含碳气溶胶采样与分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含碳气溶胶包括有机碳(OC)和元素碳(EC),在不同地域尺度上对人体健康、能见度与灰霾、大气棕色云、辐射平衡与气候变化都有重要影响,因而已成为大气环境研究领域的国际前沿和热点;但是在其采样和分析这两个最为基础的关键环节中尚存在一系列迫切需要解决的关键科学问题。本研究联合运用多通道平行采样技术和溶蚀器技术以及多种分析手段,研究了含碳气溶胶的采样和热-光学分析方法。研究结果对观测值的改善和标准方法的形成都具有十分重要的意义。
     根据对VOCs的去除效果、有效时间、比表面积等因素,选取蜂窝状活性炭溶蚀器开展了采样方法的研究。针对溶蚀器修正法,定量评价结果表明,本研究选用的溶蚀器能够有效消除正偏差,而且不会引入颗粒物的扩散损失、活性炭的污染等新的采样问题。针对后置石英膜修正法,后置膜OC来源的定量分解结果表明,在双层石英膜串联的采样方法中,后置膜OC虽然仅来自VOCs,但是只有在双层膜都达到吸附平衡的情况下才能较为准确地表征正偏差;在Teflon膜-石英膜串联的采样方法中,后置膜OC也来自挥发的颗粒态有机物,因此会高估正偏差。
     根据现有方法的主要区别,从升温程序和光学修正两个方面研究了热-光学分析方法。升温程序主要通过系统偏差和提前分割对OC、EC浓度产生影响,而且生物质燃烧的贡献会增强OC、EC浓度与升温程序的响应关系。如果惰性阶段峰值温度在580℃(IMPROVE-A升温程序)的基础上再升高,就有可能发生EC的提前解析,并导致OC浓度被高估、EC浓度被低估。OC、EC浓度与光学修正方法的响应关系主要和二次有机气溶胶(SOA)有关。基于透射修正的OC/EC比值能够反映SOA的贡献,但是基于反射修正的OC/EC比值和SOA不相关,说明透射修正更为合理。
     研究发现,EC也是化学组成十分复杂的混合体,而且在惰性环境中也能发生解析,说明OC、EC在热学性质方面并不存在明确的分界线。此外,发现水溶性有机物也具有吸光性,为论证棕色碳的存在提供了新的依据。
Carbonaceous aerosol, consisting of organic carbon (OC) and elemental carbon(EC), has been the focus of extensive studies due to its complex effects on multiplegeographical scales, such as human health, visibility/haze, atmospheric brown clouds,radiative forcing/climate change; however, its sampling and analysis, which arefundamental to further studies, are still facing substantial challenges. In this work, thesampling and thermal-optical analysis methods of carbonaceous aerosol wereinvestigated based on a multi-channel sampler, an organic denuder, and multipleanalysis approaches. The results will be highly relevant in the improved measurement ofcarbonaceous aerosol and the establishment of standardized methods.
     With respect to the performance for removing VOCs, useful time and specificsurface area, an activated-carbon honeycomb denuder was selected for investigating thesampling methods. When using the denuder approach, it was demonstrated that thedenuder could effectively remove the positive artifact, and would not introduceadditional artifacts such as the particle loss due to diffusion and the contamination ofactivated-carbon material. When using the backup quartz approach, results from theapportionment of backup OC showed that all of the backup OC in the sequential-quartzmethod was from VOCs, however, it could reliably estimate the positive artifact onlywhen both the front and backup quartz filter reach equilibrium with VOCs; the backupOC in the Teflon-quartz in series method also included volatilized particulate OC, as aresult, would overestimate the positive artifact.
     The thermal-optical methods differ mainly with respect to temperature protocol andcharring correction method, which are investigated in this work. The discrepancybetween OC or EC concentrations defined by different temperature protocols werecaused by the systemic artifact and the early split, moreover, emissions from biomassburning would increase the discrepancy. Premature evolution of EC was found to begin when the peak inert mode temperature was increased from580℃(IMPROVE-Aprotocol), which would result in the overestimation of OC and the underestimation ofEC. The discrepancy between OC or EC concentrations defined by different charringcorrection method was mainly related to secondary organic aerosol (SOA). The OC toEC ratio calculated by results from tranmittance correction included importantinformation about the extent of SOA production, whereas the OC to EC ratio based onreflectance correction exhibited no correlation with SOA, indicating the transmittancecorrection method was more reliable.
     It was demonstrated that EC was also a complex aggregate of different species, andcould also evolve in the inert atmosphere, indicating that a specific boundary betweenOC and EC does not exist. Moreover, water-soluble organic carbon would alsocontribute to the light absorption, providing new evidence for the atmospheric presenceof brown carbon.
引文
Allen G A, Lawrence J, Koutrakis P. Field validation of a semi-continuous method for aerosol blackcarbon (Aethalometer) and temporal patterns of summertime hourly black carbonmeasurements in southwestern PA. Atmospheric Environment,1999,33:817-823.
    Andreae M O, Gelencsér A. Black carbon or brown carbon? The nature of light-absorbingcarbonaceous aerosols. Atmospheric Chemistry and Physics,2006,6:3131-3148.
    Anderson R R, Martello D V, Lucas L J, et al. Apportionment of ambient primary and secondarypollutants during a2001summer study in Pittsburgh using U. S. Environmental ProtectionAgency UNMIX. Journal of the Air&Waste Management Association,2006,56:1301-1319.
    Arhami M, Kuhn T, Fine P M, et al. Effects of sampling artifacts and operating parameters on theperformance of a semicontinuous particulate elemental carbon/organic carbon monitor.Environmental Science&Technology,2006,40:945-954.
    Arnott W P, Moosmüller H, Sheridan P J, et al. Photoacoustic and filter-based ambient aerosol lightabsorption measurements: Instrument comparisons and the role of relative humidity. Journal ofGeophysical Research,2003,108(D1):4034, doi:10.1029/2002JD002165.
    Babich P, Davey M, Allen G, et al. Method comparisons for particulate nitrate, elemental carbon,and PM2.5mass in seven US cities. Journal of the Air&Waste Management Association,2000,50:1095-1105.
    Bae M S, Schauer J J, DeMinter J T, et al. Validation of a semi-continuous instrument for elementalcarbon and organic carbon using a thermal-optical method. Atmospheric Environment,2004,38:2885-2893.
    Bae M S, Schauer J J, Turner J R, et al. Seasonal variations of elemental carbon in urban aerosolsas measured by two common thermal-optical carbon methods. Science of the TotalEnvironment,2009,407:5176-5183.
    Bergstrom R W, Ackerman T P, Richards L W. Optical Properties of particulate elemental carbon.Particulate carbon: atmospheric life cycle. New York: Plenum Press,1982.
    Birch M E, Cary R A. Elemental carbon-based method for monitoring occupational exposures toparticulate diesel exhaust. Aerosol Science and Technology,1996,25:221-241.
    Birch M E. Analysis of carbonaceous aerosols: Interlaboratory comparison. Analyst,1998,123:851-857.
    Bond T C, Bergstrom R W. Light absorption by carbonaceous particles: An investigative review.Aerosol Science and Technology,2006,40:27-67.
    Bond T C, Habib G, Bergstrom R W. Limitations in the enhancement of visible light absorption dueto mixing state. Journal of Geophysical Research,2006,111(D20211),doi:10.1029/2006JD007315.
    Cabada J C, Pandis S N, Robinson A L. Sources of atmospheric carbonaceous particulate matter inPittsburgh, Pennsylvania. Journal of the Air&Waste Management Association,2002,52:732-741.
    Cabada J C, Pandis S N, Subramanian R, et al. Estimating the secondary organic aerosolcontribution to PM2.5using the EC tracer method. Aerosol Science and Technology,2004,38:140-155.
    Cachier H, Bremond M P, Buat-Ménard P. Thermal separation of soot carbon. Aerosol Science andTechnology,1989a,10:358-364.
    Cachier H, Bremond M P, Buat-Ménard, P. Determination of atmospheric soot carbon with a simplethermal method. Tellus,1989b,41B:379-390.
    Cadle S H, Groblicki P J, Mulawa P A. Problems in the sampling and analysis of carbon particulate.Atmospheric Environment,2000,17:593-600.
    Cavalli F, Viana M, Yttri K E, et al. Toward a standardised thermal-optical protocol for measuringatmospheric organic and elemental carbon: The EUSAAR protocol. AtmosphericMeasurement Techniques,2010,3:79-89.
    Chan C K, Yao X H. Air pollution in mega cities in China. Atmospheric Environment,2009,42:1-42.
    Chen Y, Bond T C. Light absorption by organic carbon from wood combustion. AtmosphericChemistry and Physics,2010,10:1773-1787.
    Cheng Y, He K B, Duan F K, et al. Measurement of semivolatile carbonaceous aerosols and itsimplications: A review. Environment International,2009a,35:678-681.
    Cheng Y, He K B, Duan F K, et al. Positive sampling artifact of carbonaceous aerosols and itsinfluence on the thermal-optical split of OC/EC. Atmospheric Chemistry and Physics,2009b,9:7243-7256.
    Cheng Y, He K B, Duan F K, et al. Improved measurement of carbonaceous aerosol: Evaluation ofthe sampling artifacts and inter-comparison of the thermal-optical analysis methods.Atmospheric Chemistry and Physics,2010,10:8533-8548.
    Cheng Y, He K B, Duan F K, et al. Ambient organic carbon to elemental carbon ratios: Influencesof the measurement methods and implications. Atmospheric Environment,2011,45:2060-2066.
    Cheng Y, Zheng M, He K B, et al. Comparison of two thermal-optical methods for thedetermination of organic carbon and elemental carbon: Results from the southeastern UnitedStates. Atmospheric Environment,2011,45:1913-1918.
    Chow J C, Watson J G, Pritchett L C, et al. The DRI Thermal/Optical Reflectance carbon analysissystem: Description, evaluation and applications in U.S. air quality studies. AtmosphericEnvironment,1993,27A:1185-1201.
    Chow J C, Watson J G, Crow D, et al. Comparison of IMPROVE and NIOSH carbon measurements.Aerosol Science and Technology,2001,34:23-34.
    Chow J C, Watson J G, Chen L A, et al. Equivalence of elemental carbon by thermal/opticalreflectance and transmittance with different temperature protocols. Environmental Science&Technology,2004,38:4414-4422.
    Chow J C, Watson J G, Chen L A, et al. Refining temperature measures in thermal/optical carbonanalysis. Atmospheric Chemistry and Physics,2005,5:2961-2972.
    Chow J C, Watson J G, Chen L A, et al. The IMPROVE-A temperature protocol for thermal/opticalcarbon analysis: Maintaining consistency with a long-term database. Journal of the Air&Waste Management Association,2007,57:1014-1023.
    Chow C J, Watson J G, Doraiswamy P, et al. Aerosol light absorption, black carbon, and elementalcarbon at the Fresno Supersite, California. Atmospheric Research,2009,93:874-887.
    Chow J C, Watson J G, Chen L A, et al. Quantification of PM2.5organic carbon sampling artifacts inUS networks. Atmospheric Chemistry and Physics,2010,10:5223-5239.
    Conny J M, Klinedinst D B, Wight S A, et al. Optimizing thermal-optical methods for measuringatmospheric elemental (black) carbon: A response surface study. Aerosol Science andTechnology,2003,37:703-723.
    Cui W, Eatough D J, Eatough N L. Fine particulate organic material in the Los Angeles Basin I:Assessment of the high volume Brigham Young University organic sampling system BIGBOSS. Journal of the Air&Waste Management Association,1998,48:1024-1037.
    Dabek-Zlotorzynska E, Dann T F, Martinelango P K, et al. Canadian National Air PollutionSurveillance (NAPS) PM2.5speciation program: Methodology and PM2.5chemicalcomposition for the years2003-2008. Atmospheric Environment,2011,45:673-686.
    de Gouw J A, Warneke C, Stohl A, et al. Volatile organic compounds composition of merged andaged forest fire plumes from Alaska and western Canada. Journal of Geophysical Research,2006,111(D10303), doi:10.1029/2005JD006175.
    Ding Y M, Pang Y B, Eatough D J. High-volume diffusion denuder sampler for the routinemonitoring of fine particulate matter: Ⅰ. Design and optimization of the PC-BOSS. AerosolScience and Technology,2002,36:369-382.
    Ding A J, Wang T, Thouret V, et al. Tropospheric ozone climatology over Beijing: Analysis ofaircraft data from the MOZAIC program. Atmospheric Chemistry and Physics,2008,8:1-13.
    Ding X, Zheng M, Yu L P, et al. Spatial and seasonal trends in biogenic secondary organic aerosoltracers and water-soluble organic carbon in the southeastern United States. EnvironmentalScience&Technology,2008,42:5171-5176.
    Docherty K S, Stone E A, Ulbrich I M, et al. Apportionment of primary and secondary organicaerosols in southern California during the2005Study of Organic Aerosols in Riverside(SOAR-1). Environmental Science&Technology,2008,42:7655-7662.
    Duan F K, Liu X D, Yu T, et al. Identification and estimate of biomass burning contribution to theurban aerosol organic carbon concentrations in Beijing. Atmospheric Environment,2004,38:1275-1282.
    Duan F K, He K B, Ma Y L, et al. Characteristics of carbonaceous aerosols in Beijing, China.Chemosphere,2005,60:355-364.
    Duan F K, He K B, Ma Y L, et al. Concentration and chemical characteristics of PM2.5in Beijing,China:2001-2002. Science of the Total Environment,2006,355:264-275.
    Eatough D J, Wadsworth A, Eatough D A, et al. A multiple-system, multi-channel diffusion denudersampler for the determination of fine-particulate organic material in the atmosphere.Atmospheric Environment,1993,27A:1213-1219.
    Eatough D J, Obeidi F, Pang Y B, et al. Integrated and real-time diffusion denuder sampler forPM2.5. Atmospheric Environment,1999,33:2835-2844.
    Eatough D J, Eatough N L, Obeidi F, et al. Continuous determination of PM2.5mass, includingsemi-volatile species. Aerosol Science and Technology,2001,34:1-8.
    Eatough D J, Long R W, Modey W K, et al. Semi-volatile secondary organic aerosol in urbanatmospheres: Meeting a measurement challenge. Atmospheric Environment,2003a,37:1277-1292.
    Eatough D J, Eatough N L, Pang Y, et al. Semivolatile particulate organic material in southernAfrica during SAFARI2000. Journal of Geophysical Research,2003b,108(D13):8479,doi:10.1029/2002JD002296.
    Eatough D J, Anderson R R, Martello D V, et al. Apportionment of ambient primary and secondaryPM2.5during a2001summer intensive study at the NETL Pittsburgh site using PMF2and EPAUNMIX. Aerosol Science and Technology,2006,40:925-940.
    Eatough D J, Mangelson N F, Anderson R R, et al. Apportionment of ambient primary andsecondary fine particulate matter during a2001summer intensive study at the CMU Supersiteand NETL Pittsburgh Site. Journal of the Air&Waste Management Association,2007,57:1251-1267.
    Eiguren-Fernandez A, Miguel A H, Jaques P A, et al. Evaluation of a denuder-MOUDI-PUFsampling system to measure the size distribution of semi-volatile polycyclic aromatichydrocarbons in the atmosphere. Aerosol Science and Technology,2004,37:210-209.
    England G, Toby B, Zielinska B. Critical review of source sampling and analysis methodologies forcharacterizing organic aerosol and fine particulate source emission profiles. AmericanPetroleum Institute report,1998, API No.344.
    Fan X H, Brook J R, Mabury S A. Sampling atmospheric carbonaceous aerosols using an integratedorganic gas and particulate sampler. Environmental Science&Technology,2003,37:3145-3151.
    Fan X H, Lee P K H, Brook J R, et al. Improved measurement of seasonal and diurnal differencesin the carbonaceous components of urban particulate matter using a denuder-based air sampler.Aerosol Science and Technology,2004a,38:63-69.
    Fan X H, Brook J R, Mabury S A. Measurement of organic and elemental carbon associated withPM2.5during Pacific2001study using an integrated organic gas and particle sampler.Atmospheric Environment,2004b,38:5801-5810.
    Fitz D R. Reduction of the positive organic artifact on quartz filters. Aerosol Science andTechnology,1990,12:142-148.
    Grover B D, Kleinman M, Eatough N L, et al. Measurement of total PM2.5(nonvolatile plussemivolatile) with the filter dynamic measurement system tapered elemental oscillatingmicrobalance monitor. Journal of Geophysical Research,2005,110(D07S03),doi:10.1029/2004JD004995.
    Grover B D, Eatough N L, Eatough D J, et al. Measurement of both nonvolatile and semi-volatilefractions of fine particulate matter in Fresno, CA. Aerosol Science and Technology,2006,40:811-826.
    Grover B D, Kleinman M, Eatough N L, et al. Measurement of fine particulate matter nonvolatileand semi-volatile organic material with the Sunset laboratory carbon aerosol monitor. Journalof the Air&Waste Management Association,2008a,58:72-77.
    Grover B D, Eatough N L, Woolwine W R, et al. Semi-continuous mass closure of the majorcomponents of fine particulate matter in Riverside, CA. Atmospheric Environment,2008b,42:250-260.
    Goriaux M, Jourdain B, Temime B, et al. Field comparison of particulate PAH measurements usinga low-flow denuder device and conventional sampling systems. Environmental Science&Technology,2006,40:6398-6404.
    Guinot B, Cachier H, Sciare J, et al. Beijing aerosol: Atmospheric interactions and new trends.Journal of Geophysical Research,2007,112(D14314), doi:10.1029/2006JD008195.
    Gundel L A, Lee V C, Mahanama K R R, et al. Direct determination of the phase distributions ofsemi-volatile polycyclic aromatic hydrocarbons using annular denuders. AtmosphericEnvironment,1995,29:1719-1733.
    Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondaryorganic aerosol: Current and emerging issues. Atmospheric Chemistry and Physics,2009,9:5155-5236.
    Hand J L, Malm W C, Laskin A, et al. Optical, physical, and chemical properties of tar ballsobserved during the Yosemite Aerosol Characterization Study. Journal of GeophysicalResearch,2005,110(D21210), doi:10.1029/2004JD005728.
    Hansen A D A, Novakov T. Real-time measurement of aerosol black carbon during thecarbonaceous species methods comparison study. Aerosol Science and Technology,1990,12:194-199.
    He K B, Yang F M, Ma Y L, et al. The characteristics of PM2.5in Beijing, China. AtmosphericEnvironment,2001,35:4959-4970.
    Heald C L, Jacob, D J, Park, R J, et al. A large organic aerosol source in the free tropospheremissing from current models. Geophysics Research Letters,2005,32(L18809),doi:10.1029/2005GL023831.
    Hecobian A, Zhang X, Zheng M, et al. Water-soluble organic aerosol material and thelight-absorption characteristics of aqueous extracts measured over the Southeastern UnitedStates. Atmospheric Chemistry and Physics,2010,10:5965-5977.
    Hering S V, Appel B R, Cheng W, et al. Comparison of sampling methods for carbonaceousaerosols in ambient air. Aerosol Science and Technology,1990,12:200-213.
    Hinds W C. Aerosol technology: Properties, behavior, and measurements of airborne particles. NewYork: Wiley,1982.
    Ho K F, Lee S C, Cao J J, et al. Seasonal variations and mass closure analysis of particulate matterin Hong Kong. Science of the Total Environment,2006,355:276-287.
    Hoffer A, Gelencsér A, Guyon P, et al. Optical properties of humic-like substances (HULIS) inbiomass-burning aerosols. Atmospheric Chemistry and Physics,2006,6:3563-3570.
    Huebert B J, Charlson R J. Uncertainties in data on organic aerosols. Tellus,2000,52B:1249-1255.
    Husain L, Dutkiewicz V A, Khan A, et al. Characterization of carbonaceous aerosols in urban air.Atmospheric Environment,2007,41:6872-6883.
    Jacobson M C, Hansson H C, Noone K J, et al. Organic atmospheric aerosols: Review and state ofthe science. Reviews of Geophysics,2000,38:267-294.
    Jeong C H, Hopke P K, Kim E, et al. The comparison between thermal-optical transmittanceelemental carbon and Aethalometer black carbon measured at multiple monitoring sites.Atmospheric Environment,2004,38:5193-5204.
    Jimenez J L, Canagaratna M R, Donahue N M, et al. Evolution of organic aerosols in theatmosphere. Science,2009,326:1525-1529.
    Johnson D, Utembe S R, Jenkin M E, et al. Simulating regional scale secondary organic aerosolformation during the TORCH2003campaign in the southern UK. Atmospheric Chemistry andPhysics,2006,6:403-418.
    Kirchstetter T W, Corrigan C E, Novakov T. Laboratory and field investigation of the adsorption ofgaseous organic compounds onto quartz filters. Atmospheric Environment,2001,35:1663-1671.
    Kirchstetter T W, Novakov T, Hobbs P V. Evidence that the spectral dependence of light absorptionby aerosols is affected by organic carbon. Journal of Geophysical Research,109(D21208),doi:10.1029/2004JD004999.
    Knox A, Evans G J, Brook J R, et al. Mass absorption cross-section of ambient black carbonaerosol in relation to chemical age. Aerosol Science and Technology,2009,43:522-532.
    Kondo Y, Miyazaki Y, Takegawa N, et al. Oxygenated and water-soluble organic aerosols in Tokyo.Journal of Geophysical Research,2007,112(D01203), doi:10.1029/2006JD007056.
    Kong S F, Han B, Bai Z P, et al. Receptor modeling of PM2.5, PM10and TSP in different seasonsand long-range transport analysis at a coastal site of Tianjin, China. Science of the TotalEnvironment,2010,408:4681-4694.
    Krecl P, Strom J, Johansson C. Carbon content of atmospheric aerosols in a residential area duringthe wood combustion season in Sweden. Atmospheric Environment,2007,41:6974-6985.
    Kroll J H, Seinfeld J H. Chemistry of secondary organic aerosol: Formation and evolution oflow-volatility organics in the atmosphere. Atmospheric Environment,2008,42:3593-3624.
    Lavanchy V M H, G ggeler H W, Nyeki S, et al. Elemental carbon (EC) and black carbon (BC)measurements with a thermal method and an Aethalometer at the high-alpine research stationJungfraujoch. Atmospheric Environment,1999,33:2759-2769.
    Lewtas J L, Pang Y B, Booth D, et al. Comparison of sampling methods for semi-volatile organiccarbon associated with PM2.5. Aerosol Science and Technology,2001,34:9-22.
    Lin P, Hu M, Deng Z, et al. Seasonal and diurnal variations of organic carbon in PM2.5in Beijingand the estimation of secondary organic carbon. Journal of Geophysical Research,2009,114(D00G11), doi:10.1029/2008JD010902.
    Lim H J, Turpin B J. Origins of primary and secondary organic aerosol in Atlanta: Results oftime-resolved measurements during the Atlanta Supersite experiment. Environmental Science&Technology,2002,36:4489-4496.
    Lim H J, Turpin B J, Edgerton E, et al. Semicontinuous aerosol carbon measurements: Comparisonof Atlanta Supersite measurements. Journal of Geophysical Research,2003,108(D7):8419,doi:10.1029/2001JD001214.
    Long R W, Smith R, Smith S, et al. Source of fine particulate material along the Wasatch Front.Energy&Fuels,2002,16:282-293.
    Long W L, Eatough N L, Mangelson N F, et al. The measurement of PM2.5, including semi-volatilecomponents, in the EMPACT program: Results from the Salt Lake City study. AtmosphericEnvironment,2003,37:4407-4417.
    Lu Z, Streets D G, Zhang Q, et al. Sulfur dioxide emissions in China and sulfur trends in East Asiasince2000. Atmospheric Chemistry and Physics,10:6311-6331.
    Lukács H, Gelencsér A, Hammer S, et al. Seasonal trends and possible sources of brown carbonbased on2-year aerosol measurements at six sites in Europe. Journal of Geophysical Research,2007,112(D23S18), doi:10.1029/2006JD008151.
    Mader B T, Flagan R C, Seinfeld J H. Sampling atmospheric carbonaceous aerosols using a particletrap impactor/denuder sampler. Environmental Science&Technology,2001,35:4857-4867.
    Mader B T, Flagan R C, Seinfeld J H. Airborne measurements of atmospheric carbonaceousaerosols during ACE-Asia. Journal of Geophysical Research,2002,107(D23):4704,doi:10.1029/2002JD002221.
    Mader B T, Schauer J J, Seinfeld J H, et al. Sampling methods used for the collection ofparticle-phase organic and elemental carbon during ACE-Asia. Atmospheric Environment,2003,37:1435-1449.
    Maenhasut W, Chi X, Cafmeyer J, et al. Investigation during summer field campaigns in centralEurope on the performance of a diffusion denuder for the elimination of sampling artifacts forcarbonaceous aerosols. Journal of Aerosol Science,2004, Abstract of the European AerosolConference2004, S1069-S1070.
    Matsumoto K, Hayano T, Uematsu M. Positive artifact in the measurement of particulatecarbonaceous substances using an ambient carbon particulate monitor. AtmosphericEnvironment,2003,37:4713-4717.
    McDow S R, Huntzicker J J. Vapor adsorption artifact in the sampling of organic aerosol: Facevelocity effects. Atmospheric Environment,1990,24A:2563-2571.
    McMurry P H, Zhang X. Size distributions of ambient organic and elemental carbon. AerosolScience and Technology,1989,10:430-437.
    Miku ka P, Ve e a Z, Bro kovi ová A, et al. Devolpment of a diffusion denuder for the eliminationof sampling artifacts for carbonaceous aerosols. Journal of Aerosol Science,2003, Abstract ofthe European Aerosol Conference:S761-S762.
    Miyazaki Y, Kondo Y, Takegawa N, et al. Time-resolved measurements of water-soluble organiccarbon in Tokyo. Journal Geophysical Research,2006,111(D23206),doi:10.1029/2006JD007125.
    Miyazaki Y, Kondo Y, Han S, et al. Chemical characteristics of water-soluble organic carbon in theAsian outflow. Journal of Geophysical Research,2007,112(D22S30),doi:10.1029/2007JD009116.
    Modey W K, Pang Y B, Eatough N L, et al. Fine particulate (PM2.5) composition in Atlanta, USA:Assessment of the particle concentrator-Brigham Young University organic sampling system,PC-BOSS, during the EPA supersite study. Atmospheric Environment,2001,35:6493-6502.
    Modey W K, Eatough D J. Twenty four-hour PC-BOSS air-monitoring results from the NETLfine-particulate sampling site in Pittsburgh, Pennsylvania: An annual perspective. AerosolScience and Technology,2004,38:194-204.
    Modey W K, Eatough D J, Anderson R R, et al. Ambient fine particulate concentrations andchemical composition at two sampling sites in metropolitan Pittsburgh: A2001intensivesummer study. Atmospheric Environment,2004,38:3165-3178.
    NASA,2010. http://www.nasa.gov/topics/earth/features/health-sapping.html.
    Obeidi F, Eatough D J. Continuous measurement of semivolatile fine particulate mass in Provo,Utah. Aerosol Science and Technology,2002,36:191-203.
    Obeidi F, Eatough N L, Eatough D J. Use of the RAMS to measure semivolatile fine particulatematter at Riverside and Bakersfield, California. Aerosol Science and Technology,2002,36:204-216.
    Olson D A, Norris G A. Sampling artifacts in measurement of elemental and organic carbon:Low-volume sampling in indoor and outdoor environments. Atmospheric Environment,2005,39:5437-5445.
    Pang Y B, Eatough N L, Wilson J, et al. Effect of semivolatile material on PM2.5measurement bythe PM2.5Federal Reference Method sampler at Bakersfield, California. Aerosol Science andTechnology,2002,36:289-299.
    Paulot F, Crounse J D, Kjaergaard H G, et al. Unexpected epoxide formation in the gas-hhasephotooxidation of isoprene. Science,2009,325:730-733.
    Peters A J, Lane D A, Gundel L A, et al. A comparison of high volume and diffusion denudersamplers for measuring semivolatile organic compounds in the atmosphere. EnvironmentalScience&Technology,2000,34:5001-5006.
    Peterson M R, Richards M H. Thermal-optical-transmittance analysis for organic, elemental,carbonate, total carbon, and OCX2in PM2.5by the EPA/NIOSH method. Symposium on AirQuality Measurement Methods and Technology. Pittsburgh, PA,2002.
    Petzold A, Schloesser H, Sheridan P J, et al. Evaluation of multiangle absorption photometry formeasuring aerosol light absorption. Aerosol Science and Technology,2005,39:40-51.
    Polidori A, Turpin B J, Lim H J, et al. Local and regional secondary organic aerosol: Insights froma year of semi-continuous carbon measurements at Pittsburgh. Aerosol Science andTechnology,2006,40:861-872.
    P schl U. Atmospheric aerosols: Composition, transformation, climate and health effects.Angewandte Chemie International Edition,2005,44:7520-7540.
    Pósfai M, Gelencsér A, Simonics R, et al. Atmospheric tar balls: Particles from biomass and biofuelburning. Journal of Geophysical Research,2004,109(D06213), doi:10.1029/2003JD004169.
    Quincey P, Butterfield D, Green D, et al. An evaluation of measurement methods for organic,elemental and black carbon in ambient air monitoring sites. Atmospheric Environment,2009,43:5085-5091.
    Ram K, Sarin M M. Absorption coefficient and site-specific mass absorption efficiency ofelemental carbon in aerosols over urban, rural, and high-altitude sites in India. EnvironmentalScience&Technology,2009,43:8233-8239.
    Rattigan O V, Dirk Felton H, Bae M S, et al. Multi-year hourly PM2.5carbon measurements in NewYork: Diurnal, day of week and seasonal patterns. Atmospheric Environment,2010,44:2043-2053.
    Reisinger P, Wonaschütz A, Hitzenberger R, et al. Intercomparison of measurement techniques forblack or elemental carbon under urban background conditions in wintertime: Influence ofbiomass combustion. Environmental Science&Technology,2008,42:884-889.
    Rice J. Comparison of integrated filter and automated carbon aerosol measurements at researchtriangle park, North Carolina. Aerosol Science and Technology,2004,38:23-36.
    Richter A, Burrows J P, Nuss H, et al. Increase in tropospheric nitrogen dioxide over Chinaobserved from space. Nature,2005,437:129-132.
    Robinson A L, Donahue N M, Shrivastava M K, et al. Rethinking organic aerosols: Semivolatileemissions and photochemical aging. Science,2007,315:1259-1262.
    Sandradewi J, Prevot A S H, Weingartner E, et al. A study of wood burning and traffic aerosols inan Alpine valley using a multi-wavelength Aethalometer. Atmospheric Environment,2008,42:101-112.
    Schauer J J, Mader B T, DeMinter J T, et al. ACE-Asia intercomparison of a thermal-opticalmethod for the determination of particle-phase organic and elemental carbon. EnvironmentalScience&Technology,2003,37:993-1001.
    Schnaiter M, Horvath H, M hler O, et al. UV-VIS-NIR spectral optical properties of soot andsoot-containing aerosols. Journal of Aerosol Science,2003,34:1421-1444.
    Schnaiter M, Linke C, M hler O, et al. Absorption amplification of black carbon internally mixedwith secondary organic aerosol. Journal of Geophysical Research,2005,110(D19204),doi:10.1029/2005JD006046.
    Sciare J, Cachier H, Oikonomou K, et al. Characterization of carbonaceous aerosols during theMINOS campaign in Crete, July-August2001: A multi-analytical approach. AtmosphericChemistry and Physics,2003,3:1743-1757.
    Sciare J, Oikonomou K, Favez O, et al. Long-term measurements of carbonaceous aerosols in theEastern Mediterranean: Evidence of long-range transport of biomass burning. AtmosphericChemistry and Physics,2008,8:5551-5563.
    Seinfeld J H, Pankow J F. Organic atmospheric particulate material. Annual Review of PhysicalChemistry,2003,54:121-140.
    Shakya K M, Ziemba L D, Griffin R J. Characteristics and sources of carbonaceous, ionic, andisotopic species of wintertime atmospheric aerosols in Kathmandu Valley, Nepal. Aerosol andAir Quality Research,2010,10:219-230.
    Sharma S, Brook J R, Cachier H, et al. Light absorption and thermal measurements of black carbonin different regions of Canada. Journal of Geophysical Research,2002,107(D24),doi:10.1029/2002JD002496.
    Simoneit B R T. A Review of biomarker compounds as source indicators and tracers for airpollution. Environmental Science and Pollution Research,1999,6:159-169.
    Simoneit B R T. Biomass burning-a review of organic tracers for smoke from incompletecombustion. Applied Geochemistry,2002,17:129-162.
    Snyder D C, Rutter A P, Collins R, et al. Insights into the origin of water soluble organic carbon inatmospheric fine particulate matter. Aerosol Science and Technology,2009,43:1099-1107.
    Snyder D C, Schauer J J. An inter-comparison of two black carbon aerosol instruments and asemi-continuous elemental carbon instrument in the urban environment. Aerosol Science andTechnology,2007,41:463-474.
    Solomon P, Baumann K, Edgerton E, et al. Comparison of integrated samplers for mass andcomposition during the1999Atlanta Supersites project. Journal of Geophysical Research,2003,108(D7):8423, doi:10.1029/2001JD001218.
    Song Y, Zhang Y H, Xie S D, et al. Source apportionment of PM2.5in Beijing by positive matrixfactorization. Atmospheric Environment,2006,40:1526-1537.
    Strommen M R, Kamens R M. Simulation of semivolatile organic compound microtransport atdifferent times scales in airborne diesel soot particles. Environmental Science&Technology,1999,33:1738-1746.
    Subramanian R, Khlystov A Y, Cabada J C, et al. Positive and negative artifacts in particulateorganic carbon measurement with denuded and undenuded sampler configurations. AerosolScience and Technology,2004,38:27-48.
    Subramanian R, Khlystov A Y, Robinson A L. Effect of peak inert-mode temperature on elementalcarbon measured using thermal-optical analysis. Aerosol Science and Technology,2006,40:763-780.
    Sullivan A P, Weber R J, Clements A L, et al. A method for on-line measurement of water-solubleorganic carbon in ambient aerosol particles: Results from an urban site. Geophysical ResearchLetters,2004,31(L13105), doi:10.1029/2004GL019681.
    Swartz E, Stockburger L, Vallero D A. Polycyclic aromatic hydrocarbons and other semivolatileorganic compounds collected in New York city in response to the events of9/11.Environmental Science&Technology,2002,37:3537-3546.
    Tang G, Li X, Wang Y, et al. Surface ozone trend details and interpretations in Beijing,2001-2006.Atmospheric Chemistry and Physics,2009,9:8813-8823.
    Temime-Roussel B, Monod A, Massiani C, et al. Evaluation of an annular denuder tubes foratmospheric PAH partitioning studies-2: Evaluation of mass and number particle losses.Atmospheric Environment,2004,38:1925-1932.
    Turpin B J, Huntzicker J J, Hering S V. Investigation of organic aerosol sampling artifacts in the losangeles basin. Atmospheric Environment,1994,28:3061-3071.
    Turpin B J, Saxena P, Andrews E. Measuring and simulating particulate organics in the atmosphere:Problems and prospects. Atmospheric Environment,2000,34:2983-3013.
    Turpin B J, Lim H J. Species contributions to PM2.5mass concentrations: Revisiting commonassumptions for estimating organic mass. Aerosol Science and Technology,2001,35:602-610.
    VDI,1996. Measurement of soot (immission)-Chemical analysis of elemental carbon byextraction and thermal desorption of organic carbon. Report No.2465Part1. Verein DeutscherIngenieure, Dusseldorf, Germany.
    VDI,1999. Measurement of soot (ambient air)-Thermographic determination of elemental carbonafter thermal desorption of organic carbon. Report No.2465Part2. Verein DeutscherIngenieure, Dusseldorf, Germany.
    Viana M, Chi X, Maenhaut W, et al. Influence of sampling artefacts on measured PM, OC, and EClevels in carbonaceous aerosols in an urban area. Aerosol Science and Technology,2006a,40:107-117.
    Viana M, Chi X, Maenhaut W, et al. Organic and elemental carbon concentrations in carbonaceousaerosols during summer and winter sampling campaigns in Barcelona, Spain. AtmosphericEnvironment,2006b,40:2180-2193.
    Viana M, Maenhaut W, ten Brink H M, et al. Comparative analysis of organic and elemental carbonconcentrations in carbonaceous aerosols in three European cities. Atmospheric Environment,2007,41:5972-5983.
    Volkamer R, Jimenez J L, San Martini F, et al. Secondary organic aerosol formation fromanthropogenic air pollution: Rapid and higher than expected. Geophysics Research Letters,2006,33, doi:10.1029/2006GL026899.
    Wang Q, Shao M, Zhang Y, et al. Source apportionment of fine organic aerosols in Beijing.Atmospheric Chemistry and Physics,2009,9:8573-8585.
    Watson J G, Chow J C, Chen L A, et al. Methods to assess carbonaceous aerosol sampling artifactsfor IMPROVE and other long-term networks. Journal of the Air&Waste ManagementAssociation,2009,59:898-911.
    Weber R J, Sullivan A P, Peltier R E, et al. A study of secondary organic aerosol formation in theanthropogenic-influenced southeastern United States. Journal of Geophysical Research,2007,112(D13302), doi:10.1029/2007JD008408.
    Weingartner E, Saathoff H, Schnaiter M, et al. Absorption of light by soot particles: Determinationof the absorption coefficient by means of Aethalometers. Journal of Aerosol Science,2003,34:1445-1463.
    Yang F, Tan J, Zhao Q, et al. Characteristics of PM2.5speciation in representative megacities andacross China. Atmospheric Chemistry and Physics Discusssion,2011,11:1025–1051.
    Yang H, Yu J Z. Uncertainties in charring correction in the analysis of elemental and organic carbonin atmospheric particles by thermal/optical methods. Environmental Science&Technology,2002,36:5199-5204.
    Yang H, Yu J Z, Ho S S H, et al. The chemical composition of inorganic and carbonaceousmaterials in PM2.5in Nanjing, China. Atmospheric Environment,2005,39:3735-3749.
    Ye B M, Ji X L, Yang H Z, et al. Concentration and chemical composition of PM2.5in Shanghai fora1-year period. Atmospheric Environment,2003,37:499-510.
    Ye Y, Tsai C J, Pui D Y H. Particle transmission characteristics of an annular denuder ambientsampling system. Aerosol Science and Technology,1991,14:102-111.
    Yu J Z, Xu J H, Yang H. Charring characteristics of atmospheric organic particulate matter inthermal analysis. Environmental Science&Technology,2002,36:754-761.
    Zhang Q, Alfarra M R, Worsnop D R, et al. Deconvolution and quantification of hydrocarbon-likeand oxygenated organic aerosols based on Aerosol Mass Spectrometry. Environmental Science&Technology,2005a,39:4938-4952.
    Zhang Q, Worsnop D R, Canagaratna M R, et al. Hydrocarbon-like and oxygenated organicaerosols in Pittsburgh: Insights into sources and processes of organic aerosols. AtmosphericChemistry and Physics,2005b,5:3289-3311.
    Zhang Q, Jimenez J L, Canagaratna M R, et al. Ubiquity and dominance of oxygenated species inorganic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes.Geophysics Research Letters,2007,34(L13801), doi:10.1029/2007GL029979.
    Zhang T, Claeys M, Cachier H, et al. Identification and estimation of the biomass burningcontribution to Beijing aerosol using levoglucosan as a molecular marker. AtmosphericEnvironment,2008,42:7013-7021.
    Zhang X, Hecobian A, Zheng M, et al. Biomass burning impact on PM2.5over the southeastern USduring2007: Integrating chemically speciated FRM filter measurements, MODIS fire countsand PMF analysis. Atmospheric Chemistry and Physics,2010,10:6839-6853.
    Zhao C, Wang Y H, Zeng T. East China plains: A “Basin” of ozone pollution. EnvironmentalScience&Technology,2009,43:1911-1915.
    北京市环保局.2000~2009年北京市环境状况公报http://www.bjepb.gov.cn/bjhb/publish/portal0/tab375/.
    曹军骥,李顺诚,李杨等.2003年秋冬季西安大气中有机碳和元素碳的理化特征及其来源解析.自然科学进展,2005,15:1460-1466.
    迟旭光,狄一安,董树屏等.大气颗粒物样品中有机碳和元素碳的测定.中国环境监测,1999,15:11-13.
    董树屏,刘咸德,祁辉等.大气颗粒物中元素碳的直接测定.中国环境监测,2004,20:20-23.
    胡敏,张静,吴志军.北京降水化学组成特征及其对大气颗粒物的去除作用.中国科学:化学,2005,35:169-176.
    胡敏,邓志强,王轶等.膜采样离线分析与在线测定大气细粒子中元素碳和有机碳的比较.环境科学,2008,29:3297-3303.
    环境保护部.2002~2009年中国环境状况公报. http://jcs.mep.gov.cn/hjzl/zkgb/.
    兰紫娟,黄晓锋,何凌燕等.不同碳质气溶胶在线监测技术的实测比较研究.北京大学学报(自然科学版),2011,47:159-165.
    李伟芳,白志鹏,魏静东等.天津冬季大气中PM2.5及其主要组分的污染特征.中国环境科学,2008,28:481-486.
    刘新民,邵敏,曾立民等.珠江三角洲地区气溶胶中含碳物质的研究.环境科学,2002,23:54-59.
    吕子峰.无机粒子对二次有机气溶胶生成影响的研究[博士学位论文].北京:清华大学,2008.
    宋宇,唐孝炎,方晨等.北京市大气细粒子的来源分析.环境科学,2002,23:11-16.
    吴琳,冯银厂,叶文媛等.大气颗粒物中碳组分测定结果比较:元素分析和热光反射方法.环境科学研究,2010,23:1481-1487.
    杨复沫,贺克斌,马永亮等.北京大气细粒子PM2.5的化学组成.清华大学学报(自然科学版),2002,42:1605-1608.
    朱先磊,张远航,曾立民等.北京市大气细颗粒物PM2.5的来源研究.环境科学研究,2005,18:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700