内源乳化凝胶法制备嗜热链球菌微胶囊及其性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠道益生菌群是构筑肠道粘膜屏障的主要组成部分,为机体抵御病原菌的侵袭提供强大的生物屏障,在维持肠道功能及机体的健康方面发挥着重要的生理作用。通过微胶囊化能将益生菌菌体与外界环境分开,避免其受损害,利于储存和运输;采用肠溶性壁材,能防止胃液破坏,使其到达肠道遇肠液后溶解,从而使尽可能多的菌体到达肠道并定植于肠粘膜上,真正起到保健和治疗的作用。本文以嗜热链球菌为模式菌株,以内源乳化凝胶法对其进行包埋,得到微米级壳聚糖/海藻酸微胶囊,并研究了其在模拟胃肠道环境下的释放性和耐受性,从而可以得到以下结论:
     (1)内源乳化凝胶法制备微胶囊的最佳条件:海藻酸钠浓度为15g·L-1,乳化剂Span80用量为0.7%,水与油的体积比为1:8,CaCO3与NaALG质量比为1:5。在此条件下得到目的粒径40~60μm范围内微胶囊的百分含量为80.2%。通过对酪蛋白的包埋及其释放特性研究,得出最佳的壳聚糖覆膜条件为壳聚糖浓度4mg/mL,壳聚糖溶液pH=6,成膜反应时间10min。
     (2)优化嗜热链球菌(Streptoccus thermophilus ST1)高密度培养基,最适碳源为蔗糖,最佳浓度为0.5%;最适氮源为大豆蛋白胨,最佳浓度为2.0%;适量的酵母膏和吐温80能促进嗜热链球菌的增殖,最适添加浓度为0.5%和0.1%,过量反而会抑制乳酸菌的增殖;柠檬酸二铵、乙酸钠和硫酸镁等无机盐也能促进乳酸菌的增殖,最适添加浓度为0.2%,0.3%和0.05%,过量也会抑制乳酸菌的增殖。通过Plackett-Burman试验得出蔗糖、大豆蛋白胨和酵母膏对菌体生长影响最为显著。通过响应面优化试验得出最适添加浓度为0.56%,0.54%和2.12%,菌体密度达到1.223。同时研究了温度、初始pH、接种量对乳酸菌高密度培养的影响。优化嗜热链球菌(Streptoccus thermophilus ST1)高密度培养条件,最适培养温度39℃,最适初始pH7.7,最适接种量5%。优化后大大缩短了生长延滞期,菌体密度达1.412。
     在5L发酵罐中进行嗜热链球菌的增殖培养, 6h菌体浓度达到最大,可达到OD600为1.71。
     (3)嗜热链球菌海藻酸微胶囊的最佳制备工艺为菌体:胶量=1:1,Span80浓度为0.7%,乳化时间为15min,海藻酸钠浓度为1.5%,包埋率为75.6%。
     壳聚糖/海藻酸微胶囊较海藻酸微胶囊提高了被包埋嗜热链球菌的存活率,提高了65.74%;壳聚糖/海藻酸微胶囊在人工肠液中较海藻酸微胶囊难释放,释放时间长,释放缓慢;壳聚糖覆盖后,微胶囊在胃液作用下有更高的胃酸耐受性;同时耐胆汁酸性加强,在人工胃液中(pH=1.2)放置2h,活菌数仍能达到8.2×107c fu/mL,在胆汁酸溶液中处理6h,活菌数能达到1.99×10 9cfu/mL。
     壳聚糖/海藻酸微胶囊耐胃酸后仍有一定的发酵活力。放于冰箱中4℃保存2个月,菌体存活率仍然达到94.8%,根据国家对保健产品的要求,经计算该微胶囊有效期为94.544天,延长了保藏时间。
     综上所述,内源乳化凝胶法制备嗜热链球菌壳聚糖/海藻酸微胶囊是可行的,能增强菌体对外界环境因素的抵抗能力,显著提高菌体在低温保存期和到达肠道后的存活率,使乳酸菌更好地起到有益于健康的作用。微胶囊的粒径范围控制在40~60μm,便于将微胶囊加入到饮料、食品等中去,为新型微生态制剂的开发奠定了基础。
The intestinal flora plays an important role in human health, the main function of which is to prevent colonization of potential pathogenic microorganisms, exert health benefits of inherent basic nutrition and improve intestinal microbial balance of the host. Microencapsulation can be used to detach probiotics from outside environment and prevent the damage, which will advantage the storage and conveyance. The damage of gastric acid can be avoided with the enteric dissolved materials so that a larger number of live cells can get to intestines and make a true function in health care.
     Using Streptoccus thermophilus as the mode bacteria, the paper studied the preparation of chitosan/alginate microcapsules by emulsification/internal gelation, and further investigated the release and survival properties of the bacteria in the gastrointestinal tract. Based on the experimental results, main conclusions can be drawn as follows:
     (1) The optimal conditions for the preparation of alginate microcapsules are: alginate concentration 1.5%(w/v), emulsifier Span80 concentration 0.7%(v/v), the ratio of water to oil 1:8 (v/v) and the ratio of CaCO3 to NaALG 1:5(w/w) , under the optimal conditions, the content of the microcapsules with the aimed diameter of 40~60μm is 80.2%. Microcapsules will improve their chemical and mechanical stability with a chitosan membrance by the encapsulation and releasing of casein, and the optimal conditions of the chitosan are observed when chitosan concentration is 4mg/ml, chitosan initial pH value is 6, and reacting time is 10min.
     (2)The enrichment culture formula of Streptoccus thermophilus is determined. Experiments shows that the best addition of carbon source is sucrose 0.56%, and the best addition of nitrogen source is soyer peptone 2.0%. The equal amount of yeast extract, Tween80, ammonium citrate sodium, sodium acetate and MgSO 4·7H2O can promote the growth of Streptoccus thermophilus, the best additions of which are 0.5%, 0.1%, 0.2%, 0.3%and 0.02% respectively, but excessive additions can restrain the growth.Further research is done by SAS software combined with the Plackett-Burman design and response surface analysis method, which provides the most prominent influential factors for the growth of thalli and the best additions with sucrose 0.56%, soyer peptone 2.12% and yeast extract 0.54%. Moreover, the OD value can reach up to 1.223.
     The optimal enrichment culture conditions of Streptoccus thermophilus can also obtained, namely, initial pH value at 7.7, suitable temperature 39℃, and inoculate amounts 5%. By adopting the optimal conditions, the arrearage phrase of Streptoccus thermophilus is shortened and OD value is enhanced to 1.412. Furthermore, Streptoccus thermophilus incubated in 5L fermentor is analyzed giving the best culture time of 6h. Results show that the density of the bacteria gets to the best at this time, and OD600 could reach up to 1.71.
     (3) The optimal conditions for the preparation of alginate microcapsules containing Streptoccus thermophilus are: the ratio of bacteria and alginate 1:1, Span80 concentration 0.7%, emulsification time 10min, and alginate concentration 1.5%. The trapping efficiency will reach up to 75.6%.
     The survival rate of Streptoccus thermophilus is advanced by 65.74% when the alginate microcapsules are coated with chitosan. The experiment shows that the release of chitosan/alginate microcapsule is slower than before in the artifical intestinal juice. In order to exert positive health effects, Streptoccus thermophilus should resist
     the stressful conditions of stomach upper intestine that contain bile.The chitosan/alginate microcapsule has a high survival rate in the gastic juice and bile solution when it is in the gastric juice for about 2h and in the bile acid for 6h with its viability reaching up to 8.2×107cfu/mL and 1.99×109cfu/mL respectively.
     The chitosan/alginate microcapsule proves to have strong fermentation activity. Its survival rate still keeps in 94.8% when it has been storaged for 2 months under 4℃in the refrigeratory. And its storage period of validity is 94.54 days calculated according to the demand of our country for the health care production.
     In summary, the production of microcapsules containing Streptoccus thermophilus by emulsification/internal gelation is feasible, which can resist the bad circumstance and improve the survival rate in the low temperature and intestinal tract so that the probiotics can exert health benefits more effectively. Under the aimed diameter of 40~60μm, the microcapsule can be appended to drinks and foods, which will provide the foundation for further research and development of new-type microbioecologics.
引文
[1]郝红,梁国正.微胶囊技术及其应用.现代化工,2002,22(3): 60~63
    [2]葛毅强,孙爱东,倪元颖,蔡同一.天然维生素E微胶囊技术的研究.中国油脂, 2000, 25(3): 37~40
    [3]梅丛笑,方元超.微胶囊技术在食品工业中的应用.中国食物与营养,2000,3: 28~29
    [4]李武明,张玲华,杨汝德.双歧杆菌的微囊化研究.广东药学院学报. 1997,13(4): 222~225
    [5]Cherukuri S R, Mansukhani G. Multiple Encapsulated Sweetener Delivery System. US Patent, 4933190. 1990
    [6]Nguyen M L., Schwartz S J. Food Technology, 1999, 53 (2): 38~45
    [7]舒晓正,朱康杰.壳聚糖-海藻酸钠微囊对蛋白质控制释放的研究.功能高分子学报, 1999,12 (4) : 423~427
    [8]魏华,李雁群,付金衡.乳酸菌微胶囊化的初步研究.中国乳品工业. 1998,26 (6): l3~l6
    [9]Benedetti L, Bertucco A, and Pallado P.. Production of micronic particals of biocompatible polymer using supercritical carbon dioxide. Biotechnol. Bioeng., 1997, 53: 232~237
    [10]Aashima T, Shimizu M, and Kukizaki M. Abstracts of 44th Symposium on Colloid and Interface Science (Tokyo: Chem. Soc. Japan) , 1991: 468~469
    [11]Uamatsu N., Shiga K., and Kondo T.. Preparation of polyamide microcapsules having narrow size distributions. J. Microencap., 1994, 11(2): 171~178
    [12]解玉冰,马小军,王毓福,虞星炬.生物微胶囊传递模型的研究.膜科学与技术, 1997,17(4): 51~56
    [13]何洋,解玉冰,王勇,刘群,马小军. APA微胶囊扩散数学模型的改进.高等学校化学学报,2000,21(2): 278~282
    [14]张可达.微胶囊化方法.功能高分子学报,2001,14 (4): 474~480
    [15]曹永梅.微胶囊技术在双歧杆菌中的应用.食品科技,2000,5: 8~11
    [16]Claire D, Manfred M, Joseph B, et al. Improved Performances and Control of Beer Fermentaion Using Encapsulated-Acetolactate Decarboxylase and Modeling. Biotechnol Prog, 2000, 16(6): 958~965
    [17]Hong K. Preparation of polyurea microcapsules containing ovalbuntin. Mater Chem Phys,2000, 64: 20~24
    [18]段林东,赵良患,曾传广.微胶囊复合果蔬饮料研究.食品工业科技,1994 (6): 25~29
    [19]Larionova N V, Ponchel G , et al. Biodegradable cross-linked starch/protein microcapsules containing protenase inhibitor for oral protein administration. Int Pharm, 1999, 189: 171~178
    [20]于西全,左晖.复方双氯灭痛微胶囊的制备及缓释效果研究.海峡药学, 1997(1):17~18
    [21]Kimiko K, Mebae U, et al. Two-layer structures of microcapsule membrane as predicted from electrophoretic stuies. J Collid Interface Science, 1999, 218: 275~281
    [22]檀亦兵,奚广生,迟景波.微胶囊化芝麻油的研制.中国油脂,1998 (5): 35~36
    [23]Water A, Rehage H, et al. Shear-induced deformations of polyarnide microcapsules. Collid Polym Sci, 2000, 278: 169~175
    [24]Stere L, Patrick M, et al. Communication to the editor. Plastic Sci, 1999, 55: 1123~1125
    [25]崔凯,丁宵霖.苏子油的微胶囊化技术研究.中国粮油学报,1997(6) : 36~37
    [26]Hans W H,Michad J H, et al. Process for the preparation of microcapsules. U S patent, 5 8866,153,1996
    [27]Becher D Z, Magin R W. High concentration encapsulation by interfacial polycondasation. U S patent, 4640709, 1987
    [28]Fix J A, Oral controlled release thnology for peptide: the status and future prospects. Pharm Res, 1996, 13: 1760~1764
    [29]Oraceska B., Nixon J.R., Williams S.C.R., and Solomon M.C. A non-invasive method for following the kinetics of ion binding and structural changes in alginates, coupled with the dissolution from alginate matrices. Proceedings of the 10th Pharmaceutical Technology Conference, 1992, 1: 514~520
    [30]Sugawara S., Imai T., and Otagiri M. The controlled release of prednisolone using alginate gel. Pharm.Res, 1994, 11: 272~277
    [31]Jen A.C.,Wake M.C.,and Mikos A.G., Hydrogelsforcellimmobilization. Biotechnol.Bioeng, 1996,50: 357~364
    [32]Li R.H., Altreuter D.H., and Gentile F.T..Transport characterization of hydrogel matrices for cell encapsulation. Biotechnoi. Bioeng., 1996, 50: 365~373
    [33]Tea S., and Acarttlrk F. Calcium alginate microparticles for oral administration: I: effect ofsodium alginate type on drug release and drug entrapment efficiency. J. Microencap., 1999, 16(3): 275~290
    [34]Acarturk F. and Takka S., Calcium alginate microparticles for oral administration: II:effect offormulation factors on drug release and drug entrapment efficiency. J. Microencap., 1999, 16(3): 291~g301
    [35]尹承慧.甲壳素及其衍生物的生物学特性和医药学应用研究进展.国外医药—合成药生化药制剂分册,2000,21( 2): 106~109
    [36]Hlum L.. Chitosan and its use as a pharmaceutical excipient. Pharm. Res., 1998, 15(9): 1326~1331
    [37]Polk A., Amsden B., Yao K.D., Peng T., and Goosen M.F.A.. Controlled release of albumin from chitosan-alginate microcapsules. J. Pharm. Sci., 1994, 83(2): 178~185
    [38]Remunan-Lopez C., Lorenzo M.L., Portero A£?lato J.L.V., and Alonso M.J.. Site-specific drug delivery using chitosan microparticles. Adv. Chitin Sci, 1997, 2: 600~607
    [39]Ramdas M., Dileep K.J., and Anitha Y., Alginate encapsulated bioadhesive chitosan microspheres for intestinal drug delivery. J. Biomater. Appl., 1999, 13: 290~296
    [40]Schipper N.G.M.,Olsson S., Hoogstraate J.A., deBoer A.G., Varum K.M., and Artursson P.. Chitosans as absorption enhancers for poorly absorbable drugs. 2: Mechanism of absorption enhancement. Pharm Res., 1997, 14(7): 923~929
    [41]Seifert D B, Phillips J A. Production of small, monodispersed alginate beads for cell immobilization. Biotechnol Prog, 1997, 13: 562~568
    [42]Lencki R.W.J., Neufeld R.J., Spinney T.. Microspheres and method of producing same. U.S.Pat. 4822534, 1989
    [43]Bakan J A.. Microencapsulation of Food and Related Products. Food Technology, 1973 (5): 34~44
    [44]Poncelet D., Lencki R, Beaulieu C, et al. Production of alginate beads by emulsification linternal gelation. Applied Microbiology and Biotechnology , 1992, 38(1), 39~45
    [45]Wan L.S.C, Heng P.W.S., and Chan L.W.. Drug encapsulation in alginate microspheres by emulsification. J. Microencap., 1992, 9: 309~316
    [46]Poncelet D., Babak V., Dulieu C., Picot A.. A physico-chemical approach to production of alginate beads by emulsification-internal ionotropic gelation. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 155(2): 171~176
    [47]吴克刚,佘纲蔗,等.油脂喷雾干燥微胶囊化的研究.食品科学,1998,19(1): 34~34
    [48]Blaut M. et al. Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr, 2002, 87: 203~211
    [49]Steer T, et al. Perspectives on the role of the human gut microbiota and it's modulation by pro- and prebiotics. Nutr. Res. Revs, 2000, 13: 229~254
    [50]蒋建新,朱佩芳.对细菌内毒素致病作用的新认识.解放军医学杂志,2003,28(3):191~193
    [51]李慧昕,李金龙.动物微生态制剂研究进展.黑龙江畜牧兽医,2000(11): 38~39
    [52]范颖,顾洪娟等.微生态制剂的研究与应用.辽宁农业职业技术学院学报, 2002, 4(2): 18~21
    [53]敬思群.优质乳酸菌的应用.中国乳业,2002(6): 18~20
    [54]Sieber R,Dietz U T. Lactobacillus acidophilus and yoghurt in the prevention and therapy of bacterial vaginosis. International Dairy Journal, 1998 (8): 599~607
    [55]Sutherland I W. Microbial biopolymers from agricultural products: production and potential. International Biodeterioration and Biodegradation, 1996, 38: 249~261
    [56]Tomohiko Okawa, M. D, Hideo Niibe, M. D., et al. Effect of LC9018 combined with radiation therapy on carcinoma of the uterine cervix. A phase iii, multicenter, randomized, controlled study. American Cancer Society, 1993,72 (6): 1949~1954
    [57]张红印,等.乳酸菌发酵在食品加工中的应用.郑州牧业工程高等专科学校学报,2000, 20(3): 26~28
    [58]Schiffrin E.J, Rochat F, Link-Amster H, et al. Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. Journal of Dairy Sci., 1994, 78: 491~497
    [59]Sutherland I W. Novel and established applications of microbial polysaccharides. Trends in Biotechnology, 1998, 16: 41~46
    [60]张媛,毛玉杰.乳酸杆菌及其在微生态制剂中的作用.辽宁畜牧兽医,2004, 2: 42~44
    [61]杨建军,赵红霞.乳酸菌及其在畜牧生产中的应用.畜禽业,2002,8: 36~37
    [62]明学智.国外微生态制剂的研究与市场概况.工业微生物,2000,(9): 56~58
    [63]秦立虎.微胶球技术及其在乳品加工业中的应用.四川食品工业科技,1996,(1): 27~29
    [64]陆彬.药物新剂型与技术.北京:人民卫生出版社,1998,53
    [65]Buyukgungor, H. Stability of Lactobacillus bulgaricus immobilised in kappa carrageenan gels. J. Chem. Tech. Biotechnol, 1992, 53: 173~175
    [66]Khalil A.H. and Mansour E.H. Alginate encapsulated bifidobacteria survival in mayonnaise. J. Food Sci., 1998. 63: 702~705
    [67]Ouwehand A C, Salminen S J. The health effects of cultured milk products with viable and non-viable bacteria. International Dairy Journal, 1998, 8(9):749~758
    [68]Shah N P, Ravula R I. Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Aust J Dairy Technol, 2000, 55: 41~45
    [69]魏华,李雁群,等.乳酸菌微胶囊化的初步研究.中国乳品工业,1998,26(6): 13~16
    [70]黄序,戚蔽,等.肠溶性双歧杆菌微胶囊的初步研究.药物生物技术,2002,(2): 105~109
    [71]陈洪兴.双歧杆菌微胶囊的研究.盐城工学院学报(自然科学版),2003,6(2): 41~43
    [72]李武明,张铃华,杨汝德.双歧杆菌的微囊化研究.广东药学报,1997,13(4): 222~225
    [73]Sheu TY. Microentrapent of lactobacilliincalcium alginate gels. J.Food Sci, 1993, 54(3): 557~561
    [74]Chan L W, Heng P W, Wan L S. Effect of cellulose derivatives on alginate microspheres prepared by emulsification. Journal of Microencapsulation, 1997, 14(5): 545~555
    [75]姚茂君,刘飞.猕猴桃籽油的微胶囊化研究.食品与发酵工业, 2006, 32(11): 59~62
    [76]Ribeiro C C, Barrias C, Barbosa M A. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials, 2004, 25: 4363-4373
    [77]卢蓉蓉,张国农.喷雾干燥微胶囊技术中的玻璃化转变.中国乳品工业,2001,29(6): 24~27
    [78]Liu Q, Rauth A M., Wu X Y. Immobilization and bioactivity of glucose oxidase in hydrogel microspheres formulated by an emulsification-internal gelation adsorption-polyelectrolyte coating method[J]. International Journal of Pharmaceutics, 2007, 339(1-2): 148~156
    [79]Matsumoto M, Sumi N, Ohmori K, et al. Immobilization of lipase in microcapsules prepared by organic and inorganic materials. Process Biochemistry, 1998, 33(5): 535~540
    [80]Ribeiro A J, Silva C, Ferreira D, et al. Chitosan-reinforced, alginate microspheres obtainedthrough the emulsification/internal gelation technique. European Journal of Pharmaceutical Science, 2005, 25(1): 31~40
    [81]Krasaekoopt W, Bhandari B, Deeth H C. Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT-and conventionally treated milk during storage. Science Diary, 2006, 39: 177~183
    [82]黄序,戚薇,王建玲,杜连祥.药物生物技术.肠溶性双歧杆菌微胶囊的初步研究, 2002, 9 (2) :105~109
    [83]罗芳. Folin-酚试剂法蛋白质定量测定.黔南民族师范学院学报,2005,3: 46~47
    [84]Matsurnoto S., Kobayashi H., Takashima Y., Production of monodispersed capsules. J.Microencapsulation, 1986, 3: 25~31
    [85] Gray C.1., Dowsett J.Retention of insulin in alginate gel beads. Biotech. Bioeng., 1988, 31: 607~612
    [86]Wee S.F., Gombotz W.R., Controlled release of recombinant human tumor necroses factor receptor from alginate beads. Proc. Int. Symp. Control. Release Bioact. Mater., 1994, 21: 730~731
    [87]Rastogi R, Sultana Y, Aqil M, et al. Alginate microspheres of isoniazid for oral sustained drug delivery. International Journal of Pharmaceutics, 2007, 334 (1): 71~77
    [88]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the folin phenol reagent. J Biol Chem, 1951, 193(1): 265~275
    [89]Okhamafe AO, Amsden B, ChuW,et al. Modulation of protein release from chitosan-alginate microcapsules using the pH sensitive polymer hudoxypropyl methylcellulose acetate succinate. J Microencapsulation, 1996, 13(5): 497~508
    [90]Polk A, Amsden B, Yao K D, et al. Controlled release of albumin from chitosan-alginate microcapsule. J Pharm Sci, 1994, 83(2): 178~185
    [91]陈宁,常高峰,张克旭. L-异亮氨酸发酵培养基的响应面法优化.食品与发酵工业, 2004,30(2): 33~37
    [92]慕运动.响应面方法及其在食品工业中的应用.郑州工程学院学报,2001,22(3): 91~94
    [93]Ambati P, Ayyanna C. Optimizing medium constituents and fermentation conditions for citric production from palmyra jaggery using response surface method. World Journal of Microbiology & Biotechnology, 2001, 17(4): 331~335
    [94]Ratnam B V V, Narasimha Rao M, Damodar Rao M, et al. Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology. World Journal of Microbiology & Biotechnology, 2003, 19(5): 523~526
    [95]袁肖寒.嗜热链球菌超浓缩培养及生物学变化规律: [硕士学位论文] .东北:东北农业大学. 2005
    [96]邓丽红,张扬,马润宇,等.采用响应面法优化木糖醇发酵培养基.食品与发酵工业, 2005,31(6): 59~61
    [97]Vohra A,Satyanara T. Statistical optimization of the medium components by response surface methodology to enhance phytase production by pichia anomala. Process Biochemistry, 2002, 37(9): 999~1004
    [98]Ouwehand A C, Salminen S J. The health effects of cultured milk products with viable and non-viable bacteria.Int Dairy J, 1998, 8: 749~758
    [99]Shahidi F, and Han X.Q. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr, 1993, 33: 501~547
    [100] Ouwehand A C, Salminen S J. The health effects of cultured milk products with viable and non-viable bacteria.Int Dairy J, 1998, 8: 749~758
    [99]Shah N P, Ravula R I. Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Aust J Dairy Technol, 2000, 55: 41~45
    [101]Shah N P, Lankaputhra W E V. Improving viability of Lactobacillus acidophllus and Bifidobacterium spp.in yogurt. Int Dairy J, 1997, 7: 349~356
    [102]Berrada N, Lemeland J F, Laroche G, Thovenot P,Plala M. Bifidobacterium from fermented milks: Survival during gastric transit. J Dairy Sci, 1991, 74: 409~413
    [103]Sheu T Y, Marshall R T,and Heymann H. Improving survival of culture bacteria in frozen desserts by microentrapment. J. Dairy Sci, 1993, 76: 1902~1907
    [104]Shah N P, Lankaputhra W E V. Improving viability of Lactobacillus acidophllus and Bifidobacterium spp. in yogurt. Int Dairy J, 1997, 7: 349~356
    [105]Gardiner G E, O’Sullivan E, Kelly J, Auty M A, Fitzgerald G F, Collins J K, Ross R P, Stanton C. Comparative survival rates of human derived probiotic Lactobacillus paracasei and L.sallvarius strains during heat treatment and spray drying. Appl Environ Microbiol, 2000, 66: 2605~2612
    [106]Stacey M, Webb M. Studies on the antibacterial properties of the bile acids and some compounds derived from cholanic acid. Proc Roy Soc, 1947, 134: 523~537
    [107]Fuller R. Probiotics in man and animals. J. App. Bacteriol, 1989, 66: 365~378
    [108]Adhikarl K, Mustapha A, Grun I U, Fernando L. Viability of microencapsulated bifidobacteria in set yoghurt during refrigerated storage. J. Dairy Sci, 2000, 83: 1946~1951
    [109]Plcot A, Lacroix C. Encapsulation of Bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J, 2004, 14: 505~515
    [110]Bogovic-Matijasic B. Isolation and characterization of two bacteriocins of Lactobacillus acidophilus LF221. Appl Microbiol Biotechnol, 1998, (49): 606~612
    [111]黄序,戚薇,王建玲,杜连祥.肠溶性双歧杆菌微胶囊的初步研究.药物生物技术, 2002,9(2): 105~109
    [112]Smidsrod O, and Skjak-Brack G. Alginate as immobilization matrix for cells. Trends Biotechnol, 8: 71~78
    [113]Modler H W. Canadian institute of food science and technology. Deguc Journal, 1990, 23(1): 29
    [114]Overgaard S, Scharer J M, Moo-Young M. Immobilization of hybridoma cells in chitosan alginate beads. The Canadian Joumal of Chemical Engineering, 1991, 69(4): 439~443
    [115]张艳杰,徐红华.益生菌及在食品中的应用.中国乳品工业,2001,29(5): 47~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700