双三角翼非定常分离流动的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进战斗机要求在大攻角时具有过失速机动飞行性能,其中向上快速拉升和俯仰运动是实现战术机动的两个典型动作。为了协调不同速度范围对机翼平面形状的需求,现代战斗机设计通常采用三角翼/双三角翼或者类似外形的机翼布局。因此,开展对三角翼/双三角翼静止时的大攻角分离流场和俯仰运动时的动态流场中非线性特性的研究、深入认识分离流场及其动态特性、全面掌握大攻角下的各种非定常流动现象及其产生机理是实现超机动飞行所必须的。
     本文的研究目的是发展适用于双三角翼大攻角非定常分离流场模拟的数值方法,围绕某一战斗机的两个简化外形,开展双三角翼静态时的流场特性随攻角的变化规律、快速拉升及俯仰振荡时的动态流场特性以及不同运动参数对动态流场结构及气动特性的影响规律等内容研究;围绕低速流动,开展了数值模拟方法的研究,发展了微可压缩模型,扩大了该模型的应用范围。
     全文共八章,各章主要内容概述如下:
     第一章简述了开展本文研究工作的意义;综述了对三角翼/双三角翼大攻角非定常分离流场和俯仰动态流场研究的现状和进展情况;简要地介绍了本文完成的主要工作。
     第二章系统地介绍本文中采用的数值方法,包括:控制方程、边界条件、空间离散格式、方程组求解、湍流模型、动网格生成技术、多重网格算法、并行计算和非定常气动力系数积分等几个内容。
     第三章通过对几个拥有丰富实验数据或理论结果的流场进行数值模拟研究,考核了基于第二章中的数值方法而开发的计算程序的空间计算精度和时间计算精度,重点考察了计算程序对三角翼和椭球等外形在大攻角下的非定常湍流分离流动的模拟精度。
     第四章数值研究了静态双三角翼在不同攻角下的流场特性,分析了背风区流场中分离涡系的空间分布特点和不同涡系之间的相互作用;给出了流场特性和气动力特性随攻角的变化规律;确定了不同流态存在的攻角区间;比较和分析了两个不同前翼平面形状的双三角翼流场结构和气动力性能的差异。
     第五章数值研究了双三角翼向上快速拉升时的动态流场特性,给出了动态流场结构和气动力性能随攻角的变化规律;重点研究了减缩频率、起始攻角和转轴位置等运动参数对动态流场特性的影响,并初步分析了这些运动参数对动态流场施加影响的物理机制;比较和分析了两个不同前翼平面形状的双三角翼动态气动力性能的差异。
     第六章数值研究了双三角翼俯仰振荡时的动态流场特性,给出了动态流场结构和气动力性能随攻角的变化规律;重点研究了减缩频率、转轴位置、平均攻角和振幅等参数对动态流场迟滞效应和气动力曲线迟滞环的影响;比较和分析了两个不同前翼平面形状的双三角翼动态气动力性能的差异。
     第七章开展了对微可压缩模型的研究,深入分析了几种方程处理形式的优缺点;在原始SCM模型的基础上将求解压力变量本身改为求解压力改变量,降低了计算机截断误差的影响;并引入多重网格算法和并行计算技术,实现了计算过程的加速;初步地将SCM模型应用于大攻角分离流场的数值模拟研究。
     第八章是结束语,总结了全文的工作,并对今后的研究方向提出了一些想法。
     最后是本文的致谢和参考文献。
Advanced combat aircrafts are in increasing requirement to have higher maneuvering performance at high angles of attack beyond post-stall conditions. In the process of maneuverability, rapidly pitch-up and pitching motions are typical. In order to meet the requirements in the wide range of flight speeds, delta /double-delta or similar wing layouts are commonly adopted in the design of the modern aircrafts. In order to achieving super-maneuverability, it is necessary to study the nonlinear phenomena in the separation flow field when the wings are in either static or pitch-motion state to find out the characteristics of the separation flow, and to observe the unsteady phenomena and their correlative mechanism comprehensively.
     The first objective in this thesis is to develop some numerical methods that are suitable for simulating the unsteady separation flows around two double-delta wings at high angles of attack and to study the evolution laws of the flow characteristics when the wings are in static or pitch-motion states and the influence of different motion parameters on the characteristics of the unsteady flows. The second is to study the numerical methods used to simulate the low-speed flows and to develop the Slightly Compressible Model (SCM) aiming at widening the application areas.
     This thesis is divided into eight chapters as follows:
     In the first chapter, the significance of the present research work is briefly introduced. The status in quo and the progress of the researches in the flow fields around delta wing/double-delta wing are reviewed. The innovation works in this thesis are then described in brief.
     In the second chapter, the numerical methods applied in this thesis are presented in detail. The main contents include: governing equations, boundary conditions, numerical flux schemes, time-marching methods, turbulence models, moving grid generation techniques, multi-grid methods, parallel computing techniques and unsteady aerodynamic force integration formulas.
     In the third chapter, several flows with abundant experimental data or academic results are numerically simulated. In these research works, the spatial and the temporal precisions are examined to validate the reliability of the program based on the numerical methods introduced in Chap.2. The emphases are placed on the numerical results of the calculated flows around a delta wing and a spheroid at high angles of attack.
     In the fourth chapter, the flow characteristics around a static double-delta wing at different angles of attack are investigated thoroughly. The characteristics of the spatial distribution of the vortex system in the leeward side of the wing and the correlations among these different vertical flows are analyzed. The evolvement laws of the characteristics of the flows and their aerodynamics are revealed. The ranges of the angles of attack existing different flow types are confirmed. The differences in the flow structure and the aerodynamics performance between two types of double-delta wings are compared and analyzed.
     In the fifth chapter, the dynamic characteristics of the flow fields around a double-delta wing during pitch-up motion are researched by numerical methods. The evolvement laws of the dynamic flow fields and its aerodynamics performances following the change of the angles of attack are presented. The studies are concentrated on the investigations of the influences of some motion parameters (such as reduced frequency, the initiative angle of attack and the position of rotation axis) on the dynamic flow performance and the investigations of the physical mechanism producing these influences. In this chapter the aerodynamics performances between two double-delta wings with different wing plane shapes are compared.
     In the sixth chapter, the dynamic characteristics of the flow fields around a double-delta wing during pitching motion are researched. The evolvement laws of the dynamic flow fields and the aerodynamic performances following the change of the angles of attack are presented. The studies are concentrated on the investigation of the influences of some motion parameters (such as reduced frequency, the averaged angle of attack, position of rotation axis and the pitching amplitude) on the time-lag effects of the dynamic flow field and the hysteresis-loops of the aerodynamic coefficients. In this chapter the difference of the aerodynamics performances between two double-delta wings with different wing plane shapes are given.
     In the seventh chapter, the Slightly Compressible Model is developed and used. First, some former equation types of the SCM model are reviewed. The merits and the drawbacks of the equations are analyzed theoretically. Then, the calculation of pressure in the original SCM equations is replaced by the calculation of the dispersion of the pressure in this thesis. So the truncation error of the computer is reduced. The multi-grid methods and parallel computing techniques are also applied in this SCM model to accelerate the computing speed. In the last section of this chapter, some unsteady separation flows around a delta wing at high angle of attack are simulated by the SCM model.
     In the eighth chapter, all the works in this thesis are reviewed, and the innovation and the shortages are also described. Moreover, some considerations on the further research work in this area are listed.
     Finally, the acknowledgements and references are presented.
引文
[1]伍开元.面向先进飞行器设计的非定常空气动力学,流体力学实验与测量,11(2):14-18,1997
    [2]高正红.第四代战斗机设计面临的空气动力学主要难题,全国流体力学青年研讨班论文集
    [3]阎超,李亭鹤.三角翼上分离涡及涡流的数值模拟,力学进展,31(2):227-244,2001
    [4]吕志泳,杨晓峰.俯仰三角翼的流态及结构,空气动力学学报,第17卷第2期,1999年6月
    [5]秦燕华,黄军辉.三角翼俯仰振荡中若干参数影响的实验研究,空气动力学学报,第18卷第3期,2000年9月
    [6] Zhang Hanxin. Analytical Study of Three-dimensional Separated Flows, Progress in Aerospace Science, Vol. 5 No. 2, 1995
    [7]张涵信.分离流与旋涡运动的结构分析,国防工业出版社,2002
    [8]张涵信,周恒.流体力学的基础研究,世界科技研究与发展,23卷1期
    [9]周恒.新世纪对流体力学提出的要求,自然科学进展,第10卷
    [10] Lars E. Ericsson. Challenges in High-alpha Vehicle dynamics, Progress in Aerospace Science, Vol. 31, pp. 291-334, 1995
    [11] Russell M. Cummings. Computational Challenges in High Angle of Attack Flow Prediction, Progress in Aerospace Science 39(2003) 369-384
    [12] Anthony M. Mitchell. Research into Vortex Breakdown Control, Progress in Aerospace Science 37(2001) 385-418
    [13] C. W. Alcorn. The X-31 Aircraft: Advances in Aircraft Agility and Performance, Progress in Aerospace Science 32(1996) 377-413
    [14] J.S. Shang. Three Decades of Accomplishments in Computational Fluid Dynamics, Progress in Aerospace Science 40(2004) 173-197
    [15] E.G. Tulapurkara. Turbulence Models For the Computation of Flow Past Airplanes, Progress in Aerospace Science 33(1997) 71-165
    [16] M.D. Zeiger. Unsteady Separated Flows over Three-Dimensional Slender Bodies, Progress in Aerospace Science 40(2004) 291-320
    [17]张涵信,庄逢甘.与物理分析结合的计算流体力学,钱学森技术科学思想与力学,128-143,2001.11
    [18]赫新.尖锥超声速大攻角绕流的数值模拟与定性分析研究,博士学位论文,中国空气动力研究与发展中心,2002.12
    [19]牟斌.流动控制数值模拟研究,博士学位论文,中国空气动力研究与发展中心,2006.3
    [20]张涵信.关于非定常流动的计算问题,第六届全国流体力学会议论文集,2001年,上海
    [21]袁先旭.非定常流动数值模拟及飞行器动态特性分析研究,博士学位论文,中国空气动力研究与发展中心,2002.4
    [22]阎超.涡流数值模拟中的计算格式粘性分辨率探讨,计算物理,第18卷第4期,2001年7月
    [23]葛立新.旋涡破裂引起的流动非定常性,航空学报,第19卷第5期,1998.9
    [24]吕志咏.三角翼涡破裂形态研究,航空学报(英文版),第17卷第1期,2004.2
    [25]周伟江.三角翼非定常旋涡运动横截面拓扑结构研究,空气动力学学报,第21卷第2期2003.6
    [26]杨立芝.三角翼动态大迎角气动力特性数值分析研究,应用力学学报,第22卷第1期,2005.3
    [27]杨立芝.三角翼大迎角流场结构和气动力特性的计算分析研究,应用数学和力学,第26卷第6期,2005.6
    [28]祝立国.绕三角翼流动中的非定常现象研究,北京航空航天大学学报,第29卷第11期,2003.11
    [29]祝立国.破裂涡流中非定常现象与频率特性实验研究,航空学报,第26卷第2期,2005.3
    [30] M.R. Allan. Wind-Tunnel Interference Effects on a 70°Delta Wing, The Aeronautical Journal, October 2004
    [31] I. Gursul, G. Taylor. Vortex Flows over Fixed-Wing Micro Air Vehicles, AIAA 2002-0698
    [32] S. Srigrarom. Vortex Breakdown Suppression Based on Self-Induction Mechanism Theory, AIAA 2000-0017
    [33] M. Rütten. Vortex Axis Calculation by Using Vortex Features, 34th AIAA Fluid Dynamics Conference and Exhibit, June 2004
    [34] Myong Hwan Sohn. Velocity Measurements in Vortical Flow of a LEX-Delta Wing Configuration, AIAA 2004-1068
    [35] G. S. Taylor. Unsteady Vortex Flows And Buffeting Of A Low Sweep Delta Wing, AIAA 2004-1066
    [36] James R. Forsythe. Unsteady CFD Calculations of Abrupt Wing Stall Using Detached-Eddy Simulation, AIAA 2003–0594
    [37] F. Novak. Turbulent Vortex Breakdown, AIAA 99-0135
    [38] N.G. Verhaagen. Study on a 65-deg Delta Wing at Sideslip, AIAA 2001-0691
    [39] N.G. Verhaagen. Topology of the Flow on a 65-deg Delta Wing at Sideslip, AIAA 2002-0095
    [40] N.G. Verhaagen. The Flow on the Apex of a Sharp-Edged Delta Wing, AIAA2004-1065
    [41] J. Mijller, D. Hummel. Time-Accurate CFD Analysis of the Unsteady Flow on a Fixed Delta Wing, AIAA-2000-0138
    [42] J. M. Luckring. Reynolds Number and Leading-Edge Bluntness Effects on a 65o Delta Wing at Transonic Speeds, AIAA-2003-0753
    [43] Ismael Heron. On the Impingement of a von Kàrmàn Vortex Street on a Delta Wing, AIAA 2004-4731
    [44] Mitsuhiro Murayama. Numerical Simulationof Vortex Breakdown Using Adaptive Grid Refinement With Vortex-Center Identification, AIAA-2000-0806
    [45] R. A. Reba. Noise due to Discrete Vortex Shedding from a Slender Delta Wing, AIAA 2001-2105
    [46] Gordon S. Taylor. Lift Enhancement over a Flexible Delta Wing, AIAA 2004-2618
    [47] Raymond E. Gordnier. Higher-Order Compact Difference Scheme Applied to the Simulation of a Low Sweep Delta Wing Flow, AIAA 2003-620
    [48] Lars E. Ericsson. Explanation for Huge Differences Between Measurements of Vortex Breakdown on 65 Deg Delta-Wing Configurations, AIAA 99-4100
    [49] Ivana M. Milanovic. Experimental Studies on Compressible Leading-Edge Vortices, Aerospace Science and Technology 6 (2002) 383–394
    [50] L.E. Ericsson. Effect Of Leading-Edge Cross-Sectional Shape on the High-Alpha Lateral Stability of 45 Deg Delta Wing, AIAA-2001-0128
    [51] H. Shan, L. Jiang. Direct Numerical Simulation of Three- Dimensional Flow Around a Delta Wing, AIAA-2000-0402
    [52] Scott A. Morton. Des Grid Resolution Issues for Vortical Flows on a Delta Wing And An F-18c, AIAA 2003-1103
    [53] Scott A. Morton. DES And RANS Simulations of Delta Wing Vortical Flows, AIAA 2002-0587
    [54] Stefan G?rt. Computational Study of Vortex Breakdown over Swept Delta Wings, AIAA-99-3118
    [55] Stefan G?rt. Computing the High-Alpha Aerodynamics of Delta Wings- Evaluation and Analysis, AIAA01-0115
    [56] Russell M. Cummings, Scott A. Morton. Computational Simulation and PIV Measurements of the Laminar Vortical Flowfield for a Delta Wing at High Angle of Attack, AIAA 2003-1102
    [57] Darren.V. Grove. Computational Fluid Dynamics Study of an Abrupt Wing Stall Phenomena on The F/A-18e, AIAA 2002-1025
    [58] Raymond E. Gordnier, Miguel R. Visbal. Computational of the Aeroelastic Response of a Flexible Delta Wing at High Angle of Attack, AIAA 2003-1728
    [59] S. Chen. Computation of Flows past a Low Aspect-Ratio Swept Wing, AIAA-2001-2485
    [60] A. Mitchell. Characterization of Vortex Breakdown by Flow Field and Surface Measurements, AIAA 2000-0788
    [61] Kazuhisa Chiba. CFD Visualization of Second Primary Vortex Structure on a 65-Degree Delta Wing, AIAA 2004-1231
    [62] Zhixiang Xiao. Asymmetrical Vortices Breakdown of Delta Wing at High Incidence, AIAA-2004-4728
    [63] Anthony Mitchelf. Analysis of Delta Wing Vortical Substructures Using Detached-Eddy Simulation, AIAA 2002-2968
    [64] Y.L. Lee and I. Gursul. An Investigation of Unsteady Interactions of a Vortex Pair over Delta Wings, AIAA 2003-423
    [65] Christopher Jouannet and Petter Krus. An Empirical Model for Delta Wing Vortex Breakdown Location in Sideslip Condition, AIAA-2003-5398
    [66] P. Reisenthel, W. Xie. An Analysis of Fin Motion Induced Vortex Breakdown, AIAA 99-0136
    [67] J.M. Gray, I. Gursul, R. Butler. Aeroelastic Response of a Flexible Delta Wing due to Unsteady Vortex Flows, AIAA 2003-1106
    [68] T. Yamada, Y. Nakamura. Aerodynamic Characteristics of a 65-deg Delta Wing at Steep Spin, AIAA 2002-0097
    [69] Xavier Tricoche, Markus Rütten. Accurate and Efficient Visualization of Flow Structures in a Delta Wing Simulation, AIAA 2004-2153
    [70] Dr. R. K. Nangia , Dr. M. E. Palmer. A Study of Supersonic Aircraft With Thin Wings of Low Sweep, AIAA 2002-0709
    [71] I. Gursul. A Proposed Mechanism for the Time Lag of Vortex Breakdown Location in Unsteady Flows, AIAA 2000-0787
    [72] Mark Allan, M. Eng. A CFD Investigation of Wind Tunnel Interference on Delta Wing Aerodynamics, Thesis for the Degree of Doctor of Philosophy, Department of Aerospace Engineering, University of Glasgow, October 2002
    [73] Werner Haase. Notes on Numerical Fluid Mechanics, Volume 58, European Computational Aerodynamics Research Project: Validation of CFD Codes and Assessment of Turbulence Models
    [74]朱自强,贾剑波.三角翼大迎角不可压粘流的数值模拟,空气动力学学报,第28卷第6期,1996.11
    [75]吴根兴,丁克勤.三角翼过失速空气动力特性研究,南京航空航天大学学报,第26卷第4期,1994.8
    [76]李椿萱,葛立新.绕三角翼旋涡流动的数值模拟,空气动力学学报,第16卷第1期,1998.3
    [77]张树海,张涵信.跨、超声速三角翼背风区旋涡运动的数值模拟,空气动力学学报,第15卷第1期,1997.3
    [78]洪金森.跨、超声速X形鸭翼-弹身组合体旋涡运动,空气动力学学报,第18卷增刊,2000.3
    [79]徐燕,王晋军.尖顶襟翼对70°三角翼前缘涡破裂的影响,流体力学实验与测量,第16卷第2期,2002.6
    [80]徐燕,王晋军.尖顶襟翼长度对三角翼前缘涡破裂的影响,北京航空航天大学学报,第28卷第5期,2002.10
    [81]吴根兴,丁克勤.过失速非定常空气动力实验技术,气动实验与测量控制,第8卷第4期,1994.12
    [82]张涵信.分离流和涡运动横截面流态的拓扑,空气动力学学报,第15卷第1期,1997.3
    [83]张树海,张涵信.超声速三角翼背风区旋涡运动的数值模拟,空气动力学学报,第14卷第4期,1996.12
    [84]刘激瀛,王晋军. 60°三角翼前缘涡破裂及其控制实验研究,实验力学,第15卷第2期,2000.6
    [85] S.A.Morton, Y.Guy, Numerical Simulation of Periodic Suction and Blowing Control of Vortex Breakdown on a Delta Wing, AIAA 99-3195
    [86] Russell M. Cummings, Scott A. Morton. Combined Computational Simulation and PIV Measurements on a Delta Wing with Periodic Suction and Blowing, AIAA 2002-0300
    [87] Anthony M. Mitchell, Pascal Molton. Control of Leading-Edge Vortex Breadown by Trailing Edge Injection, AIAA-99-3202
    [88] M.D. Zeiger, J. Gerlach. Control of Separated Flow over a Swept, Sharp-Edged Wing, AIAA-2002-0414
    [89] A.Mitchell, P.Molton. Control of Vortex Breakdown Location by Symmetric and Asymmetric Blowing, AIAA 99-3652
    [90] Yair Guy, Julie A.Morrow. Control of Vortex Breakdown on a Delta Wing by Periodic Blowing and Suction, AIAA 99-0132
    [91] L.W.Traub, J.L.Gilarranz. Delta Wing Hingeless Control via Synthetic Jet Actuation, AIAA-2002-0415
    [92] Norman W.Schaeffler, Demetri P. Telionis, Dynamic Delta Wing Pitch-Up Control via Apex Flaps, AIAA98-0673
    [93] S. Guillot, E. J. Gutmark. Lift Contol of a Delta Wing by Jet Injection, AIAA 99-0137
    [94] C. Folk, C. M. Ho. Micro-Actuators for Control of Delta Wing with Sharp Leading Edge, AIAA-2001-0121
    [95] B.H. Maines, B. Moeller. The Effects of Leading Edge Suction on Delta WingVortex Breakdown, AIAA 99-0128
    [96] Didier Barberis, Pascal Molton. Vortex Control on Delta Wings, AIAA 2004-2620
    [97]王晋军,苗福友.后缘喷流对三角翼前缘涡的影响,空气动力学学报,第18卷第2期,2000.6
    [98]张正科,汤寒松.后缘喷流对三角翼绕流影响的NS方程数值分析,空气动力学学报,第18卷第4期,2000.12
    [99]王晋军,秦永明.偏转矢量喷流对双三角翼前缘涡破裂影响的实验研究,实验力学,第16卷第4期,2001.12
    [100]王晋军,刘激瀛.矢量喷流对65°三角翼前缘涡破裂的影响,流体力学实验与测量,第14卷第3期,2000.9
    [101]周伟江,马汉东.起始攻角附近三角翼涡破裂的演化特性研究,力学学报,第34卷第2期,2002.3
    [102]周伟江,李锋.三角翼匀速上仰跨声速非定常流场数值模拟,空气动力学学报,第15卷第1期,1997.3
    [103]高正红.振荡三角翼非定常气动特性的数值模拟,西北工业大学学报,第15卷第3期,1997.8
    [104] M.R. Allan, K.J. Badcock. A CFD Investigation of Wind Tunnel Wall Influences on Pitching Delta Wings, AIAA 2002-2938
    [105] M.L. Jupp, F.N. Coton. An Analysis of a Pitching Delta Wing Using High Resolution Pressure Measurements, AIAA-98-2743
    [106] M.L. Jupp, F.N. Coton. An Analysis of High Resolution Pressure Signals on a Pitching Delta Wing, AIAA-99-3111
    [107] B. Fraser, F.N. Coton. An Analysis of High Resolution Pressure Signals on a Oscillating Delta Wing, AIAA2003-225
    [108] Y. Le Moigne, A. Rizzi. CFD Simulations of a Delta Wing in High-Alpha Pitch Oscillations, AIAA 01-0862
    [109] Lars E. Ericsson. Complex Angular Amplitude and Frequency Effects on Delta Wing Unsteady Aerodynamics, AIAA-99-4009
    [110] Raymond E. Gordnier. Computation of Limit Cycle Oscillations of a Delta Wing, AIAA 2002-1411
    [111] Essam F. Sheta, Osama A. Kandil. Effect of Configuration Pitching Motion on Twin Tail Buffet Response, AIAA 98-0520
    [112] Yahia A. Abdelhamid, Osama A. Kandil. Effect of Reduced Frequency on Super Maneuver Delta Wing, AIAA 97
    [113] H. Kawazoe, T Yorikane. Experiment Study on Dynamic Characteristics of Delta Wing in Pitching Motion, AIAA 99-3520
    [114] Deman Tang I, James K. Henry. Limit Cycle Oscillations of Delta Wing Modelsin Low Subsonic Flow,AIAA-99- 1460
    [115] James H. Myatt. Multiple Time-Scale Effects for a Pitching 65o Delta Wing, AIAA 98-4354
    [116] Lars E. Ericsson. Nonlinear Unsteady Aerodynamics of Pitching Delta Wings, AIAA 98-2518
    [117] R. E. Gordnier ,R. B. Melville. Physical Mechanisms for Limit-Cycle Oscillations of a Cropped Delta Wing, AIAA 99-3796
    [118] M.T. Arthur, Farnborough. Time Accurate Euler Calculations of Vertical Flow on a Delta Wing in Pitching Motion, AIAA-99-3110
    [119] J.P. Vaughan, N.J. Wood. Unsteady Aerodynamics Effects on a Half Delta Wing Oscillating in Pitching, AIAA 95-1874-CP
    [120] Lars E. Ericsson. Vortex Breakdown Dynamics on Pitching Delta Wings, AIAA 95-1777-CP
    [121] I. Gursul, H. Yang. Vortex Breakdown over a Pitching Delta Wing, AIAA 94-0536
    [122]忻鼎定,余光志.大后掠翼大迎角定常与非定常俯仰气动特性及其控制,航空学报,第18卷第2期,1997.3
    [123]杨国伟,庄礼贤.大迎角振动三角翼跨声速粘性绕流数值分析,空气动力学学报,第16卷第4期,1998.12
    [124]史志伟,符澄.俯仰振荡三角翼在非定常自由流中运动的实验,南京航空航天大学学报,第37卷第4期,2005.8
    [125]杨立芝,高正红.绕三角翼纵向俯仰大迎角气动特性计算研究,航空学报,第24卷第5期,2003.9
    [126]于欣芝,杨永年.三角翼动态气动特性低速实验研究,空气动力学学报,第15卷第1期,1997.3
    [127]秦燕华,黄军辉.三角翼俯仰振荡中若干参数影响的实验研究,空气动力学学报,第18卷第3期,2000.9
    [128]杨立芝.大迎角气动力数值模拟及建模研究,博士学位论文,西北工业大学航空学院,2004.3
    [129]肖志祥.复杂流动Navier-Stokes方程数值模拟及湍流模型应用研究,博士学位论文,西北工业大学,2003.2
    [130]夏雪湔,刘日之.细长三角翼摇滚非定常流动特性,北京航空航天大学学报,第24卷第2期,1998.4
    [131] M.R. Soltani, SA Ebrahimi. A Simple Analytical Method for Predicting the Amplitude and Frequency of a Delta Wing Model Undergoing Rocking Motion, AIAA 2002-0710
    [132] H. Kawazoe, T. Yorikane. A Study on Dynamic Characteristics of Delta Wing in Rolling Motion Near Ground, AIAA 2001-0299
    [133] Lars E. Ericsson, Martin E. Beyers. Analysis of Self-Induced Roll Oscillations of a 45-Degree Delta Wing, AIAA 2003-737
    [134] E. Sheta and O. Kandil. Effect of Dynamic Rolling Oscillations on Twin Tail Buffet Response, AIAA 99-0792
    [135]唐敏中.滚摆非定常流场的定量流动显示,流体力学实验与测量,第14卷第2期,2000.6
    [136]张涵信,刘伟.后掠三角翼的摇滚及其动态演化问题,空气动力学学报,第24卷第1期,2006.3
    [137]刘伟,张涵信.细长机翼摇滚的数值模拟及物理特性分析,力学学报,第37卷第4期,2005.7
    [138]杨晓锋,赵小虎.细长三角翼的摇滚特性,空气动力学学报,第18卷第1期,2000.3
    [139] Takashi Yoshinaga, Tomoyuki Nakaji. Effect of Vertical Strake on the Wing Rock of 80deg Delta Wing, AIAA 2004-5367
    [140] X.Z. Huang, E.S. Hanff. Non-Linear Rolling Stability of a 69 Delta Wing Model at High Incidence, AIAA-99-4102
    [141] E. Vardaki, I. Gursul. Vortex Flows on a Rolling Nonslender Delta Wing, AIAA 2004-4729
    [142] L. Ericsson. Wing Rock of Non-Slender Delta Wings, AIAA 2000-0137
    [143]黄达,吴根兴.三角翼俯仰滚转耦合运动气动特性研究,航空学报,第20卷第6期,1999.11
    [144] H.J. Kowal, A.D. Vakili. An Investigation of Unsteady Vortex Flow for a Pitching-Rolling 70°Delta Wing, AIAA 98-0416
    [145] Osama A. Kandil, Margaret A. Menzies. Coupled Rolling and Pitching Oscillation Effects on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing, AIAA 96-0828
    [146] M. Javed Khan, Anwar Ahmed. Response of Vortex Breakdown Induced Wing Rock to Pitching & Plunging, AIAA 2004-4732
    [147]黄俊,吴文正.双三角翼飞机气动力工程计算研究,北京航空航天大学学报,第26卷第1期,2000.2
    [148]刘展,蔡国华. 75°/45°双三角翼旋涡特性的试验研究,流体力学实验与测量,第17卷第2期,2003.6
    [149]王晋军,刘激瀛. 76°/40°双三角翼前缘涡破裂及其控制实验研究,北京航空航天大学学报,第27卷第1期,2001.2
    [150] N.G. Verhaagen. Effects of Reynolds Number on The Flow over 76/40-Deg Double-Delta Wings, A99-33366
    [151] N.G. Verhaagen. Tunnel Wall Effect on the Flow around a 76/40-deg Double-Delta Wing, AIAA 98-0312
    [152] Terence A. Ghee, Hugo A. Gonzalez. Experimental Investigation of Vortex-Tail Interaction on a 76/40 Degree Doubledelta Wing, AIAA-99-3 159
    [153]周华,韩莹.钝前缘双三角翼对歼击机气动性能影响的试验研究,飞机设计,第三期,1999.9
    [154]韩莹,周华.改装双三角翼对歼击机升阻特性的影响,沈阳航空工业学院学报,第17卷第2期,2000.6
    [155]杨小锋,阎超.前缘剖面形状对80°/ 60°后掠双三角翼上涡流运动影响的数值模拟研究,空气动力学学报,第19卷第3期,2001.9
    [156]汪善武,杨国伟.双三角翼大迎角绕流的并行计算,空气动力学学报,第18卷第2期,2000.6
    [157]冯亚南,郑波.双三角翼大迎角翼面压强分布与涡态相关分析,北京航空航天大学学报,第24卷第2期,1998.4
    [158]阎超,桂永丰.双三角翼前缘剖面形状对涡运动的影响,航空学报,第22卷第3期,2001.5
    [159] T. Yoshinaga, S. Otaka. Wing Rock of Double Delta Wings, AIAA 2001-4078
    [160] Gary E. Erickson. Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds, NASA/TM-2007-215082
    [161] Farhad Ghaffari. Turbulent Vortex-Flow Simulation Over a 65°Sharp and Blunt Leading-Edge Delta Wing at Subsonic Speeds, NASA/TM-2005-213781
    [162] D. V. Maddalon, E S. Collier. Transition Flight Experiments on a Swept Wing With Suction, AIAA-89-1893
    [163] I. Gursul. Review of Unsteady Vortex Flows over Delta Wings, AIAA 2003-3942
    [164] I. Gursul, Z. Wang. Review of flow control mechanisms of leading-edge vortices, Progress in Aerospace Sciences 43(2007) 246-270
    [165]高正红,焦天峰.飞行器快速俯仰产生大迎角非定常气动力数学模型研究,西北工业大学学报,第19卷第4期,2001.11
    [166] Yong Liu, Ming Wu. Reactive Flow Control of Delta Wing Vortex, AIAA 2006-6189
    [167] Gary E. Erickson, Hugo A. Gonzalez. Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation, AIAA 2005-1059
    [168] I. Gursul, W. Xie. Physics of Buffeting Flows Over Delta Wings, AIAA 98-0688
    [169] Gordon Taylor, Andreas Kroker. Passive Flow Control over Flexible Non-Slender Delta Wings, AIAA 2005-8650
    [170] Lars E. Ericsson. Multifaceted Influence of Fuselage Geometry on Delta Wing Aerodynamics, AIAA 2002-0096
    [171] M.S. Rajamurth. Modelling of the Nonlinear Lift and Pitching MomentCharacteristics of 60o Delta Wing and Wing-Bodyes, AIAA 2002-4712
    [172] Holger Friehmelt. Lift Contribution from Delta Wing Vorticws– Flight Test and Predictions, AIAA 2002-4711
    [173] E.B. Moeller, O.K. Rediniotis. Hingeless Flow Control Over A Delta Wing Planform, AIAA 2000-0117
    [174] L. Ericsson. Further Analysis of Fuselage Effects on Delta Wing Aerodynamics, AIAA 2000-0981
    [175] N.G. Verhaagen, B.C. Van Bossuyt. Flow on a DeltaWing Apex, AIAA 2006-252
    [176] C. Lambert, I. Gursul. Fin Buffeting over Various Delta Wings, AIAA 2003-3529
    [177] Lars E. Ericsson. Effect of Fuselage Geometry on Delta Wing Vortex Breakdown, AIAA 97-0746
    [178] J. Moreira, H. Johari. Direct Measurement of Delta Wing Vortex Circulation Using Ultrasound, AIAA 97-0743
    [179] N.D.Sellars, N.J.Wood. Delta Wing Circulation Control Using the Coanda Effect, AIAA 2002-3269
    [180] F. Ghaffari. J.E. Lamar. An Attached Flow Design of a Noninterferring Leading Edge Extension to a Thick Delta Wing, AIAA-85-0350
    [181] Shiang-yu Lee. An Analytical Representation of Delta Wing Aerodynamics, AIAA 2005-5192
    [182] Swapna Shrivastava, Dan Mateescu. Aeroelastic Oscillations of a Delta Wing with Piezoelectric Strips, AIAA 2000-1626
    [183] Lu Zhiyong. A Study on Flow Patterns and Aerodynamic Characteristics for Canard-Double Delta Wing Configuration, AIAA 97-0324
    [184]宋文萍,杨永.双时间法求解大迎角翼型绕流非定常N-S方程,空气动力学学报,第17卷第4期,1999.12
    [185] John M. Hsu, Antony Jameson. An Implicit-Explicit Hybrid Scheme for Calculating Complex Unsteady Flows, AIAA 2002-0714
    [186] Chao Gao, Shuchi Yang. Calculation of Airfoil Flutter by an Euler Method with Approximate Boundary Conditions, AIAA Journal, Vol. 43, No. 2, February 2005
    [187] Jie Li, Fengwei Li. A Fully Implicit Method for Steady and Unsteady Viscous Flow Simulations, AIAA 2003-622
    [188] J. Hsu, A. Jameson. An Implicit-Explicit Scheme for Calculating Complex Unsteady Flows, Industrial Affiliates Meeting 2002
    [189] Soo Hyung Park, Yoonsik Kim. Prediction of Dynamic Damping Coefficients Using Unsteady Dual-Time Stepping Method, AIAA 2002-0715
    [190] K. Badcock, M. Woodgate. Solution of the Unsteady Euler Equations in ThreeDimensions Using a Fully Unfactored Method, AIAA 2000-0919
    [191] Antony Jameson. Time-Integration Methods In Computational Aerodynamics, 2003 AFOSR Work Shop on Advances and Challenges in Time Integration of PDEs, August 18, 2003
    [192]邹正平,徐力平.双重时间步方法在非定常流场模拟中的应用,航空学报,第21卷第4期,2000.7
    [193]宋文萍,杨永.用双时间推进法求解非定常NS方程的有关问题讨论,西北工业大学学报,第18卷第3期,2000.8
    [194] A. Jameson, E. Turkel. Implicit Schemes and Lu Decompositions, NASA-CR-185764,1979.9
    [195]王尚锦,倪明玖.用四阶Runge-Kutta法和TVD格式求解两维跨超音流场,航空动力学报,第10卷第3期,1995.7
    [196] A. P. Graf, U. Riedel. Numerical Simulation of Supersonic Reactive Flows Using Explicit Runge-Kutta Methods, AIAA 2000-0438
    [197] Jack J. Yoh, Xiaolin Zhong. New Hybrid Runge–Kutta Methods for Unsteady Reactive Flow Simulation, AIAA Journal, Vol. 42, No. 8, August 2004
    [198] Ge-Cheng Zha, Chakradhar Lingamgunta. On the Accuracy of Runge-Kutta Methods for Unsteady Linear Wave Equaion, AIAA 2003-0248
    [199] Fengjun Liu and William W. Liou. A New Approach for Eliminating Numerical Oscillations of Roe Family of Schemes at Sonic Point, AIM 99-0301
    [200] Sung-soo Kim, Chongam Kim. Cure for Shock Instability: Development of an Improved Roe Scheme, AIAA 2002-0548
    [201] M. J. Kermani, E. G. Plett. Modified Entropy Correction Formula for the Roe Scheme, AIAA 2001-0083
    [202] M. J. Kermani, E. G. Plett. Roe Scheme in Generalized Coordinates; Part I- Formulations, AIAA 2001-0086
    [203] M. J. Kermani, E. G. Plett. Roe Scheme in Generalized Coordinates; Part II- Application to Inviscid and Viscous Flows, AIAA 2001-0087
    [204] Weixing Yuan, Hongyi Xu. Numerical Simulation of Oscillating Wings Using a Moving Grid Technique, AIAA 2003-228
    [205] A.S.F. Wong, H.M. Tsai. Unsteady Flow Calculations with a Multi-Block Moving Mesh Algorithm, AIAA2000-1002
    [206] Jie Li, Shouzhi Huang. Unsteady Viscous Flow Simulations by a Fully Implicit Method with Deforming Grid, AIAA 2005-1221
    [207] R. H. Nichols, B. D. Heikkinen. Validation of Implicit Algorithms for Unsteady Flows Including Moving and Deforming Grids, AIAA 2005-683
    [208]刘超群.多重网格法及其在计算流体力学中的应用,清华大学出版社,1995
    [209] A. Jameson. Multigrid Algorithms for Compressible Flow Calculations, MAEReport 1743, October 1985
    [210] Murli M. Gupta, Jules Kouatchou. A Compact Multigrid Solver for Convection-Diffusion Equations, Journal of Computational Physics 132, 123–129 (1997)
    [211] Scott G. Sheffer, Luigi Martinelli. An Efficient Multigrid Algorithm for Compressible Reactive Flows, Journal Of Computational Physics 144, 484-516 (1998)
    [212] Hiroaki Nishikawa, Bram van Leer. Optimal multigrid convergence by elliptic/hyperbolic splitting, Journal of Computational Physics 190(2003)52–63
    [213] Murli M. Gupta, Jun Zhang. High accuracy multigrid solution of the 3D convection-diffusion equation, Applied Mathematics and Computation 113 (2000) 249-274
    [214]肖志祥,李凤蔚.湍流模型在翼身组合体流场数值模拟中的应用研究,西北工业大学学报,第21卷第1期,2003.2
    [215] Christopher J. Roy,Fredrick G. Blottner. Assessment of One- and Two-Equation Turbulence Models for Hypersonic Transitional Flows,AlAA 2000-0132
    [216] M. Mani, J.A. Ladd, W.W. Bower, An Assessment of Rotation and Curvature Correction for one- and two-equation Turbulence Models for Compressible Impinging Jet Flow, AIAA 2000-2406
    [217] F.J. Brandsma, A. Elsenaar. Leading Edge Vortex Flow Computations and Comparison with DNW-HST Wind Tunnel Data, Paper presented at the RTO AVT Symposium on“Advanced Flow Management: Part A– Vortex Flows and High Angle of Attack for Military Vehicles”, held in Loen, Norway, 7-11 May 2001, and published in RTO-MP-069(I)
    [218] J. Piquet, V.C. Patel. Transverse curvature effects in turbulent boundary layer, Progress in Aerospace Sciences 35 (1999) 661-672
    [219] Kyle D. Squires, James R. Forsythe. Progress on Detached-Eddy Simulation of Massively Separated Flows, AIAA 2002–1021
    [220] Vivek Krishnan, Kyle D. Squires. Prediction of Separated Flow Characteristics over a Hump using RANS and DES, AIAA 2004.2224
    [221] James R. Forsythe, Kyle D. Squires. Detached-Eddy Simulation of Fighter Aircraft at High Alpha, AIAA 2002–0591
    [222] M. Strelets. Detached Eddy Simulation of Massively Separated Flows, AIAA 2001-0879
    [223] James R. Forsythe, Klaus A. Hoffmann. Detached-Eddy Simulation With Compressibility Corrections Applied to a Supersonic Axisymmetric Base Flow, Journal of Fluids Engineering Vol. 124/911, DECEMBER 2002
    [224] Aroon K. Viswanathan, Kory R. Klismith. Detached-Eddy Simulation around aForebody at High Angle of Attack, AIAA 2003–0263
    [225] Hummel D. On the Vortex Formation over a Slender Wing at Large Angle of Incidence, High Angle of Attack Aerodynamics, AGARD-CP-247, Paper 15, Jan 1979
    [226]刘伟.细长机翼摇滚机理的非线性动力学分析及数值模拟方法研究,博士学位论文,国防科学技术大学研究生院,2004.7
    [227]赵学端.粘性流体力学(第二版),机械工业出版社,1992.2
    [228] Xiao gang Deng and Feng gan Zhuang. New Method for Low Mach Number Flow Calculations,中国空气动力研究与发展中心计算空气动力研究所成立十周年学术报告会论文集, pp965-875, 1997
    [229] Xiao gang Deng and Feng gan Zhuang. On Low Mach Number Perfect Gas Flow Calculations. AIAA 99-3317, 1999
    [230]向大平.低马赫数流动数值模拟方法的研究,硕士学位论文,中国空气动力研究与发展中心,2000.6
    [231]丛成华.低马赫数流动的应用研究,硕士学位论文,中国空气动力研究与发展中心,2005.3
    [232]闵耀兵.微可压缩模型预处理求解技术研究,硕士学位论文,中国空气动力研究与发展中心,2008.5
    [233]童秉纲,孔祥言.气体动力学,高等教育出版社,P57
    [234]邓小兵.不可压缩流动的计算研究,硕士学位论文,中国空气动力研究与发展中心,2001.6
    [235]徐华舫.空气动力学基础(上册),国防工业出版社,P86
    [236]都志辉.高性能计算之并行编程技术—MPI并行程序设计
    [237]莫则尧.消息传递并行编程环境MPI,国家973项目高性能计算环境支持讲座
    [238]迟学斌.高性能并行计算,中国科学院计算机网络信息中心,2005.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700