P. J. Cloud droplet activation of polymerized organic aerosol. Tellus Series B-Chemical and Physical Meteorology,2006,58 (3):196-205.
    [276]King S. M., Rosenoern T., Shilling J. E., Chen Q., Martin S. T. Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings. Atmospheric Chemistry and Physics,2009,9 (9):2959-2971.
    [277]King S. M., Rosenoern T., Shilling J. E., Chen Q., Wang Z., Biskos G., McKinney K. A., Poeschl U., Martin S. T. Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of isoprene. Atmospheric Chemistry and Physics,2010,10 (8):3953-3964.
    [278]Yu S. C. Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN):a review. Atmospheric Research,2000,53 (4):185-217.
    [279]Facchini M. C., Mircea M., Fuzzi S., Charlson R. J. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature,1999,401 (6750):257-259.
    [280]Bauer H., Giebl H., Hitzenberger R., Kasper-Giebl A., Reischl G., Zibuschka F., Puxbaum H. Airborne bacteria as cloud condensation nuclei. Journal of Geophysical Research-Atmospheres,2003,108(D21), doi:4658
    10.1029/2003jd003545.
    [281]Rose D., Gunthe S. S., Mikhailov E., Frank G. P., Dusek U., Andreae M. O., Poschl U. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC):CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmospheric Chemistry and Physics,2008,8 (5):1153-1179.
    [282]Shilling J. E., King S. M., Mochida M., Martin S. T. Mass spectral evidence that small changes in composition caused by oxidative aging processes alter aerosol CCN properties. Journal of Physical Chemistry A,2007,111 (17):3358-3368.
    [283]Dahneke B. Slip correction factors for nonspherical bodies. I. Introduction and continuum flow. Aerosol Science,1973,4:139-145.
    [284]Park K., Kittelson D. B., McMurry P. H. Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM):Relationships to particle mass and mobility. Aerosol Science and Technology,2004,38 (9):881-889.
    [285]Zelenyuk A., Cai Y., Imre D. From agglomerates of spheres to irregularly shaped particles: Determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters. Aerosol Science and Technology,2006,40 (3):197-217.
    [286]Kuwata M., Kondo Y. Measurements of particle masses of inorganic salt particles for calibration of cloud condensation nuclei counters. Atmospheric Chemistry and Physics, 2009,9 (16):5921-5932.
    [287]Slowik J. G., Stainken K., Davidovits P., Williams L. R., Jayne J. T., Kolb C. E., Worsnop D. R., Rudich Y., DeCarlo P. F., Jimenez J. L. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 2: Application to combustion-generated soot aerosols as a function of fuel equivalence ratio. Aerosol Science and Technology,2004,38 (12):1206-1222.
    [288]Slowik J. G., Cross E. S., Han J. H., Kolucki J., Davidovits P, Williams L. R., Onasch T. B., Jayne J. T., Kolb C. E., Worsnop D. R. Measurements of morphology changes of fractal soot particles using coating and denuding experiments:Implications for optical absorption and atmospheric lifetime. Aerosol Science and Technology,2007,41 (8):734-750.
    [289]Charlesworth D. H., Marshall W. R. Evaporation from drops containing dissolved solids. Aiche Journal,1960,6 (1):9-23.
    [290]Lewis E. R., Schwartz S. E.:Chapter 2. Fundamentals, Sea Salt Aerosol Production, Washington, D.C.:American Geophysical Union,2004:61.
    [291]Mikhailov E., Vlasenko S., Niessner R., Poschl U. Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement. Atmospheric Chemistry and Physics,2004,4:323-350.
    [292]Mikhailov E., Vlasenko S., Martin S. T., Koop T., Poschl U. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmospheric Chemistry and Physics,2009,9 (24):9491-9522.
    [293]Biskos G., Malinowski A., Russell L. M., Buseck P. R., Martin S. T. Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles. Aerosol Science and Technology,2006,40 (2):97-106.
    [294]Mifflin A. L., Smith M. L., Martin S. T. Morphology hypothesized to influence aerosol particle deliquescence. Physical Chemistry Chemical Physics,2009,11 (43):10095-10107.
    [295]Yun X., Kodas T. T. Droplet evaporation and solute precipitation during spray-pyrolysis. Journal of Aerosol Science,1993,24:893-908.
    [296]Walton D. E. The morphology of spray-dried particles a qualitative view. Drying Technology,2000,18:1943-1986.
    [297]Brenn G., Wiedemann T., Rensink D., Kastner O., Yarin A. L. Modeling and experimental investigation of the morphology of spray dryed particles. Chemical Engineering & Technology,2001,24:1113-1116.
    [298]Kreidenweis S. M., Koehler K., DeMott P. J., Prenni A. J., Carrico C., Ervens B. Water activity and activation diameters from hygroscopicity data-Part I:Theory and application to inorganic salts. Atmospheric Chemistry and Physics,2005,5:1357-1370.
    [299]Biskos G., Paulsen D., Russell L. M., Buseck P. R., Martin S. T. Prompt deliquescence and efflorescence of aerosol nanoparticles. Atmospheric Chemistry and Physics,2006,6:4633-4642.
    [300]Dahneke B. Slip correction factors for nonspherical bodies. Ⅲ. The form of the general law. Aerosol Science,1973,4:163-170.
    [301]Biskos G., Russell L. M., Buseck P. R., Martin S. T. Nanosize effect on the hygroscopic growth factor of aerosol particles. Geophysical Research Letters,2006,33 (7):L07801.
    [302]DeCarlo P. F., Slowik J. G., Worsnop D. R., Davidovits P., Jimenez J. L. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1:Theory. Aerosol Science and Technology,2004,38 (12):1185-1205.
    [303]Adamson A. W., Gast A. P. Physical Chemistry of Surfaces.6th ed., New York:Wiley, 1997.
    [304]Kelly W. P., McMurry P. H. Measurement of particle density by inertial classification of differential mobility analyzer generated monodisperse aerosols. Aerosol Science and Technology,1992,17 (3):199-212.
    [305]Kramer L., Poschl U., Niessner R. Microstructural rearrangement of sodium chloride condensation aerosol particles on interaction with water vapor. Journal of Aerosol Science, 2000,31 (6):673-685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700