滑动导向系统摩擦建模及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在机械系统的运行过程中往往有摩擦环节存在,常常对系统的性能产生很大的影响。尤其,由于摩擦在低速时表现出强烈的非线性,系统在启动、停止以及速度转向时受到的摩擦的影响最为严重,甚至由于摩擦的存在会使系统进入无序运动的混沌状态,极大的降低系统的性能。因此随着现代机械朝着高精度、高性能方向的发展,对摩擦环节的建模以及动力学特性的研究就变得越来越重要。
     摩擦现象在微观尺度上具有极其复杂的物理学本质,在一般的机械系统领域对摩擦的研究中,都是力求从宏观尺度上最好的解释和模拟摩擦现象和行为。因此本课题基于摩擦实验研究,对摩擦特性进行分析,提出新的宏观经验模型结构,并给出相应的摩擦信号处理和参数识别过程,此外,运用数值方法对滑动导向系统的动力学特性进行了探讨。
     论文首先概述了有关摩擦特性的实验和理论研究的国内外研究现状和研究进展,总结了各种摩擦现象的产生原因和表现形式,在此基础上,介绍了各种不同的摩擦力模型,并分析了它们的优缺点,简述了摩擦信号处理以及摩擦系统动力学特性研究等方面的研究方法。
     针对滑动导靴和导轨之间的横向和纵向摩擦的特点,设计了相应的实验装置,拟定了实验方案,并对实验结果进行了初步的分析和处理。通过分析和比较大量的实验结果,探讨了导靴与导轨之间的摩擦特性,包括摩擦力随相对运动的位移、速度、加速度,以及正压力、润滑状况和导靴类型等参数的变化情况,为进一步的研究工作提供实验基础。
     由于测量方法以及测量仪器的局限性,实验所测的摩擦信号不可避免的包含噪声信号和其他力信号成分,例如弹性力信号等。随着摩擦力模型的精细化和复杂化,参数辨识对实验数据中的噪声信号表现出高敏感性,对于被噪声和其它力信号污染严重的数据,部分辨识方法甚至失效。因此如何将真正的摩擦力信号从测量信号中分离出来在摩擦参数识别中至关重要。而传统的基于傅利叶变换的分析方法往往不适合处理此类非线性信号。本文提出了使用中值滤波和经验模态分解(Empirical Mode Decomposition)相结合的方法来分析处理实验中所测得的摩擦力信号。并将处理结果与经由基于傅利叶变换的方法(低通和带阻滤波,以及小波分解方法)处理的结果在时域上、Fourier谱空间以及Hilbert谱空间分别进行了比较,结果显示经验模态分解方法在摩擦力信号分析和处理上具有优越性。
     在对摩擦特性实验研究的基础上,通过引入规范化的Bouc-Wen模型,提出了一个新的动摩擦力模型结构。这个模型结构能够描述摩擦力在微滑动阶段、宏观滑动阶段以及过渡阶段的非线性特性。同时还提出了一个新的不可逆宏观滑动摩擦模型。给出了当滑动摩擦模型分别为速度依赖性模型和此不可逆模型时的参数识别过程,针对实验数据给出识别结果,并对实验中的摩擦过程进行仿真,仿真结果与实验结果在时间历程上以及摩擦力-相对运动位移和摩擦力-相对运动速度的坐标图上的比较,显示了此摩擦模型结构的有效性和描述摩擦过程的精确性。
     对于在一定牵引速度下受到横向位移激励的滑动导向系统建立了振动分析的二维模型,其中充分考虑了横向和纵向由于摩擦引起的耦合问题。数值仿真结果显示,在一定的参数状况下滑动导块有可能出现爬行运动状态。同时分析了牵引速度和横向激励的频率对横向位移响应的影响。并将二维模型的仿真结果与不考虑纵向振动的一维模型的结果作了比较。发现,由一维模型得到的导块的横向位移响应的幅值要大于二维模型的结果。但当横向位移激励的频率与导向系统横向振动的固有频率相差较远时,两种模型的数值仿真结果相差不大。
     建立了轿厢-导靴-导轨动力学耦合模型来研究电梯滑动导向系统的横向振动特性。并且由于导轨表面的不平顺引起横向位移激励的频率远小于导向系统横向振动的固有频率,因此不考虑由于摩擦耦合引起的导向系统纵向振动,认为在牵引方向始终以额定速度运动。在系统建模过程中,充分考虑了包括导靴与导轨的安装间隙和摩擦等非线性因素,和电梯运行时的负载不平衡等状况。并建立了该模型的Matlab/Simulink仿真程序。仿真结果与实测结果在频域上的比较表明了该模型的有效性。
     本文的研究工作对摩擦实验研究、摩擦特性研究、摩擦信号处理、摩擦建模和参数识别,以及摩擦系统动力学特性的研究等方面具有一定的参考价值。
Friction exists in almost all mechanical systems, and often affects the performance of a system seriously, especially when the system in the states of starting、ending and velocity reversal. That is because friction shows strong nonlinear characteristics when relative velocity is slow. Sometimes the existence of friction can lead the motion of a system into chaos. Therefore the research on dynamics of mechanical system with friction is becoming a hot issue in the current times.
     Friction contact is extremely complicated from the microscopic view, and in the field of mechanical system, the study on friction is often from the view point of macroscopic to explain and predict friction phenomena and behaviors. On the basis of experimental studies and analyses for friction dynamic characteristics, a new dynamical friction model structure is proposed. The procedures of friction signal processing and parameter identification are also presented. In addition, the dynamic characteristics of systems with friction are studied using numerical techniques.
     First, the domestic and oversea research actualities of friction dynamic characteristics have been summaried, the manifestations and formings of these friction phenomena are discussed. Based on these, various friction models are introduced, and the advantages and disadvantages of them are expounded. The methods for friction signal processing are mentioned in brief, and the work on the dynamical characters of systems with friction is introduced.
     The setups and schemes for experimental study are designed according to the characters of friction contact between slide guide and rail along lateral and vertical directions. Experimental results are processed and analyzed. Through comparisons and analyzing of a large amount of cases, the dynamic friction characteristics between slide guide and rail, including the variation tendency of friction with the parameters just like relative displacement、relative velocity、relative acceleration、contact area、lubrication condition and slide guide type, are discussed. This part lays the foundation for furthering study.
     Due to the limitations of methods and instruments for friction measurement, the measured friction signal often contains noise and other force components, such as elastic forces. And because friction model becomes more and more complicated, parameter identification result often shows high sensitivity to noise contamination, and some methods even fails. How to extract the real friction signal from measured one is important to identification work. However, the traditional Fourier methods are not suitable to deal with nonlinear signal processing. The combination of median filter and empirical decomposition (EMD) method is used to analyze and process the measured friction signal. The processing results are compared with the results from Fourier-based methods (lowpass filter, band block filter and wavelet decomposition method) in the time history、Fourier spectral space and Hilbert spectral space. The comparisons show that the EMD method has superiority in processing measured friction signal.
     On the basis of experimental study, and through introducing the normalized Bouc-Wen model, a new dynamical friction model structure is proposed. This model has the capability to describe nearly all the nonlinear friction dynamic characteristics in presliding、sliding and their transition state. A new nonreversible friction model is presented for sliding regime to describe friction memory effect. Parameter identification procedures for both models are given. Identified friction models are used to predict friction courses, and results are compared with measured ones in the coordinates of friction vs. time、friction vs. relative displacement and friction vs. relative velocity. The effectiveness and accuracy of the proposed models can be shown from these comparisons.
     A two-dimensional model for the vibration of a slide guide system subjected to lateral displacement excitation is proposed. The coupling between lateral and vertical vibration due to the existence of friction is considered sufficiently in this model. Simulation results with this two-dimensional model show full sliding motion and stick-slip motion which may appear with some proper parameters. The variation tendencies of the vibration amplitude in lateral direction with the parameters in the model are simulated. Results derived from the two-dimensional model are compared with a one-dimensional model which does not included the vibration in sliding direction. The comparisons indicate the lateral response calculated from the abbreviative one-dimensional model is larger than the result from the two-dimensional model.
     An elevator cabin-guide-rail coupled lateral vibration model is developed to research the dynamical characters of slide guide system in an elevator. The mass of slide guide, the nonlinear factors such as the gap and friction between slide guide and rail, in addition to the load condition (balanced or unbalanced) are all included in this model. The comparisons of simulation results from Matlab/Simulink program with the experimental results illustrate the effectiveness of this model. The exploration provided an important theoretical foundation for the optimal design of slide guide and the determination of the gap between guide and rail in assembling. In the mean time, it can be helpful in the prediction and control of elevator vibration and noise.
     The results of this thesis may be worthily used to understand and develop the theories about friction experimental study, dynamic friction characteristics, friction signal processing, modeling and parameter identification, and dynamical characters of systems with friction.
引文
[1] P. L. Ko, Marie-Claude Taponat, Rodolphe Pfaifer. Friction-induced vibration-with and without external disturbance. Tribology International, 2001, 34: 7-24.
    [2] S. C. Southward. Robust Nonlinear Stick-Slip Friction Compensation. ASME Journal of Dynamic System, Measurement, and Control. 1991, 113: 639-645.
    [3] N. M. Kinkaid, O. M. O’Reilly, P. Papadopoulos. Automotive disc brake squeal. Journal of Sound and Vibration, 2003, 267(1): 105-166.
    [4] S. Yang, R. F. Gibson. Brake vibration and noise :reviews, comments, and proposals. International Journal of Materials and Product Technology, 1997, 12: 496-513.
    [5] A. A. Polycarpou, A. Soom. Application of a two-dimensional model of continuous sliding friction to stic-slip. Wear, 1995, 181-183: 32-41.
    [6] G. X. Chen, Z. R. Zhou. Experimental observation of the initiation process of friction-induced vibration under reciprocating sliding conditions. Wear, 2005, 259: 277-281.
    [7] A. Stefański, J. Wojewoda, K. Furmanik. Experimental and numerical analysis of self-excited friction oscillator. Chaos, Solitons and Fractals, 2001, 12: 1691-1704.
    [8] E. J. Berger. Friction modeling for dynamic system simulation. Appl Mech Rev, 2002, 55(6): 535-577.
    [9] B. Armstrong-Hélouvry, P. Dupont, C. Canudas de Wit. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, 1994, 30(7): 1083-1138.
    [10] S. Bj?rklund. A random model for micro-slip between nominally flat surfaces. ASME J. Tribology. 1997, 119: 726-732.
    [11] J. B. Sampson, F. Morgan, D. W. Reed, M. Muskat. Friction behavior during the slip portion of the stick-slip process. Journal of Applied Physics, 1943, 14(12): 689-700.
    [12] E. Rabinowicz. The intrinsic variables affection the stick-slip process. Proc of Physical Society of London, 1958, 471: 668-675.
    [13] S. W. Shaw. On the dynamic response of a system with dry friction. Journal of Sound and Vibration, 1986, 108(2): 305-325.
    [14] J. Awrejcewicz. Chaos in simple mechanical systems with friction. Journal of Sound and Vibration, 1986, 109(1): 178-180.
    [15] K. Popp, P. Stelter. Nonlinear oscillations of structures induced by dry friction. In: Schiehlen, W. (ed.) Nonlinear Dynamics in Engineering systems. Berlin, Springer-Verlag, 1990, pp. 233-240.
    [16] K. Popp, P. Stelter. Stick-slip vibrations and chaos. Philosophical Transactions of the Royal Society of London, 1990, 332: 89-105.
    [17] R. Arnell, P. Davies, J. Halling, T. Whomes. Tribology: Principles and Design Applications. London, U.K., Macmillan, 1991.
    [18] J. Courtney-Pratt, E. Eisner. The effect of a tangential force on the contact of metallic bodies. in Proc. Royal Society, 1957, A238: 529-550.
    [19] C. Canudas de Wit, H. Olsson, K. J. ?str?m, P. Lischinsky. A new model for control of systems with friction. IEEE Trans. Autom. Control, 1995, 40(3): 419-425.
    [20] E. Rabinowicz. The nature of the static and kinetic coefficients of friction. J. Appl. Phys., 1951, 22(11): 1373-1379.
    [21] V. I. Johames, M. A. Green, C. A. Brockley. The role of the rate of application of the tangential force in determining the static friction coefficient. Wear, 1973, 24: 381-315.
    [22] R. S. H. Richardson, H. Nolle. Surface friction under time-dependent loads. Wear, 1973, 24: 381-385.
    [23] R. Stribeck. Die wesentlichen Eigenschaften der Gleit-und Rollenlager-the key qualities of sliding and roller bearings. Zeitschrift des Vereines Deutscher Ingenieure, 1902, 46(38,39): 1342-1348, 1432-1437.
    [24] F. Al-Bender, V. Lampaert, J. Swevers. A novel generic model at asperity level for dry friction force dynamics. Tribol. Lett., 2004, 1(16): 81-93.
    [25] F. Al-Bender, V. Lampaert, J. Swevers. Modeling of dry sliding friction dynamics: From heuristic models to physically motivated models and back. Chaos, 2004, 14(2): 446-460.
    [26]刘国平.西安理工大学,硕士学位论文,机械系统中的摩擦模型及仿真. 2007, 06, 01.
    [27]李泉,路长厚,袭著燕,张涛.工作台建模与仿真.组合机床自动化加工技术, 2005, 10: 21~25.
    [28] B. Armstrong-Helouvry. Stick Slip and Control in Low-Speed Motion. IEEE Trans. on Automatic Control, 1993, 38(10): 1483~1496.
    [29] R. Bell, M. Burdekin. A study of the stick-slip motion of machine tool feed drives. Proc. Of Inst. Of Mech. Eng. 1969-1970, 184(1): 543-557.
    [30] D. P. Hess, A. Soom. Friction at lubricated line contact operation at oscillating sliding velocities. ASME J. Tribol., 1990, 112: 147-152.
    [31] A. Stefański, J. Wojewoda, M. Wiercigroch, T. Kapitaniak. Chaos caused by non-reversible dry friction. Chaos, Solitons Fractals, 2003, 16: 661-664
    [32] J. Wojewoda, T. Kapitaniak, R. Barron, J. Brindley. Complex behavior of a quasiperiodically forced system with dry friction. Chaos, Solitons and Fractals 1993, 3(1): 35-46.
    [33] J. -J. Sinou, F. Thouverez, L. Jezequel. Analysis of friction and instability by the centre manifold theory for a non-linear sprag-slip model. Journal of Sound and Vibration, 2003, 265:527-559.
    [34] F. Moirot, Q. S. Nguyen. Brake squeal: a problem of flutter instability of the steady sliding solution. Arch. Mech., 2000, 52: 645–662.
    [35] D. Vola, M. Raous, J.A.C. Martins. Friction and instability of steady sliding squeal of a glass/rubber contact. Int. J. Numer. Methods Engrg., 1999, 45: 301–314.
    [36] Quoc Son Nguyen. Instability and friction. C.R.Mecanique, 2003, 331: 99-112.
    [37] P. Basford, S. Twiss. Properties of friction materials. I) experiments on variables affecting noise. Transactions of the American Society of Mechanical Engineers 1958, 80: 402–406.
    [38] A. Banerjee. Influence of kinetic friction on the critical velocity of stick–slip motion. Wear, 1968, 12: 107–116.
    [39] J. Swevers, F. Al-Bender, C. G.. Ganseman, T. Prajogo. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transaction on Automatic Control. 2000, .45(4): 675-686.
    [40] T. Baumberger. Physics of Sliding Friction. edited by B. Persson and E. Tosatti. Kluwer Academic, Dordrecht, 1996, pp.1-16.
    [41] B. Bhushan. Handbook of Micro/Nano Tribology, second edition (Mechanics and Materials science). CRC, Boca Raton, 1999.
    [42] R. Burridge, L. Knopoff. Model and theoretical seismicity. Bulletin of the Seismological Society of American, 1967, 57: 341-371.
    [43] J. P. Den Hartog. Forced vibration with Combined Coulomb and Viscous Friction. Transaction of the ASME, APM, 1931, 53(9): 107-115.
    [44] J. Powell, M. Wiercigroch. Influence of nonreversible Coulomb characteristics on the response of a harmonically excited linear oscillator. Mach. Vib., 1992, I(2): 94-104.
    [45] M. Wiercigroc. Comments on the study of a harmonically excited linear oscillator with a Coulomb damper. J. Sound Vib., 1993, 167(3): 560-563.
    [46] P. R. Dahl. Solid Friction Damping of Mechanical Vibrations. AIAA, 1976, 14(12): 1675-1682.
    [47] P. R. Dahl. Solid Friction Damping of Spacecraft Vibrations. AIAA Guidance and Control Conf, Boston, 1975: 75-1104.
    [48] J. -W. Liang, B. F. Feeny. Dynamical friction behavior in a forced oscillator with a compliant contact. J. Appl. Mech., 1998, 65: 250-257.
    [49] A. Stefański, J. Wojewoda, M. Wiercigroch, T. Kapitaniak. Regular and chaotic oscillations of friction force. Proc. IMechE Part C: J. Mechanical Engineering Science, 2006, 220: 273-284.
    [50]从爽, De Carli Alesandro.两种补偿动态摩擦力的先进控制策略.自动化学报, 1998, 24(2): 15~21.
    [51]于达仁,鲍文,王广雄.一种新的摩擦力最小二乘估计方法.哈尔滨工业大学学报, 1999,31(1): 35~37.
    [52] K. C. Check, N. K. Loh. Modeling and Identification of a Class of Servomechanism Systems with Stick-slip Friction. ASME Journal of Dynamics Systems, Measurement and Control, 1988, 110(3): 224~238.
    [53] C. T. Johnson, R. D. Lorenz. Experimental Identification of Friction and its Compensation in Precise, Position Controlled Mechanisms. IEEE Trans. On Industry Application, 1992, 26(6): 1392~1398.
    [54]田政.采用限定记忆区间最小二乘法辩识DC伺服电机系统非线性参数的方法.信息与控制, 1997, 26(6): 466~473.
    [55]梅志千.机电伺服系统中的补偿技术研究:[博士学位论文].上海:上海交通大学2003.1.
    [56]王中华.运动控制中的几种摩擦补偿策略研究:[博士学位论文].南京:东南大学2002.3.
    [57] C. Canudas de Wit, P. Lischinsky. Adaptive Friction Compensation with Partially Known Dynamic Friction Mode. .Journal of Adaptive Control and Signal Processing, 1997, 11: 65~80.
    [58]刘强,扈宏杰,刘金锟,尔联洁.基于遗传算法的伺服系统摩擦参数辨识研究.系统工程与电子技术, 2003.1: 77~79.
    [59]段海滨,王道波,朱家强,黄向华. .基于ACA的飞行仿真伺服系统Lucre摩擦参数辨识.南京航空航天大学学报(英文版), 2004, 3: 179~183.
    [60] P. Lischinsky, C. Canudas de Wit, G. Morel. Friction Compensation for an Industrial Hydraulic Robot. IEEE Control systems Magazine, 1999, 19(1): 25~32.
    [61]曹健,李尚义,赵克定.仿真转台用新型连续回转液压伺服马达摩擦特性研究.宇航学报. 2003, 7: 374~377.
    [62] M. Yar, J. K. Hammond. Parameter Estimation for Hysteretic Systems. J Sound and Vibration, 1987, 117(1): 161-172.
    [63]李岳锋,胡海岩.非线性系统参数识别的频域法.南京航空学院学报,1991,23(4): 45-50.
    [64]姚亚夫,董忠钫,程耀东.一种非线性干摩擦振动系统的识别方法.全国第五届模态分析与试验学术交流会议论文集(上), 1988: 579-589.
    [65]陈花玲.机械结构中恢复力的迟滞非线性特性及其对机械加工颤振影响的研究:[博士学位论文].西安:西安交通大学, 1990.
    [66] M. Yar, J. K. Hammond. Parameter Estimation for Hysteretic systems. Journal of Sound and Vibration, 1987, 117(1): 161-172.
    [67]张向慧.迟滞非线性系统参数识别方法的研究.噪声与振动控制, 2001, 21(3): 13-16.
    [68] J. P. Den Hartog. Mechanical Vibrations. New York: McGraw-Hill Book Company, Inc., 4th ed.,1956.
    [69] E. S. Levitan. Forced Oscillation of a Spring-Mass System Having Combined Coulomb andViscous Damping. J of the Ascoust Scoc of A M, 1960, 32(10): 1265-1269.
    [70] G. C. K. Yeh. Forced Vibrations of a Two-Degree-of-Freedom System with Combined Coulomb and Viscous Damping. J of the Ascoust Scoc of A M, 1966, 39(1): 14-24.
    [71] M. G. Sainsbury. Vibration Analysis of Damped Complex Structures: [ph D Thesis], London: University of London. 1976.
    [72] M. S. Hundal. Response of a base excited system with coulomb and viscous friction. Journal of Sound and Vibration, 1979, 64(3): 371-378.
    [73] C. Pierre, A. A. Ferri, E. H. Dowell. Multi-Harmonic Analysis of Dry Friction Damped System Using an Incremental Harmonic Balance Method. Transactions of the ASME, APM, 1985, 52(4): 958-964.
    [74] S.W. Shaw. On the dynamic response of a system with dry-friction. Journal of Sound and Vibration, 1986, 108: 305-325.
    [75] A. A Ferri, E. H. Dowell. Frequency Domain Solutions to Multi-Degree-of-Freedom, Dry Friction Damped Systems. J of Sound and Vibration, 1984, 124(2): 207-224.
    [76] B. F. Feeny. A nonsmooth Coulomb friction oscillator, Physics D, 1992, 59: 25-38.
    [77] B. F. Feeny, F. C. Moon. Chaos in a forced dry-friction oscillator: experiments and numerical modeling. Journal of Sound and Vibration, 1994, 170: 303-323.
    [78] B. F. Feeny. The nonlinear dynamics of oscillators with stick-slip friction, in : A. Guran, F. Pfeiffer, K. Popp (Eds), Dynamics with Friction, World Scientific, River Edge, 1996, pp.36-92.
    [79] N. Hinrichs, M. Oestreich, K. Popp, Dynamics of oscillators with impact and friction. Chaos, Solitons and Fractals, 1997,8(4): 535-558.
    [80] S. Natsiavas. Stability of piecewise linear oscillators with viscous and dry friction damping, Journal of Sound and Vibration, 1998, 217: 507-522.
    [81] H. Dankowicz, A. B. Nordmark. On the origin and bifurcations of stick-slip oscillations. Physica D, 2000, 136(3-4): 280—302.
    [82] P. L. Ko, M. -C. Taponat, R. Pfaifer. Friction-induced vibration-with and without external disturbance. Tribology International, 2001, 34: 7-24.
    [83] U. Andreaus, P. Casini. Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle. International Journal of Non-Linear Mechanics, 2002, 37: 117-133.
    [84] J. J. Thomsen, A. Fidlin, Analytical approximations for stick-slip vibration amplitudes. International Journal of Non-Linear Mechanics, 2003, 38: 213-224.
    [85] W. J. Kim, N. C. Perkins. Harmonic balance/Galerkin method for non-smooth dynamical system. Journal of Sound and Vibration, 2003, 261: 213-224.
    [86] V. N. Pilipchuk, C. A. Tan. Creep-slip capture as a possible source of squeal during deceleration sliding. Nonlinear Dynamics, 2004, 35: 258-285.
    [87] L. Baillet, S. D’Errico, B. Laulagnet. Understanding the occurrence of squealing noise using the temporal finite element method. Journal of Sound and Vibration, 2006, 292: 443-460.
    [88] N. Hinrichs, M. Oestreich, K. Popp, On the modeling of friction oscillators. Journal of Sound and Vibration, 1998, 216(3): 435-459.
    [89] S. Natsiavas, G. Verros. Dynamics of oscillators with strongly nonlinear asymmetric damping, Nonlinear Dynamics, 1999, 20: 221-246.
    [90] R. I. Leine, D. H. Van Campen, A. D. Draker, L. V. Den Steen. Stick-slip vibrations induced by alternate friction models. Nonlinear Dynamics, 1998, 16: 41-54.
    [91] L. N. Virgin, C. J. Begley. Grazing bifurcation and basins of attraction in an impact-friction oscillator. Physica D, 1999, 130: 43-57.
    [92] G. Cheng, J. W. Zu. Two-Frequency Oscillation with combined Coulomb and viscous frictions. Journal of Vibration and Acoustics, 2002, 124: 537-544.
    [93] B .D. Yang, M. L. Chu, C. H. Menq. Stick-slip-separation analysis and non-linear stiffness and damping characterization of friction contacts having variable normal load. Journal of Sound and Vibration, 1998, 210(4): 461-481.
    [94] M. A. Irfan. Novel experimental methods for investigating high speed friction of Ti6al4v/Tool steel interface and dynamic failure of extrinsically toughened dra composites. [Ph. D thesis]. Case Western Reserve University. 1998.
    [95] F. Jaffer. Experimental evaluation of sliding friction coefficients for aerospace applications. (Master thesis). University of Toronto. 2001.
    [96] H. Yanada, Y. Sekikawa. Modeling of dynamic behaviors of friction. Mechatronics (article in press).
    [97] J. Swevers, F. Al-Bender, C. G. Ganseman, T. Prajogo. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transactions On Automatic Control, 2000, 45 (4): 675-686.
    [98] J. H. Kim, H. K. Chae, J. Y. Jeon, S. W. Lee. Identification and control of systems with friction using accelerated evolutionary programming. IEEE Control Systems Magzine, 1996, 16 (4): 38-47.
    [99] D. D. Rizos and S. D. Fassois. Presliding friction identification based upon the Maxwell Slip model structure. Chaos, 2004, 14(2): 431-445.
    [100] A. Papoulis. Probability, Random Variables, and Stochastic Process. 3rd ed., McGraw-Hill, New York, 1991.
    [101] S. Hoyos, B. Li, J. Bacca, et al., Weighted median filters admitting complex-valued weights and their optimization. IEEE Trans. Signal Processing, 2004, 52(10): 2776-2787.
    [102] N. E. Huang, Z. Shen, S. R. Long. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 1998, A454: 903-995.
    [103] N. E. Huang, M. L. Wu, S. R. Long. A confidence limit for the Empirical mode decomposition and the Hilbert spectral analysis. Proceedings of the Royal Socity of London 2003, A 459: 2317-2345.
    [104] J. N. Yang, Y. Lei. Identification of a natural frequencies and damping ratios of linear structures via Hilbert transform and empirical mode decomposition. Proceedings of IASTED International Conference on Intelligent Systems and Control, Hamza, M.H., Acta Press, Santa Barbara, 1999, pp.310-315.
    [105] J. N. Yang, Y. Lei. Identification of natural civil structures with nonproportional damping, Proceedings of SPIE: Smart Structures and Materials, Smart Systems for Bridges, Structures, and Highways, 2000, 3988: 284-294.
    [106] J. N. Yang, Y. Lei. System identification of linear structures using Hilbert transform and empirical mode decomposition. Proceedings of the 18th International Conference on Modal Analysis, San Antonio, 2000, I: 213-219.
    [107] C. W. Poon, C. C. Chang. Identification of Nonlinear Normal Modes of Structures using the Empirical Mode Decomposition Method. Smart Structures and Materials 2005: sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, edited by Massayoshi Tomizuka, Proc. Of SPIE, 2005, 5765: 881-891.
    [108] N. E. Huang, Z. Shen, S. R. Long. A new view of nonlinear water waves: the Hilbert spectrum. Annual Review of Fluid Mechanics, 1999, 31: 417-454.
    [109]钟佑明,秦树人,汤宝平.一种振动信号新变换法的研究.振动工程学报, 2002, 15(2): 233-238.
    [110]孙晖.经验模态分解理论与应用研究,博士学位论文,浙江大学,2005,9月。
    [111]熊学军,郭炳火,胡筱敏,刘建军. Application and Discussion of Empirical Mode Decomposition Method and Hilbert Spectral Analysis Method.海洋科学进展, 2002年, 20(2):12-21.
    [112] F. Ikhouane, J. Rodellar. On the hysteretic Bouc-Wen model, Part I: Forced limit cycle characterization. Nonlinear Dynamics, 2005, 42: 63-78.
    [113] V. Lampaert, F. Al-vender, J. Swevers. Experimental Characterization of Dry Friction at Low Velocities on a Developed Tribometer Setup for Macroscopic Measurements. Tribology Letters, 2004, 16(1-2): 95-105.
    [114] R. Kappagantu, B. Feeny. Impact and friction of solids, structures and intelligent machines. In Series on Stability, Vibration and Control of Systems: Series B (edited by A. Guran), World Scientific, Singapore, 1998, 14: 167-172.
    [115]李立京,李醒飞,张国雄,李真.电梯轿厢水平振动模型.起重运输机械. 2002, 5: 3-5.
    [116] X. Tan, R. J. Rogers. Equivalent Viscous Damping Models of Coulomb Friction in Multi-Degree-Of-Freedom Vibration Systems. Journal of Sound and Vibration, 1995, 185(1): 33-50.
    [117]曾晓东.电梯导靴引起的振动.起重运输机械. 1997, 12: 7-12.
    [118] F. Segal, A. Rutenberg, R. Levy. Earthquake Response of Structure-elevator System. Journal of Structural Engineering.June, 1996, 122: 607-616.
    [119] C. S. Liu, H. K. Hong, D. Y. Liou. Two-dimensional friction oscillator: group-preserving scheme and handy formulae. Journal of Sound and Vibration, 2003, 266: 49-74.
    [120] K. Y. Sanliturk and D. J. Ewins. Modeling two-dimensional friction contact and its application using harmonic valance method. Journal of Sound and Vibration, 1996, 193(2): 511-523.
    [121]傅武军,朱昌明,张长友,叶庆泰.高速电梯水平振动建模及动态响应分析.机械设计与研究, 2003, 19(6): 65-67.
    [122]李醒飞,张晨阳,李立京,张国雄,郭丽峰.电梯导轨对轿厢振动的影响.中国机械工程. 2005, 16(2): 115-118.
    [123]冯永慧,张建武.高速电梯水平振动模型的建立与仿真.上海交通大学学报, 2007, 41(4): 557-560.
    [124]郭丽峰.电梯导轨不平顺度测量建模及轿厢水平振动特性的研究.博士学位论文.天津大学. pp. 130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700