等离子体制备贵金属催化剂在葡萄糖氧化反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用可再生资源和催化剂是绿色化学十二原则的重要组成部分。葡萄糖氧化制葡萄糖酸的反应是符合绿色化学原则的典型反应之一。葡萄糖酸(盐)是化工、食品、医药、轻工业等领域的产品中重要的中间体,具有很广阔的应用前景。目前应用于葡萄糖氧化反应的催化剂主要有负载型的贵金属和双金属催化剂,以及非负载型金催化剂。当前的研究表明,葡萄糖氧化是一个结构敏感性反应,因此,催化剂的制备,特别是还原方法对催化剂活性组分形貌和粒径分布的影响,会直接影响其催化性能。本文利用辉光放电等离子体制备负载型钯催化剂及合成纳米金属溶胶,并将其应用于葡萄糖氧化反应中。
     利用氩气辉光放电等离子体在室温下成功还原了Pd/γ-Al2O3催化剂,通过与常规H2高温还原的催化剂对比,等离子还原制备的Pd催化剂具有更小的金属Pd的平均粒径、更高的分散度以及更强的金属载体间相互作用。等离子体还原催化剂因活性金属Pd粒径较小而容易在葡萄糖氧化反应中因氧中毒而失活,因而其催化反应的活性较低。通过在Ar保护下焙烧,等离子体还原催化剂中Pd颗粒尺寸有所增大,获得了比常规H2还原催化剂更好的催化活性。且等离子体还原催化剂中较强的金属载体间相互作用,使催化剂活性金属Pd在具有强螯合性的液相反应介质中更稳定,有效地避免了因活性组分流失而造成的不可逆失活。另外,通过实际测量,对等离子体制备方法进行了详细的能量消耗和经济花费的评估,结果表明等离子体技术确实是一种节能、经济的催化剂制备方法。
     辉光放电等离子体方法同样可以制备出以有序介孔二氧化硅为载体的Pd/SBA-15催化剂。研究表明,等离子体还原不会破坏SBA-15长程有序的六方结构。Pd/SBA-15催化剂因SBA-15载体具有的特殊结构特性(较大的比表面积和孔体积、较小的孔径分布),在应用于葡萄糖氧化反应中时,显示出了比传统二氧化硅载体负载催化剂Pd/SiO2更好的催化活性。
     通过直接还原HAuCl4水溶液,辉光放电等离子体在室温下5 min内成功合成了纳米金溶胶。整个制备过程一步完成,非常简单,不需添加任何还原剂、稳定剂。研究发现,通过简单地改变HAuCl4水溶液的初始浓度,可以有效地控制合成的水相金纳米颗粒的尺寸。这种金纳米溶胶在葡萄糖氧化反应中也展现了良好的催化活性和选择性。同时,等离子体制备纳米金属溶胶的方法被延伸到其它金属,成功合成了纳米钯溶胶。
The use of catalyst and renewable resources has been considered to be part of the twelve principles of green chemistry. Oxidation of glucose to gluconic acid is a typical example of these green chemistry principles. Gluconic acid, used as an intermediate in the chemical, food, pharmaceutical, and light industries, is a promising product for various applications. Nowadays, gold colloids as well as supported noble-metal and bimetal catalysts are employed in glucose oxidation, which is a structure-sensitive reaction. Therefore, different preparation conditions, especially the reduction methods, could result in variation in particle morphology and size, and then impact on the catalytic behaviors. In this dissertation, supported palladium catalysts and metal colloids prepared by glow discharge plasma were used in glucose oxidation.
     The Pd/γ-Al2O3 was successfully reduced by argon glow discharge plasma at ambient temperature. Comparing with conventional catalyst reduced by hydrogen at elevated temperature, the plasma reduced Pd/Al2O3 had the characters of smaller diameter, higher dispersion of Pd nanoparticles, and stronger interaction between metal and support. Because of the smaller size of Pd nanoparticles, the plasma reduced catalyst was easier to be deactivated by oxygen poisoning, which led to a lower conversion rate. However, after being calcined under Ar flow, the plasma reduced catalyst exhibited a larger particle size and possessed a higher activity than the hydrogen reduced catalyst. It was noteworthy that the stronger metal-support interaction induced by plasma reduction enhanced the stability of active metal loaded on the support. This effect avoided the irreversible deactivation caused by Pd leaching into chelate medium. Furthermore, the energy consumption and economy evaluation were conducted, which confirmed that the plasma reduction route was an energy efficient and economically effective approach for metal catalyst preparation.
     The glow discharge plasma was also employed to synthesize Pd catalyst loaded on ordered mesoporous silica support SBA-15. The long-range order hexagonal structure was well maintained during the plasma reduction. As a catalyst in glucose oxidation, Pd/SBA-15 showed much better catalytic activity than Pd/SiO2, because of the unique structure properties, such as the high surface area, large pore volume, and narrow distribution of pore diameter.
     Gold colloids were successfully synthesized at room temperature using glow discharge plasma within only 5 min. There was only one step in this simple method without any addition of reducing agent or stabilizer. The size of colloidal Au nanoparticles could be effectively tuned in the nanometer range by easily adjusting the initial concentration of aqueous HAuCl4 solution. The as-synthesized Au colloids exhibited good catalytic activity for glucose oxidation. Moreover, initial results indicated that this new synthesis method could be easily extended to the preparation of Pd colloids.
引文
[1] Breslow R, Chemistry today and tomorrow, Washington, DC: America Chemical Society, 1997
    [2] Kidwai M, Mohan R, Green chemistry: an innovative technology, foundations of chemistry, 2005, 7: 269~287
    [3] Anastas P T, Kirchhoff M M, Origins, current status, and future challenges of green chemistry, Acc. Chem. Res., 2002, 35: 686~694
    [4] Anastas P T, Warner J C, Green chemistry: theory and practice, Oxford: Oxford Science Publications, 1998
    [5] Anastas P T, Bartlett L B, Kirchhoff M M, et al., The role of catalysis in the design, development, and implementation of green chemistry, Catal. Today, 2000, 55: 11~22
    [6] Trost B M, The atom economy– a search for synthetic efficiency, Science, 1991, 254: 1471-1477
    [7]许根慧,姜恩永,盛京等,等离子体技术与应用,北京:化学工业出版社,2006
    [8] Liu C J, Zou J J, Yu K L, et al., Plasma application for more environmentally friendly catalyst preparation, Pure Appl. Chem., 2006, 78: 1227~1238
    [9]陈杰瑢,低温等离子体化学及其应用,北京:科学出版社,2001
    [10] d’Agostino R, Favia P, Oehr C, et al., Low-temperature plasma processing of materials: past, present, and future, Plasma Process. Polym, 2005, 2: 7~15
    [11]图片来源:维基百科,www.wikipedia.org
    [12]罗思J R,工业等离子体工程(第一卷基本原理),北京:科学出版社,1998
    [13] Venugopalan M, Veprek S, In topics in current chemistry: plasma chemistry IV, Boschke (Ed.), New York: Springer Verlag, 1983
    [14] Vissokov G P, Peev T M, Czako-Nagy I, et al., Physico-chemical and M?ssbauer studay of ammonia synthesis catalyst CA-1 regenerated in plasma, Appl. Catal., 1986, 27: 257~264
    [15] Grundmeier G, Stratmann M, Influence of oxygen and argon plasma treatments on the chemical structure and redox state of oxide covered iron, Appl. Surf. Sci., 1999, 141: 43~56
    [16] Ye F, Xie E Q, Duan H G, et al., The influence of H2 plasma treatment on the field emission of amorphous GaN film, Appl. Surf. Sci., 2006, 253: 859~862
    [17] Hu W P, Matsumura M, Furukawa K, et al., Oxygen plasma generated copper/copper oxides nanoparticles, J. Phys. Chem. B, 2004, 108: 13116~13118
    [18]徐学基,诸定昌,气体放电物理,上海:复旦大学出版社,1996
    [19]唐福林,陈允明,毛斌,低温等离子体物理及技术,北京:科学出版社,1999
    [20] Ohkubo T, Kanazawa S, Nomoto Y, et al., NOx removal by a pipe with nozzle-plate electrode corona discharge system, IEEE IAS, 1994, 30: 856~861
    [21] Rea M, Yan K P, Evaluation of pulse voltage generators, IEEE Tran. Ind. Appl., 1995, 31: 507~512
    [22] Zhou L M, Xue B, Kogelschatz U, et al., Nonequilibrium plasma reforming of greenhouse gases to synthesis gas, Energy Fuels, 1998, 12: 1191~1199
    [23] Li Y, Liu C J, Eliasson B, et al., Synthesis of oxygenates and higher hydrocarbons directly from methane and carbon dioxide using dielectric-barrier discharges: product distribution, Energy Fuels, 2002, 16: 864~870
    [24] Okada K, Plasma-enhanced chemical vapor deposition of nanocrystalline diamond, Sci. Techol. Adv. Mater., 2007, 8: 624~634
    [25]杨津基,气体放电,北京:科学出版社,1983
    [26] Kalinenko R A, Kuzenetsov A P, Levitsky A A, et al., Pulverized coal plasma gasification, Plasma Chem. Plasma Process., 1993, 13: 141~167
    [27] Kolobova E A, The gasification of coals and of hydrogenation sludge in a steam plasma, Solid Fuel Chem., 1983, 17: 87~92
    [28] Qiu J S, Wang X Q, Wang Q, et al., Pyrolysis of low rank coals in nitrogen plasma, J. Chem. Ind. & Eng., 1999, 50: 586~591
    [29] Krishnan A, Dujardin E, Treacy, M M J, et al., Graphitic cones and nucleation of curved carbon surface, Nature, 1997, 388: 451~453
    [30] Kalyanaraman R K, Yoo S H, Krupashankara M S, et al. Novel technique for synthesis and consolidation of aluminum nitride nanopowders, Powder Metall., 2000, 43: 380~385
    [31] Vollath D, SzabóD V, Taylor R D, et al., Synthesis and properties of nanocrystalline superaramagneticγ-Fe2O3, Nanostruct. Mater., 1995, 6: 941~944
    [32] Kalyanaraman R, Yoo S, Synthesis and consolidation of iron nanopowders, Nanostruct. Mater., 1998, 10: 1379~1392
    [33] Vollath D, SzabóD V, Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma, Mater. Lett., 1998, 35: 236~244
    [34] Zywitzki O, Goedicke K, Morgner H, Structure and properties of Al2O3 layers deposited by plasma activated electron beam evaporation, Surf. Coat. Technol., 2002, 151: 14~20
    [35] Ishigaki T, Haneda H, Okada N, et al., Surface modification of titanium oxide in pulse-modulated induction thermal plasma, Thin Solid Films, 2001, 390: 20~25
    [36] Chen G R, Hu Z., Xu J, et al., Surface modification of chalcogenide glasses by N2-plasma treatment, J. Non-Cryst. Solids, 2001, 288: 226~229
    [37] Vissokov G P, Plasma-chemical preparation of nanostructured catalysts for low temperature steam conversion of carbon monoxide: Thermodynamic and model studies, Catal. Today, 2004, 89: 205~211
    [38] Vissokov G P, Plasma-chemical preparation of nanostructured catalysts for low temperature steam conversion of carbon monoxide: catalytic activity, Catal. Today, 2004, 89: 223~231
    [39] Vissokov G P, Plasma-chemical preparation and properties of catalysts used in synthesis of ammonia, J. Mater. Sci., 1998, 33: 3711~3720
    [40] Liu C J, Li Y, Zhang Y P, et al., Production of acetic acid directly from methane and carbon dioxide using dielectric-barrier discharges, Chem. Lett., 2001, 30: 1304~1305
    [41] Coen M C, Lehmann R, Groening P, et al., Modification of the micro- and nanotopography of several polymers by plasma treatments, Appl. Surf. Sci., 2003, 207: 276~286
    [42] Zhang Z, Menges B, Timmons R B, et al., Surface Plasmon resonance studies of protein binding on plasma polymerized di(ethylene glycol) monovinyl ether films, Langmuir, 2003, 19: 4765~4770
    [43] Park J K, Song M J, Feasibility study on vitrification of low- and intermediate-level radioactive waste from pressurized water reactors, Waste Manage., 1998, 18: 157~167
    [44] Li B S, Liu Y C, Shen D Z, Effects of RF power on properties of ZnO thin films grown on Si (001) substrate by plasma enhanced chemical vapor deposition, J. Cryst. Growth, 2003, 249: 179~185
    [45]方建成,徐文骥,热等离子体在材料成形中的应用研究,塑性工程学报,2003,10:67~74
    [46] Okumoto M, Tsunoda, Direct methanol synthesis using non-thermal pulsed plasma generated by a solid state pulse generator, J. electrost., 1997, 42: 167~175
    [47] Kizling M B, J?r?s S G, A review of the use of plasma techniques in catalyst preparation and catalytic reactions, Appl. Catal. A: Gen., 1996, 147: 1~21
    [48] Halverson D E, Cocke D L, Ruthenium impregnation of plasma-grown alumina films, J. Vac. Sci. Technol. A, 1989, 7: 40~48
    [49] Khan H R, Frey H, Plasma spray deposition of LaMOx (M = Co, Mn, Ni) Films, J. Alloys Compounds, 1993, 10: 209~217
    [50] Blecha J, Dudas J, Lodes A, et al., Activation of tungsten oxide catalyst on SiO2 surface by low-temperature plasma, J. Catal., 1989, 116: 285~290
    [51] Nariki Y, Inoue Y, Tanaka K, Production of ultra fine SiC powder from SiC bulk by arc-plasma irradiation under different atmospheres and its application to photocatalysts, J. Mater. Sci., 1990, 25: 3101-3104
    [52] Maesen T L M, Bruinsma D S L, Kouwenhoven H W, et al., Use of radiofrequency plasma for low-temperature calcinations of zeolites, J. Chem. Soc., Chem. Commun., 1987, 1284~1285
    [53] Dalai A K, Bakhshi N N, Esmail M N, Characterization studies of plasma-sprayed cobalt and iron catalysts, Ind. Eng. Chem. Res., 1992, 31: 1449~1457
    [54] Dalai A K, Bakhshi N N, Esmail M N, Conversion of syngas to hydrocarbons in a tube-wall reactor using Co-Fe plasma-sprayed catalyst: experimental and modeling studies, Fuel Process. Technol., 1997, 51: 219~238
    [55] Serdyukov S I, Safohov M S, Chumak P S, et al., Hydrogenation of benzene on a nickel catalyst prepared by spraying in argon plasma, Pet. Chem., 1992, 32: 16~22
    [56] Rouleau L, Bacaud R, Breysse M, et al., A plasma-produced dispersed and disposable supported nickel catalyst for hydroconversion of heavy oils: II. Evaluation of the catalytic activity in the hydroconversion of a deasphalted vacuum residue, Appl. Catal. A: Gen., 1993, 104: 149~159
    [57] Kameyama T, Sakanaka K, Arakawa H, et al., Preparation of ultrafine Fe-Si-C powders in a radio-frequency thermal plasma and their catalytic properties, J. Mater. Sci., 1993, 28: 4630~4636
    [58] Cao Y A, Zhang X T, Chong L Q, et al., Novel TiO2 film catalyst-preparation, properties and research on its photocatalytic oxidized acrivity, Mater. Res. Soc. Symp. Proc., 1997, 497: 79~85
    [59] Ohshima S, Yumura M, Uchida, K, et al., Synthesis of ultra-fine metal-carbon composite particles by carbon arc-plasma and its catalytic activity, J. Jpn. Inst. Energy, 1998, 77: 104~110
    [60] Cha S Y, Lee W M, Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface, J. Electrochem. Soc., 1999, 146: 4055~4060
    [61] Blackwood J D, McTaggart F K, Oxidation of carbon with atomic oxygen, Aust. J. Chem., 1959, 12: 114~121
    [62] Maesen T L M, Kouwenhoven H W, van Bekkum H, et al., Template removal from molecular sieves by low-temperature plasma calcinations, J. Chem. Soc. Faraday Trans., 1990, 86: 3967~3970
    [63] Dadashova E A, Yagodovskaya T V, Lunin V V et al., Regeneration of a catalyst of alkylation of isobutene with n-butenes in oxygen glow discharge, Kinet. and Catal., 1991, 32: 1353~1356
    [64] Liu C J, Vissokov G P, Jang B W L, Catalyst preparation using plasma technologies, Catal. Today, 2002, 72: 173~184
    [65] Zou J J, Zhang Y P, Liu C J, Reduction of supported noble-metal ions using glow discharge plasma, Langmuir, 2006, 22: 11388~11394
    [66] Yu K L, Liu C J, Zhang Y P, et al., The preparation and characterization of highly dispersed PdO over alumina for low-temperature combustion of methane, Plasma Chem. Plasma Process., 2004, 24: 393~403
    [67] Liu C J. Yu K L, Zhang Y P, et al., Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion, Appl. Catal. B: Environ., 2004, 47: 95~100
    [68] Wang Z J, Zhao Y, Cui L, et al., CO2 reforming of methane over argon plasma reduced Rh/Al2O3 catalyst: a case study of alternative catalyst reduction via non-hydrogen plasmas, Green Chem., 2007, 9: 554~559
    [69]于开录,等离子体增强催化剂制备的物理于化学研究:[硕士学位论文],天津:天津大学,2002
    [70]邹吉军,等离子体处理制备高效催化剂的基础研究:[博士学位论文],天津:天津大学,2005
    [71]祝新利,等离子体处理对甲烷转化催化剂的影响:[博士学位论文],天津:天津大学,2007
    [72] Hermans S, Devillers M, On the role of ruthenium associated with Pd and/or Bi in carbon-supported catalysts for the partial oxidation of glucose, Appl. Catal. A: Gen., 2002, 235: 253~264
    [73] Kirk-Othmer, Encycolpedia of Chemical Technology, New York: Wiley, 1993
    [74] Hustede H, Haberstroh, H J, Schinzing E, Ullmann’s Encyclopedia of Industrial Chemistry, Elvers B, Hawkins S, Ravenseroft M et al. (Ed.), Weinheim: VCH, 1989
    [75]郭凤华,刘昌俊,葡萄糖酸合成方法研究进展,化学工业与工程,2007,24:173~177
    [76] Comotti M, Pina C D, Falletta E, et al., Is the biochemical route always advantageous? The case of glucose oxidation, J. Catal., 2006, 244: 122~125
    [77] Lichtenthaler F W, Unsaturated O- and N-Heterocycles from carbohydrate feedstocks, Acc. Chem. Res., 2002, 35: 728~737
    [78]杨瑞金,闻方,吴新涛,葡萄糖氧化及葡萄糖酸盐生产技术的研究,食品工业科技,1995,3:21~23
    [79] de Wilt H G J, Part I. Oxidation of glucose to gluconic acid: Survey of techniques, Ind. Eng. Chem. Prod. Res. Develop., 1972, 11: 370~373
    [80] Beltrame P, Comotti M, Pina C D, Aerobic oxidation of glucose I. Enzymatic catalysis, J. Catal., 2004, 228: 282~287
    [81] Bernhauer K, The problem of acid formation by Aspergillus niger, Biochem. Z., 1924, 153: 517~521
    [82] Gastrock E A, Porges N, Wells P A, et al., Gluconic acid production on pilot-plant scale effect of variables on production by submerged mold growths, Ind. Eng. Chem., 1938, 30: 782~789
    [83] Herrick H T, Hellbach R, May O E, Apparatus for the application of submerged mold fermentations under pressure, Ind. Eng. Chem., 1935, 27: 681~683
    [84] Wells P A, Moyer A J, Stubbs J J, et al., Gluconic acid production-Effect of pressure, air flow, and agitation on gluconic acid production by submerged mold growths, Ind. Eng. Chem., 1937, 29: 653~656
    [85] Currie J N, Kane J H, Finlay A, Process for producing gluconic acid by fungi, US patent, 1893819, 1933
    [86] Blom R H, Pfeifer V F, Moyer A J, Sodium gluconate production. Fermentation with Aspergillus niger, Ind. Eng. Chem., 1952, 44: 435~440
    [87] Mallat T, Baiker A, Catalytic oxidation for the synthesis of specialty and fine chemicals, Catal. Today, 2000, 57: 1~2
    [88] Mallar T, Baiker A, Oxidation of alcohols with molecular oxygen on solid catalysts, Chem. Rev., 2004, 104: 3037~3058
    [89] Barker I R L, Overend W G, Rees C W, Reactions at position 1 of carbohydrates. Part VI. The oxidation ofα- andβ-D-glucose with bromine, J. Chem. Soc., 1964, 3254~3262
    [90] Lichtin N N, Saxe M H, The oxidation of glucose by chlorine in acid aqueous solution, J. Amer. Chem. Soc., 1955, 77: 1875~1880
    [91] Perlmutter-Hayman B, Persky A, The kinetics of the oxidation of D-glucose by bromine and by hypobromous acid, J. Amer. Chem. Soc., 1960, 82: 276~279
    [92] Reeve K D, The oxidation of aldoses by hypoiodous acid. Part III. Comparison of the rates of oxidation ofα- andβ-D-glucose, J. Chem. Soc., 1951, 172~179
    [93] Green J W, The carbohydrates (Pigman W, Ed.), New York: Academic Press, 1957
    [94] Ingles O G, Israel G C, The oxidation of some aldoses by alkaline solutions of iodine, J. Chem. Soc., 1948, 810~814
    [95] Stanek J, Cerny M, Kocourek J, et al., The Monosaccharides, New York: Academic Press, 1963
    [96]陈道文,杨红,王鸣华,有机化学,北京:化学工业出版社,2001
    [97]顾登平,张越,成对电解同时合成甘露醇,山梨醇和葡萄糖酸盐,精细化工,2000,17:577~580
    [98] Biella S, Prati L, Rossi M, Selective Oxidation of D-glucose on Gold catalyst, J. Catal., 2002, 206: 242~247
    [99] Abbadi A, Makkee M, Visscher W, et al., Effect of pH in the Pd-catalyzed oxidation of D-glucose to D-gluconic acid, J. Carbohydr. Chem., 1993, 12: 573~587
    [100] Abbadi A, van Bekkum H, Effect of pH in the Pt-catalyzed oxidation of D-glucose to D-gluconic acid, J. Mol. Catal. A: Chem., 1995, 97: 111~118
    [101] van Dam H E, Wisse L J, van Bekkum H, Platinum/carbon oxidation catalysts: VIII. Selecting a metal for liquid-phase alcohol oxidations, Appl. Catal., 1990, 61: 187~197
    [102] Dijkgraaf P J M, Rijk M J M, Meulendijk J, et al., Deactivation of platinum catalysts by oxygen: 1. Kinetics of the catalyst deacrivation; 2. Nature of the catalyst deacrivation, J. Catal., 1988, 112: 329~336 and 337~344
    [103] Bang W, Lu X, Duquenne A M, et al., Glucose oxidation in a three-phase stirred airlift reactor: experiments and model, Catal. Today, 1999, 48: 125~130
    [104] Besson M, Gallezot P, Lahmer F, et al., Catalysis of organic reactions (Kosak J R, Johnson T A, Eds.), New York: Marcel Dekker Inc., 1993, p. 169~180
    [105] Gallezot P, Selective oxidation with air on metal catalysts, Catal. Today, 1997, 37: 405~418
    [106] ?nal Y, Schimpf S, Claus P, Structure sensitivity and kinetics of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts, J. Catal., 2004, 223: 122~133
    [107] Mallat T, Baiker A, Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions, Catal. Today, 1994, 19: 247~283
    [108] Mallat T, Bodnar Z, Baiker A, Catalytic selective oxidation (Omaya S T H, Hightower J W, Eds.), Washington, DC: ACS Symp. Series, 1993, p. 308
    [109] Mallat T, Bodnar Z, Maciejewski M, et al., New developments in Selective Oxidation II (Corberan V C, Bellon S V, Eds.), Amsterdam: Elsevier, 1994, p. 561
    [110] Mallat T, Bodnar Z, Baiker A, et al., Preparation of promoted platinum catalysts of designed geometry and the role of promoters in the liquid-phase oxidation of 1-Methoxy-2-propanol, J. Catal., 1994, 142: 237~253
    [111] Chou P, Vannice M A, Calorimetric heat of adsorption measurements on palladium III. Influence of crystallite size and support on O2 adsorption, J. Catal., 1987, 105: 342~351
    [112] van Dam H E, Duijverman P, Kieboom A P G, et al., Pt/C oxidation catalysts. Part 2. Oxidation of glucose 1-phosphate into glucuronic acid 1-phosphate using diffusion stabilized catalysts, Appl. Catal., 1987, 33: 373~382
    [113] Sachtler W M, Fahrenfort J, Proceeding of the 2nd International Congress on Catalsis, Paris: Technip, 1961, p. 831
    [114] Karski S, Witońska I, Bismuth as an additive modifying the selectivity of palladium catalysts, J. Mol. Catal. A: Chem., 2003, 191: 87~92
    [115] Karski S, Paryjczak T, Witońska I, Selective oxidation of glucose to gluconic acid over bimetallic Pd-Me catalysts (Me = Bi, Tl, Sn, Co), Kinet. Catal., 2003, 44: 618~622
    [116] Heyns K, Paulsen H, Selective catalytic oxidation of carbohydrates, employing platinum catalysts, Adv. Carbohydr. Chem., 1962, 17: 169~221
    [117] de Wilt H G J, van der Baan H S, Part II. Oxidation of glucose to k-Gluconate: Platinum-catalyzed oxidation with oxygen in aqueous alkaline solutions, Ind. Eng. Chem. Prod. Res. Develop., 1972, 11: 374~378
    [118] Dirkx J M H, van der Baan H S, The oxidation of glucose with platinum on carbon as catalyst, J. Catal., 1981, 67: 1~13
    [119] Nikov I, Paev K, Palladium on alumina catalyst for glucose oxidation: reaction kinetics and catalyst deactivation, Catal. Today, 1995, 24: 41~47
    [120] Besson M, Gallezot P, Selective oxidation of alcohols and aldehydes on metal catalysts, Catal. Today, 2000, 57: 127~141
    [121] Besson M, Lahmer F, Gallezot P, et al. Catalytic oxidation of glucose on bismuth-promoted palladium catalysts, J. Catal., 1995, 152: 116~121
    [122] Wenkin M, Touillaux R, Ruiz P, et al., Influence of metallic precursors on the properties of carbon-supported bismuth-promoted palladium catalysts for the selective oxidation of glucose to gluconic acid, Appl. Catal. A: Gen., 1996, 148: 181~199
    [123] Wenkin M, Ruiz P, Delmon B, et al., The role of bismuth as promoter in Pd-Bi catalysts for the selective oxidation of glucose to gluconate, J. Mol. Catal. A: Chem., 2002, 180: 141~159
    [124] Mallat T, Bodnar Z, Hug P, et al., Selective oxidation of cinnamyl alcohol to cinnamaldehyde with air over Bi-Pt/Alumina catalysts, J. Catal., 1995, 153: 131~143
    [125] Mallat T, Baiker A, Patscheider J, Liquid phase oxidation of 1-methoxy-2-propanol with air: II. Structure and chemical properties of lead-promoted palladium catalysts, Appl. Catal. A: Gen., 1991, 79: 59~75
    [126] Herrero E, Fernandez-Vega A, Feliu, J M, et al., Poison formation reaction from formic acid and methanol on platinum (111) electrodes modified by irreversibly adsorbed bismuth and arsenic, J. Electroanal. Chem., 1993, 350: 73~88
    [127] Mallat T, Bodnar Z, Br?nnimann C, et al., Platinum-catalyzed oxidation of alcohols in aqueous solutions. The role of Bi-promotion in suppression of catalyst deactivation, Stud. Surf. Sci. Catal., 1994, 88: 385~392
    [128] Hayashi H, Sugiyama S, Shigemoto N, et al., Formation of an intermetalic compound Pd3Te with deactivation of Te/Pd/C catalysts for selective oxidation of sodium lactate to pyruvate in aqueous phase, Catal. Lett., 1993, 19: 369~373
    [129] Takehira K, Mimoun H, De Roch I S, Liquid phase diacetoxylation of 1,3-butadiene with Pd-Te-C catalyst, J. Catal., 1979, 58: 155~169
    [130] Hronec M, Cvengro?ováZ, Kizlink J, Competitive oxidation of alcohols in aqueous phase using Pd/C catalyst, J. Mol. Catal., 1993, 83: 75~82
    [131] Smits P C C, Kuster B F M, van der Wiele K, et al., Lead modified platinum on carbon catalyst for the selective oxidation of (2-) hydroxycarbonic acid, and especially polyhydroxycarbonic acids to their 2-keto derivatives, Appl. Catal., 1987, 33: 83~96
    [132] Abbadi A, van Bekkum H, Highly selective oxidation of aldonic acids to 2-keto-aldonic acids over Pt-Bi and Pt-Pb catalysts, Appl. Catal. A: Gen., 1995, 124: 409~417
    [133] Smits P C C, Kuster B F M, van der Wiele K, et al., The selective oxidation of aldoses and aldonic acids to 2-ketoaldonic acids with lead-modified platinum-on-carbon catalysts, Carbohyd. Res., 1986, 153: 227~235
    [134] Comotti M, Pina C D, Rossi M, Mono- and bimetallic catalysts for glucose oxidation, J. Mol. Catal. A: Chem., 2006, 251: 89~92
    [135] Comotti M, Pina C D, Falletta E, et al., Aerobic oxidation of glucose with gold catalyst: Hydrogen Peroxide as intermediate and reagent, Adv. Synth. Catal., 2006, 348: 313~316
    [136] Beltrame P, Comotti M, Pina C D, et al., Aerobic oxidation of glucose II. Catalysis by colloidal gold, Appl. Catal. A: Gen., 2006, 297: 1~7
    [137] Comotti M, Pina C D, Matarrese R, et al., The catalytic activity of“naked”gold particles, Angew. Chem. Int. Ed., 2004, 43: 5812~5815
    [138] B?nnemann H, Richards R M, Nanoscopic metal particles– synthetic methods and potential applications, Eur. J. Inorg. Chem., 2001, 2455~2480
    [139]周全法,刘维桥,尚通明,贵金属纳米材料,北京:化学工业出版社,2008
    [140]克莱邦德K J,纳米材料化学,北京:化学工业出版社,2004
    [141] Faraday M, Experimental relations of gold (and other metals) to light, Phil. Trans. Roy. Soc., 1857, 147: 145~181
    [142] Bradley J S, Clusters and colloids, From Theory to Applications (Schmid G, Ed.), Weinheim: VCH, 1994, p. 459~536
    [143] Daniel M C, Astruc D, Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 2004, 104: 293~346
    [144] Burda C, Chen X B, Narayanan R, et al., Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 2005, 105: 1025~1102
    [145] Pileni M P, Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains, J. Phys. Chem. C, 2007, 111: 9019~9038
    [146] Narayanan R, El-Sayed M A, Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability, J. Phys. Chem. B, 2005, 109: 12663~12676
    [147] Roucoux A, Schulz J, Patin H, Reduced transition metal colloids: a novel family of reusable catalysts, Chem. Rew., 2002, 102: 3757~3778
    [148] Ahmadi T S, Wang Z L, Green T C, et al., Shape-controlled synthesis of colloidal platinum nanoparticles, Science, 1996, 272: 1924~1926
    [149] Narayanan R, El-Sayed M A, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett., 2004, 4: 1343~1348
    [150] Li Y, Petroski J, El-Sayed M A, Activation energy of the reaction between hexacyanoferrate(III) and thiosulfate ions catalyzed by platinum nanoparticles, J. Phys. Chem. B, 2000, 104: 10956~10959
    [151] Fu X, Wang Y, Wu N, et al., Shape-selective preparation and properties of oxalate-stabilized Pt colloid, Langmuir, 2002, 18: 4619~4624
    [152] Ohde H, Wai C M, Kim H, Hydrogenation of olefins in supercritical CO2 catalyzed by palladium nanoparticles in water-in-CO2 microemulsion, J. Am. Chem. Soc., 2002, 124: 4540~4541
    [153] Li Y, El-Sayed M A, J. Phys. Chem. B, 2001, 105: 8938~8943
    [154] Teranishi T, Miyake M, Size control of palladium nanoparticles and their crystal structures, Chem. Mater., 1998, 10: 594~600
    [155] Li Y, Hong X M, Collard D M, et al., Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution, Org. Lett., 2000, 2: 2385~2388
    [156] Narayanan R, El-sayed M A, Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles, J. Am. Chem. Soc., 2003, 125: 8340~8347
    [157] Tamura M, Fujihara H, Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric reaction, J. Am. Chem. Soc., 2003, 125: 15742~15743
    [158] Pittelkov M, Moth-Poilsen K, Boas U, et al., Poly(amidoamine)-dendrimer-stabilized Pd(0) nanoparticles as a catalyst for the Suzuki reaction, Langmuir, 2003, 19: 7682~7684
    [159] Porta F, Prati L, Rossi M, et al., New Au(0) sols as precursors for heterogeneous liquid-phase oxidation catalysts, J. Catal., 2002, 211: 464~469
    [160] Harriman A, Thomas J M, Millward G R, Catalytic and structural properties of iridium-iridium dioxide colloids, New J. Chem., 1987, 11: 757~762
    [161] Furlang D N, Launikonis A, Sasse W H F, et al., Colloidal platinum sols preparation, characterization, and stability towards salt, J. Chem. Soc., Faraday Trans., 1984, 80: 571~588
    [162] Zhang X, Chang K Y, Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties, Chem. Mater., 2003, 15: 451~459
    [163] Demir M M, Gulgun M A, Menceloglu Y Z, et al., Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions relations between preparation conditions, particle size, and catalytic activity, Macromolecules, 2004, 37: 1787~1792
    [164] Borsla A, Wilhelm A M, Delmas H, Hydrogenation of olefins in aqueous phase, catalyzed by polymer-protected rhodium colloids: kinetic study, Catal. Today, 2001, 66: 389~395
    [165] Sidorov S N, Volkov I V, Davankov V A, et al., Platinum-containing hyper-cross-linked polystyrene as a modifier-free selective catalyst for L-sorbose oxidation, J. Am. Chem. Soc., 2001, 123: 10502~10510
    [166] Semagina N V, Bykov A V, Sulman E M, et al., Selective dehydrolinalool hydrogenation with poly(ethylene oxide)-block-poly-2-vinylpyridine micelles filled with Pd nanoparticles, J. Mol. Catal. A: Chem., 2004, 208: 273~284
    [167] Esumi K, Isono R, Yoshimura T, Preparation of PAMAM- and PPI-metal (silver, plarinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol, Langmuir, 2004, 20: 237~243
    [168] Schulz J, Roucoux A, Patin H, Stabilized rhodium(0) nanoparticles: a reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system, Chem. Eur. J., 2000, 6: 618~624
    [169] Aiken J D, finke R G, A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis, J. Mol. Catal. A: Chem., 1999, 145: 1~44
    [170] Amiens C, De Caro D, Chaudret B, et al., Selective synthesis, characterization, and spectroscopic studies on a novel class of reduced platinum and palladium particle stabilized by carbonyl and phosphine ligands, J. Am. Chem. Soc., 1993, 115: 11638~11639
    [171] Chen S, Kimura K, Synthesis of thiolate-stabilized platinum nanoparticles in protolytic solvents as isolable colloids, J. Phys. Chem. B, 2001, 105: 5397~5403
    [172] Tan C K, Newberry V, Webb T R, et al., Water photolysis. Part 2. An investigation of the relative advantages of various components of the sensitizer-electron relay-metal colloid system for the photoproduction of hydrogen from water, and the use of these systems in the photohydrogenation of unsaturated organic substrates, J. Chem. Soc., Dalton Trans., 1987, 1299~1303
    [173] Boutonnet M, Kizling J, Stenius P, et al., The preparation of monodisperse colloidal metal particles from microemulsions, Colloids Surf., 1982, 5:209~225
    [174] Boutonnet M, Kizling J, Touroude R, et al., Monodispersed colloidal metal particles from non-aqueous solution: catalytic behavior for the hydrogenation of but-1-ene of platinum particles in solution, Appl. Catal., 1986, 20:163~177
    [175] Kopple K, Meyerstein D, Meisel D, Mechanism of the catalytic hydrogen production by gold sols hydrogen/deuterium isotope effect strdies, J. Phys. Chem., 1980, 84: 870~875
    [176] Hirai H, Nakao Y, Toshima N, Colloidal rhodium in poly(vinylpyrrolidone) as hydrogenation catalyst for internal olefins, Chem. Lett., 1978, 545~548
    [177] Hirai H, Wakabayashi H, Komiyama M, Polymer-protected copper colloids as catalysts for selective hydration of acrylonitrile, Chem. Lett., 1983, 1047~1050
    [178] Balogh L, Tomalia D A, Poly(amidoamine) dendrimer-templated nanocomposites 1. synthesis of zerovalent copper nanoclusters, J. Am. Chem. Soc., 1998, 120: 7355~7356
    [179] Yonezawa T, Kunitake T, Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization, Colloids Surf. A: Physicochem. Eng. Asp., 1999, 149: 193~199
    [180] Xiong Y J, Xia Y N, Shape-controlled synthesis of metal nanostructures: the case of palladium, Adv. Mater. 2007, 19: 3385~3391
    [181] Ershov B G, Janata E, Michaelis M, et al., Reduction of aqueous copper(2+) by carbon dioxide(1-): first steps and the formation of colloidal copper, J. Phys. Chem., 1991, 95: 8996~8999
    [182] Belapurkar A D, Kapoor S, Kulshreshtha S K, et al., Radiolytic preparation and catalytic properties of platinum nanoparticles, Mater. Res. Bull., 2001, 36: 145~151
    [183] Dong S A, Zhou S P, Photochemical synthesis of colloidal gold nanoparticles, Mater. Sci. Eng. B, 2007, 140: 153~159
    [184] Okitsu K, Yue A, Tanabe S, et al., Formation of colloidal gold nanoparticles in an untrlsonic field: control of rate of gold(III) reduction and size of formed gold particles, Langmuir, 2001, 17: 7717~7720
    [185] Nemamcha A, Rehspringer J L, Khatmi D, Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution, J. Phys. Chem. B, 2006, 110: 383~387
    [186] B?nnemann H, Brijoux W, Tilling A S, Application of heterogeneous colloid catalysts for the preparation of fine chemicals, Top. Catal., 1997, 4: 217~227
    [187] Moiseev I I, Vargatfik M N, Clusters and colloidal metals in catalysis, Russ. J. Gen. Chem., 2002, 72: 512~522
    [188] Mayer A B R, Polym. Adv. Technol., Colloidal metal nanoparticles dispersed in amphiphilic polymers, 2001, 12: 96~106
    [189] Boennemann H, Braun G, Brijoux G, et al., Nanoscale colloidal metals and alloys stabilized by solvents and surfactants preparation and use as catalyst precursors, J Organomet. Chem., 1996, 520: 143~162
    [190] Toshima N, Colloidal dispersion of bimetallic nanoparticles: preparation, structure and catalysis, NATO ASI Ser., Ser. 3, 1996, 12: 371~383
    [191] Duff D G, Baiker A, Preparation and structural properties of ultrafine gold colloids for oxidation catalysis, Stud. Surf. Sci. Catal., 1995, 91: 505~512
    [192] Narayanan R, El-Sayed M A, Effect of nanocatalysis in colloidal solution on the tetrahedral and cubic nanoparticle shape: Electron-transfer reaction catalyzed by platinum nanoparticles, J. Phys. Chem. B, 2004, 108: 5726~5733
    [193] Narayanan R, El-Sayed M A, Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: Electron-transfer reaction, J. Am. Chem. Soc., 2004, 126: 7194~7195
    [194] Ohde H, Ohde M, Wai C M, Swelled plastics in supercritical CO2 as media for stabilization of metal nanoparticles and for catalytic hydrogenation, Chem. Commun., 2004, 8: 930~931
    [195] Spiro M, De Jesus D, Nanoparticle catalysis in microemulsions: Oxidation of N,N-dimethyl-p-phenylenediamine by cobalt(III) pentaammine chloride catalyzed by colloidal palladium in water/AOT/n-heptane microemulsions, Langmuir, 2000, 16: 2464~2468
    [196] Anastas P, Kazlauskas P, Sheldrake G, Ten years of green chemistry at Gordon Research Conference: frontiers of science, Green Chemistry, 2006, 8: 677~678
    [197] Zhao H B, Holladay J E, Brown H, et al., Metal Chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science, 2007, 316: 1597~1600
    [198] Doneva T, Vassilieff C, Donev R, Catalytic and biocatalytic oxidation of glucose to gluconic acid in a modified three-phase reactor, Biotechnol. Lett., 1999, 21: 1107~1111
    [199] Raveendran P, Fu J, Wallen S L, A simple and“green”method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles, Green Chem., 2006, 8: 34~38
    [200] Nadagouda M N, Varma R S, Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wire and rods, Green Chem., 2006, 8: 516~518
    [201]图片来源:Agilent公司高效液相色谱培训教程
    [202] Shanmugam S, Viswanathan B, Varadarajan T K, A novel single step chemical route for noble metal nanoparticles embedded organic-inorganic composite films, Mater. Chem. Phys., 2006, 95: 51~55
    [203] Turner M, Golovko V B, Vaughan O P H, et al., Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters, Nature, 2008, 981~984
    [204] Belloni J, Nucleation, growth and properties of nanoclusters studied by radiation chemistry application to catalysis, Catal. Today, 2006, 113: 141~156
    [205] Zhu X L, Huo P P, Zhang Y P, et al., Characterization of argon glow discharge plasma reduced Pt/Al2O3 catalyst, Ind. Eng. Chem. Res., 2006, 45: 8604~8609
    [206] Babu N S, Lingaiah N, Gopinath R, et al., Characterization and reactivity of alumina-supported Pd catalysts for the room-temperature hydrodechlorination of chlorobenzene, J. Phys Chem. C, 2007, 111: 6447~6453
    [207] Barrera A, Viniegra M, Fuentes S, et al., The role of lanthana loading on the catalytic properties of Pd/Al2O3-La2O3 in the NO reduction with H2, Appl. Catal. B, 2005, 56: 279~288
    [208] Mondelli C, Ferri D, Grunwaldt J D, et al., Combined liquid-phase ATR-IR and XAS study of the Bi-promotion in the aerobic oxidation of benzyl alcohol over Pd/Al2O3, J. Catal., 2007, 252: 77~87
    [209] Lear T, Marshall R, Lopez-Sanchez J A, et al., The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts, J. Chem. Phys., 2005, 123: 174706-1~174706-13
    [210] Groppo E, Bertarione S, Rotunno F, et al., Role of the support in determining the vibrational properties of carbonyls formed on Pd supported on SiO2-Al2O3, Al2O3, and MgO, J. Phys. Chem. C, 2007, 111: 7021~7028
    [211] Chiang C W, Wang Ai Q, Mou C Y, CO oxidation catalyzed by gold nanoparticles confined in mesoporous aluminosilicate Al-SBA-15: Pretreatment methods, Catal. Today, 2006, 117: 220~227
    [212] Kresge C T, Leonowicz M E, Roth W J, et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359: 710~712
    [213] Zhao D Y, Feng J L, Huo Q S, et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279: 548~552
    [214] Wang Z J, Xie Y B, Liu C J, Synthesis an characterization of Noble Metal (Pd, Pt, Au, Ag) Nanostructured materials confined in the channels of mesoporous SBA-15, J. Phys. Chem. C, 2008, 112: 19818~19824
    [215] Zhao D Y, Huo Q S, Feng J L, et al., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120: 6024~6036
    [216] Sing K S W, Everett D H, Haul R A W, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1985, 57: 603~619
    [217] Gregg S J, Sing K S W, Adsorption, surface area and porosity, 2nd ed., London: Academic Press, 1982
    [218] Liu Y, Zhang J J, Hou W H, et al., A Pd/SBA-15 composite: synthesis, characterization and protein biosensing, Nonotechnology, 2008, 19: 135707
    [219] Chang S C, Huang M H, Formation of short In2O3 Nanorod arrays within mesoporous silica, J. Phys. Chem. C, 2008, 112: 2304~2307
    [220] Zhang F Q, Yan Y, Yang H F, et al., Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15, J. Phys. Chem. B, 2005, 109: 8723~8732
    [221] Bell A T, The impact of Nanoscience on heterogeneous catalysis, Science, 2003, 299: 1688~1691
    [222] Willner I, Baron R, Willner B, Growing metal nanoparticles by enzymes, Adv. Mater., 2006, 12: 1109~1120
    [223] Kim Y G, Oh S K, Crooks R M, Preparation and characterization of 1-2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions, Chem. Mater., 2004, 16: 167~172
    [224] He P, Urban M W, Phospholipid-stabilized Au-nanoparticles, Biomacromolecules, 2005, 6: 1224~1225
    [225] Esumi K, Suzuki A, Yamahira A, et al., Role of Poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver, Langmuir, 2000, 16: 2604~2608
    [226] Yang S C, Wang Y P, Wang Q F, et al., UV irradiation induced formation of Au nanoparticles at room temperature: The case of pH values, Colloids Surf. A, 2007, 301: 174~183
    [227] Mayer A B R, Mark J E, Colloidal gold nanoparticles protected by water-soluble homopolymers and random copolymers, Eur. Polym. J., 1998, 34: 103~108
    [228] Garcia-Martinez J C, Crooks R M, Extraction of Au nanoparticles having narrow size distribution from within dendrimer templates, J. Am. Chem. Soc., 2004, 126: 16170~16178
    [229] Aslam M, Fu L, Su M, et al., Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles, J. Mater. Chem., 2004, 14: 1795~1797
    [230] Kurihara K, Kizling J, Stenius P, et al., Laser and pulse radiolytically induced colloidal gold formation in water and in water-in-oil microemulsions, J. Am. Chem. Soc., 1983, 105: 2574~2579
    [231] Wei M, Sun L G, Xie Z Y, et al., Selective determination of dopamine on a boron-doped diamond electrode modified with gold nanoparticle/polyelectrolyte-coated polystyrene colloids, Adv. Funct. Mater., 2008, 18: 1414~1421
    [232] Zhong Z, Lin J, The S P, et al., A rapid and efficient method to deposit gold particles onto catalyst supports and its application for CO oxidation at low temperatures, Adv. Funct. Mater., 2007, 17: 1402~1408
    [233] B?nnemann H, Brijoux W, Brinkmann R, et al., Selective oxidation of glucose on bismuth-promoted Pd-Pt/C catalysts prepared from NOct4Cl-stablized Pd-Pt colloids, Inorg. Chim. Acta, 1998, 270: 95~110
    [234] Wang Z F, Shen B, He N Y, The synthesis of Pd nanoparticles by combination of the stabilizer of CNCH2COOK with its reduction, Mater. Lett., 2004, 58: 3652~3655
    [235] Okitsu K, Bandow H, Maeda Y, Sonochemical Preparation of ultrafine palladium particles, Chem. Mater., 1996, 8: 315~317
    [236] Lu D L, Domen K, Tanaka K I, Electrodeposited Au-Fe, Au-Ni, and Au-Co alloy nanoparticles from aqueous electrolytes, Langmuir, 2002, 18: 3226~3232
    [237] Hamasaki T, Kashiwagi T, Imada T, et al., Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging Activities of platinum nanoparticles, Langmuir, 2008, 24: 7354~7364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700