两株海洋病原菌的分离鉴定、致病机理研究及三株海洋新菌的分类鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界,人口不断增长,自然资源日益匮乏,为解决陆地资源的局限性,人们的注意力开始转向海洋。海洋是地球上最大的生物栖息地,在这一环境中生存的海洋细菌资源越来越受到人们关注。有些海洋细菌在生物制药、海洋污染物的生物降解和修复、生态系统物质循环、海水养殖有益菌的筛选等方面起着关键作用,而有些海洋细菌种类给人们带来极大危害,如海水养殖动物甚至人类病原菌、造成生物污损和环境污染的海洋细菌等。为综合开发利用海洋细菌资源,充分“发挥”海洋细菌资源的“优点”,消除控制有害菌或化弊为利,为人类所用,本论文从海水养殖动物病原菌(避短)和海洋新菌资源(扬长)两个方面对海洋细菌进行了研究。
     工厂化养殖的发展、养殖条件的恶化以及病害防治措施的不合理采用等多种因素,使养殖环境中的微生物区系平衡遭到严重破坏,海水养殖动物病害尤其是细菌性病害频繁发生,新的海水养殖病原菌不断出现。本实验分别从患病半滑舌鳎(Cynoglossus semilaevis Gunther)和大菱鲆(Scophthalmus maximus)中分离纯化出优势菌株WY06和WY28,人工感染实验证实二者均能使宿主和模式动物斑马鱼(Danio rerio)致病,WY06对半滑舌鳎和斑马鱼的半数致死量分别为5.5×103 cfu/g (5.2×105 cfu/fish)和1.9×103 cfu/g (8.9×102 cfu/fish); WY28对大菱鲆和斑马鱼的半数致死量分别为39 cfu/g (3.3×102 cfu/fish)和2.1×104 cfu/g (6.4×103 cfu/fish)。WY06和WY28分别与美人鱼发光杆菌杀鱼亚种(Photobacterium damselae subsp. piscicida)和迟缓爱德华氏菌(Edwardsiella tarda)的16S rDNA序列相似性为99.0%和99.9%。综合二者在形态、生理生化特征及16S rDNA同源性等方面的实验结果,确定WY06为美人鱼发光杆菌杀鱼亚种,WY28为迟缓爱德华氏菌。美人鱼发光杆菌杀鱼亚种作为海水养殖动物病原菌在国内属首次报道。
     迟缓爱德华氏菌是多种淡、海水鱼类的主要病原菌之一,给美国、欧洲各国以及包括中国在内的多个亚洲国家的多种鱼类养殖造成了巨大的经济损失,近几年,一直影响着我国大菱鲆养殖。关于该菌的致病机理至今尚不清楚,成为研究病害防治措施的瓶颈。为寻找该菌的致病因子,本研究对不同来源的迟缓爱德华氏菌致病菌株与非致病菌株的胞外酶活性、溶血性、自动凝集现象、血凝集作用、细胞表面疏水性、血清抗性、胞外蛋白和外膜蛋白图谱、粗提脂多糖和类脂A致病性等进行了比较,发现迟缓爱德华氏菌具有种内多样性。在致病菌株的外膜蛋白和胞外产物中存在三条低分子量的蛋白条带,但不存在于非致病菌株,其功能有待于进一步确定。人工感染实验证实,只有肌肉注射致病菌株的粗提脂多糖和类脂A,才能使鱼致死,从而证实了脂多糖是迟缓爱德华氏菌的重要致病因子之一,并支持了类脂A是脂多糖生物活性中心这一论点。
     为寻找环境友好型爱德华氏菌病的防治措施,将迟缓爱德华氏菌WY28菌株经福尔马林灭活制成灭活疫苗,对大菱鲆进行腹腔注射免疫,免疫后第四周测得免疫鱼血清中抗迟缓爱德华氏菌的抗体效价为1:1280,第六周测得免疫鱼血清中抗迟缓爱德华氏菌的抗体效价为1:3289。低剂量迟缓爱德华氏菌攻毒试验表明,受免鱼的相对存活率明显高于对照组。由此可见,利用从病鱼体内分离的迟缓爱德华氏菌菌株制备的灭活疫苗能使大菱鲆较有效地抵御迟缓爱德华氏菌强毒株的攻击。此外,将大蒜作为口服免疫刺激剂,饲喂虹鳟鱼一周,对爱德华氏菌病的抵抗力明显提高。
     基于16S rDNA序列分析的研究方法显示,绝大多数海洋细菌都未获得纯培养,这就意味着海洋细菌资源还具有很大的开发潜力,还蕴藏着大量未被开发利用的海洋细菌新种,而新的海洋细菌可能产生新的生物活性物质,所以本论文对海洋细菌研究的另一方面是海洋新菌资源的开发。本研究分别从健康中国对虾(Penaeus chinensis, O'sbeck)肠道、黄海水域表层海水中分离出菌株HHS02T, WH169T和DFH11T。HHS02T菌株革兰氏染色阴性,弧形,极生单鞭毛,运动,过氧化氢酶阴性,氧化酶阳性,兼性厌氧,对弧菌抑制剂O/129敏感;WH169T菌株革兰氏染色阴性,极生单鞭毛,短杆状,过氧化氢和氧化酶阳性,严格好氧。在2216E液体培养基中28℃培养3天或更长时间,菌体自动聚集。在2216E平板上28℃培养12天,有出芽现象并有菌柄产生;DFH11T菌株革兰氏染色阴性,嗜冷,严格好氧,螺旋状,极生单鞭毛,过氧化氢酶阴性,硝酸盐还原酶阳性。16S rDNA序列比对结果显示,它们分别与Vibrio sp., Aestuariibacter sp和Oleispira sp的16S rDNA序列相似性为98.5%,95.1%和97.2%,综合菌株多位点序列分析结果、化学分类、生理生化、DNA G+C含量、DNA-DNA杂交以及其他特征,证明三者均为海洋新菌,分别命名为非典型弧菌(Vibrio atypicus),海滩凝集杆菌(Aestuariibacter aggregatus)和惰性解油螺旋菌(Oleispira lenta),保存于两个不同国家的国际承认的菌种保藏中心。
In recent years, pressures on continental resources have grown with rapid increasement of population and subsequent consumption. Resources exploitation switched from continent to ocean. The marine environment is the largest habitat on the earth. Within this environment, research of marine bacteria is a growing field of interest. Marine bacteria are an important and relatively unexploied resource for novel microbial products. Some species of marine bacteria are great of benefit to human, e.g. biopharmaceuty, bioremediation, biogeochemical cycles and prevension of diseases in aquaculture (probiotics). However, some spieses of marine bacteria are harmful to human, e.g. fish and human pathogens, marine biofouling. Thus, marine bacteria resources should be exploited appropriately--taking its advantages and controlling its disadvantages. This research studied marine bacteria bilaterally, e.g. bacterial pathogens of fish and exploitation of new marine bacterial species.
     Development of intensive marine aquaculture, poor management practices and abuse of antibiotics, disturb the stable microbial banlance and cause diseases, especially bacterial dieases in aquculture, sometimes lead to emergence of new pathogens. In present study, two strains WY06 and WY28 were isolated form diseased tongle sole (Cynoglossus semilaevis Gunther) and turbot(Scophthalmus maximus), respectively. Pathogenicity assays revealed that WY06 was virulent to tongue sole and zebrafish (Danio rerio) by intraperitoneal injection challenge, with the LD50 being calculated as 5.5×103 cfu/g of fish (5.2×105 cfu/fish) and 1.9×103 cfu/g of fish (8.9×102 cfu/fish) respectively. WY28 was virulent to turbot and zebrafish by intraperitoneal injection challenge, with the LD50 being calculated as 39 cfu/g (3.3×102cfu/fish) and 1.9×103 cfu/g of fish 2.1×104 cfu/g (6.4×103cfu/fish) respectively. WY06 and WY28 showed 99.0% and 99.9% 16S rDNA sequences similarity to Photobacterium damselae subsp. piscicida and Edwardsiella tarda respectively. On the basis of the polyphasic taxonomic evidence presented in this study, it can be concluded that WY06 and WY28 belong to P. damselae subsp. piscicida and E. tarda respectively. P. damselae subsp. piscicida was described as fish pathogen for the first time in China.
     E. tarda, which had a wide range of host, caused vital economic losses in aqucuture of Ameriacan, European and Asian countries including China. In past few years, E. tarda affected the turbot cultre in China. However, the pathogenic mechanism of the organism still remained to be studied. In order to find pathogenicity related factors, caseinase, gelatinase, elastase, phospholipase, lipase, haemolytic, hydrophobic and serum resistance activities, haemagglutination, autoagglutination, siderophore and profiles of extracellular protein and outer membrane protein of virulent and avirulent strains of E. tarda were examined and compared. There are three low molecular-weight bands that are prensent in vilurent strains but not in avirulent strain. However, their identities were not verified in this study. The pathogenicity of live cells, lipopolysaccharides (LPS) and lipid A have been tested and compared with those of avirulent strains, using rainbow trout (Oncorhynchus mykiss Walbaum) as a model fish. The result revealed that LPS was one of the virulence factors of E. tarda and lipid A was a biologically active determinant of LPS as previously reported.
     In order to find a safe and heathy way to control fish diseases caused by E. tarda, turbots were vaccinated with formalin-killed vaccine of WY28 via intraperitoneal injection. Controls were injected with the same volumes of saline. The evident antibody titres (average was 1:1280) were detected in vaccinated fish 4 weeks after immunization. The antibody titres reached higher level (average was 1:3289) 6 weeks after immunization. Vaccinated turbots were intraperitoneal injected with different concentrations of WY28 to detect relative percent survival (RPS) of formalin-killed vaccine of WY28. The vaccinated fish showed higher RPS against bacteria than the unvaccinated fish. Therefore, the inactivated vaccine of WY28, to a large extent, could prevent turbot diseases that caused by E. tarda. Furthermore, garlic was used as immonostimulant to feed rainbow trout. Pathogenic assay revealed that fish feeded with garlic showed higher RPS against E. tarda than the control fish. Thus, garlic was a valuable candidate of disease control plants.
     Based on 16S rDNA sequences analysis, only 1% of marine bacteria were isolated and identified. This means most of the marine bacteria resources have not been explored. Another point of this research is to explore new species in marine environment. In this study, three strains HHS02T, WH169T and DFH11T were isolated from healthy Chinese prawn(Penaeus chinensis, O'sbeck) and superficial seawater of Yeallow Sea, respectively. Strain HHS02T comprised slightly curved rod-shaped, Gram-negative, non-endospore-forming, catalase-negative, oxidase-positive,O/129 sensitive, facultatively anaerobic cells that were motile by means of single polar flagella. Strain WH169T was a Gram-negative, non-spore-forming, catalase-and oxidase-positive, strictly aerobic, short rod-shaped bacterium with a single, polar flagellum. The cells aggregated together when incubated at 28℃for more than 3 days in marine 2216E broth. Buds and prosthecae are formed when it was grown at 20℃for 12 days on marine 2216E agar. DFH11T strain comprised Gram-negative motile, psychrophilic, nitrate reductase positive, strictly aerobic spirilli that did not produce catalase. HHS02T, WH169T and DFH11T showed 98.5%,95.1 and 97.2% 16S rDNA sequences similarity to Vibrio sp., Aestuariibacter sp. and Oleispira sp. respectively. Based on differential phenotypic properties, fatty acid profile,16S rRNA gene sequence and MLSA results, it is concluded that HHS02T, WH169T and DFH11T represents the novel species for which the name Vibrio atypicus sp. nov., Aestuariibacter aggregatus sp. nov. and Oleispira lenta sp. nov. were proposed respectively. The strains are deposited in two recognized culture collections in two different countries.
引文
1 Lauro FM, McDougald D, Thomas T,18 other authors. The genomic basis of trophic strategy in marine bacteria. PNAS,2009,106:15527-15533.
    2.刘乐然,苏秀榕,李太武.沿海微生物资源开发利用研究进展.河北渔业,2003,4:14-15,40.
    3.李艳华,张利平.海洋微生物资源的开发与利用.微生物学通报,2003,30:113-114.
    4. Irianto A, Austin B. Probiotics in aquaculture. Journal of Fish Diseases,2002,25:633-642.
    5 Jaysankar De, Sarkar A, Ramaiah N. Bioremediation of toxic substances by mercury resistant marine bacteria. Ecotoxicology,2006,15:385-389.
    6 Matsuda M, Yamori T, Naitoh M, Okutani K. Structural revision of sulfated polysaccharide B-1 isolated from a marine Pseudomonas species and its cytotoxic activity against human cancer cell lines. Marine Biotechnology,2003,5:13-19.
    7. Miyasaka T, Asami H, Watanabe K. Impacts of bioremediation schemes on bacterial population in naphthalene-contaminated marine sediments. Biodegradation,2006,17:227-235.
    8. Newman DJ, Hill RT. New drugs from marine microbes:the tide is turning. Journal of Industrial Microbiology and Biotechnology,2006,33:539-544.
    9. Schweder T, Lindequist U, Lalk M. Screening for new metabolites from marine microorganisms. advances in biochemical Engineering. Biotechnology,2005,96:1-48.
    10.李越中,陈琦.海洋微生物资源多样性.生物工程进展,1998,18(4):34-40
    11. Agogue H, Casamayor EO, Bourrain M, Obernosterer I, Joux F, Herndl GJ, Lebaron P. A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiology Ecology,2005,54:269-280.
    12张致平.微生物药物学.北京:化学工业出版社.2003.
    13 Shen B, Liu W, Nonaka, K. Enediyne natural products:biosynthesis and prospect towards engineering novel antitumor agents. Curr Med Chem,2003,10:2317 2325.
    14. Schulze AD, Alabi AO, Tattersall-Sheldrake AR, Miller KM. Bacterial diversity in a marine hatchery:Balance between pathogenic and potentially probiotic bacterial strains. Aquaculture, 2006,256:50-73.
    15. Sandaa RA, Magnesen T, Torkildsen L, Bergh O. Characterization of the bacterial community associated with early stages of great scallop (Pecten maximus), using denaturing gradient gel electrophoresis (DGGE). Systematic and Applied Microbiology,2003,26:302-311.
    16. Winton JR. Fish health management. In Fish Hatchery Management. Edited by G. Wedemeyer. Bethesda:American Fisheries Society.2001.
    17. Olafsen JA. Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture, (2001),200:223-247.
    18 [FAO] Food and Agriculture Organization.. The State of World Aquaculture. FAO Fisheries technical paper 5005.2008.
    19.陈应华.浅谈我国海水养殖业面临的主要问题及对策.海洋与渔业,2008,23-24.
    20. Toranzo AE, Magarinos B, Romalde JL. A review of the main bacterial fish diseases in mariculture systems. Aquaculture,2005,246:37-61.
    21.张晓华.海洋微生物学.青岛:中国海洋大学出版社,2007.
    22. Magarinos B, Romalde JL, Lopez-Romalde S, Morifiigo MA, Toranzo AE. Pathobiological characterization of Photobacterium damselae subsp. piscicida strains isolated from cultured sole (Solea senegalensis). Bullettin of the European Association of Fish Patholologists, 2003,23:183-190.
    23. Toranzo AE, Barreiro S, Casal JF, Figueras A., Magarinos B., Barja JL. Pasteurellosis in cultured gilthead seabream, Sparus aurata:first report in Spain. Aquaculture,1991a,99:1-15.
    24 Bennett IL. Introduction approaches to the mechanism of endotoxin action. Journal of Endotoxin Research,1994,1:2-3.
    25. Grossman N, Leive L. Complement activation via the alternative pathway by purified salmonella lipopolysaccharide in afected by its structure but not its O-antigen length. Journal of Immunology, 1984,132:376-385.
    26.潘晓艺,沈锦玉,尹文林,曹铮.水生动物的弧菌病及其致病机理.大连水产学院学报,2006,21:272—277.
    27. Alderman DJ, Michel C. Chemotherapy in aquaculture today. In Chemotherapy in Aquaculture: From Theory to Reality, Edited by C. Michel and D. J. Alderman. Paris:Office International des Epizootics.1992. pp.3-24.
    28. Munro ALS, Hasting TS. Furunculosis, Bacterial Disease of Fish., Edited by V. Inglis, J. R. Roberts and N. R. Bromage. Oxford:Blackwell Scientific Publications.1993. pp.122-142.
    29. Cabello FC. Heavy use of prophylactic antibiotics in aquaculture:a growingproblem for human and animal health and for the environment. Environmental Microbiology,2006,8:1137-1144.
    30. Zhou Q, Li K, Jun X, Bo L. Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresource Technology,2009,100:3780-3786.
    31. Midtlyng PJ. Novel vaccines and new vaccination strategies for fish. Bullettin of the European Association of Fish Patholologists,1997,17:239-244.
    32. Midtlyng PJ. Progress in fish vaccinology. In Developments in Biologicals, Basel:S. Karger.2005. pp.340.
    33. Gudding R, Lillehaug A, Evensen,φ. Recent developments in fish vaccinology. Veterinary Immunology and Immunopathology,1999,72:203-212.
    34. Ingunn S, Bjφrn K, Eirik B, Frost P. Vaccines for fish in aquaculture. Expert Review of Vaccines 2005,4:89-101.
    35.夏永娟,黄威权.新型鱼用疫苗的研究进展.中国水产科学,2001,8:86-88.
    36. Marsden MJ, Vaughan LM, Foster TJ, Secombes CJ. A live (delta aroA) Aeromonas salmonicida vaccine for furunculosis preferentially stimulates T-cell responses relative to B-cell responses in rainbow trout (Oncorhynchus mykiss). Infection and Immunity,1996,64:3863-3869.
    37. Vaughan LM, Smith PR, Foster TJ. An aromatic-dependent mutant of the fish pathogen Aeromonas salmonici da is attenuated in fish and is effective as a live vaccine aginst the salmonid disease furunculosis. Infection and Immunity,1993,61:2172-2181.
    38. Lawrence ML, Cooper RK, Thune RL. Attenuation, persistence, and vaccine potential of an Edwardsiella ictaluri purA mutant. Infection and Immunity,1997,65:4642-4651.
    39. Singer JT. Ma CH, Boettcher KJ. Overcoming a defect in generalized recombination in the marine fish pathogen Vibrio anguillarum 775:construction of a recA mutant by marker exchange. Applied and Environmental Microbiology,1996,62:3727-3731.
    40. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo Science,1990,247:1465-1468.
    41.Dixon B.第三次疫苗革命.国外医学(预防、诊断、治疗用生物制品分册),1996,19:1-2.
    42.孙树汉.核酸疫苗.In.上海:第二军医大学出版社.2000.
    43. Ellis AE. Fish vaccination. In. London:Academic Press.1988.
    44. Sakai M, Kobayashi M, Kawauchi H. Enhancement of chemiluminescent responses of phagocyctic cells from rainbow trout, O. mykiss, by injection of growth hormone. Fish and Shellfish Immunology,1995,5:375-379.
    4.5. Jorgensen J, Robertsen, B. Yeast β-glucan stimulates respiratory burst activity of Atlantic salmon (Salmo salar L.) macrophages. Developmental and Comparative Immunology,1995,19.
    46. Solem ST, Jorgensen JB, Robertson B. Stimulation of respiratory burst and phagocytic activity in Atlantic salmon(S. salar L.) macrophages by lipopolysaccharide. Fish and Shellfish Immunology, 1995,5:475-491.
    47. Ardo L, Yin G, Xu P, Varadi L, Szigeti G, Jeney Z, Jeney G Chinese herbs (Astragalus membranaceus and Lonicera japonica) and boron enhance the non-specific immune response of Nile tilapia (Oreochromis niloticus) and resistance against Aeromonas hydrophila. Aquaculture, 2008,275:26-33.
    48. Dugenci SK, Arda N, Candan A. Some medicinal plants as immunostimulant for fish. Journal of Ethnopharmacology,2003,88:99-106.
    49. Logambal SM, Venkatalakshmi S, Michael RD. Immunostimulatory effect of leaf extract of Ocimum sanctum Linn. in Oreochromis mossambicus (Peters). Hydrobiologia,2000,430:113-120.
    50. Rao YY, Das BK, Iyotymayee P, Chakrabarti R. Effect of Achyranthes aspera on the immunity and survival of Labeo rohita infected with A. hydrophila. Fish and Shellfish Immunology,2006,20: 265-273.
    51. Fuller R. A review, probiotics in man and animals. Journal of Applied Bacteriology,1989,66: 365-378.
    52. Moriarty DJW. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture, 1998, 164:351-358.
    53. Queiroz JF, Boyd CE. Effects of bacterial inoculum in channel catfish ponds. Journal of the World Aquaculture Society,1998,29:67-73.
    54. Brunt J, Newaj-Fyzul A, Austin B. The development of probiotics for the control of multiple bacterial diseases of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 2007,30:573-579.
    55. Gauthier Q Lafay B, Ruimy R, Breittmayer V, Nicolas JL, Gauthier M, Christen R. Small-subunit rRNA sequences and whole DNA relatedness concur for the reassignment of Pasteurella piscicida (Snieszko et al.) Janssen and Surgalla to the genus Photobacterium as Photobacterium damsela subsp. piscicida comb. nov. International Journal of Systematic Bacteriology,1995,45:139-144.
    56. Liu PC, Lin JY, Lee KK. Virulence of Photobacterium damselae subsp. piscicida in cultured cobia Rachycentron canadum. Journal of Basic Microbiology,2003,43:499-507.
    57. Noya N, Magarinos B, Lamas J. Interactions between peritoneal exudate cells (PECs) of gilthead seabream(Sparus aurata) and Pasteurella piscicida. A morphological study. Aquaculture,1995, 131:11-21.
    58. Skarmeta AM, Bandin I, Santos Y, Toranzo AE. In vitro killing of Pasteurella piscicida by fish macrophages. Disease of Aquatic Organisms,1995,23:51-57.
    59. Magarinos B, Romalde JL, Bandin I, Fouz B, Toranzo AE. Phenotypic, antigenic and molecular characterization of Pasteurella piscicida isolated from fish. Applied and Environmental Microbiology,1992a,58:3316-3322.
    60. Hawke JP, Thune RL, Cooper RK, Judice E, Kelly-Smith M. Molecular and phenotypic characterization of Photobacterium damselae subsp piscicida isolated from hybrid striped bass cultured in Louisiana, USA. Journal of Aquatic Animal Health,2003,15:189-201.
    61. Kvitt H, Ucko M, Colorni A, Batargias C, Zlotkin A, Knibb W. Photobacterium damselae ssp. piscicida:detection by direct amplification of 16S rRNA gene sequences and genotypic variation as determined by amplified fragment length polymorphism (AFLP). Disease of Aquatic Organisms, 2002,48:187-195.
    62. Magarinos B, Toranzo A E, Barja J L, Romalde JL. Existence of two geographically linked clonal lineages in the bacterial pathogen Photobacterium damselae subsp. piscicida. Epidemiology and Infection,2000,125:213-219.
    63. Thyssen A, van Eygen S, Hauben L, Goris J, Swings J, Ollivier F. Application of AFLP for taxonomic and epidemiological studies of Photobacterium damselae ssp. piscicida. International Journal of Systematic and Evolutionary Microbiology,2000,50:1013-1019.
    64. Thune RL, Fernandez DH, Hawke JP, Miller R. Construction of a safe, stable, efficacious vaccine against Photobacterium damselae sp. piscicida. Disease of Aquatic Organisms,2003,57:51-58.
    65. do Vale A, Afonso A, Silva MT. The professional phagocytes of sea bass (Dicentrarchus labrax L.):cytochemical characterisation of neutrophils and macrophages in the normal and inflamed peritoneal cavity. Fish Shellfish Immunol,2002,13:183-198.
    66. do Vale A, Marques F, Silva MT. Apoptosis of sea bass(Dicentrarchus labrax L.) neutrophils and macrophages induced by experimental infection with Photobacterium damselae subsp piscicida. Fish Shellfish Immunol,2003,15:129-144.
    67. do Vale A, Silva MT, dos Santos NM, Nascimento DS, Reis-Rodrigues P, Costa-Ramos C, Ellis AE, Azevedo JE. AIP56, a novel plasmid-encoded virulence factor of Photobacterium damselae subsp. piscicida with apoptogenic activity against sea bass macrophages and neutrophils. Molecular Microbiology,2005,58(4):1025-1038.
    68. Magarinos B, Bonet R, Romalde JL, Martinez MJ, Congregado F, Toranzo AE. Influence of the capsular layer on the virulence of Pasteurella piscicida for fish. Microb Pathog,1996a,21: 289-297.
    69. Jung TS, Thompson KD, Volpatti D, Galeotti M, Adams A. In vivo morphological and antigenic characteristics of Photobacterium damselae subsp. piscicida. J. Vet. Sci.,2008 9(2):169-175.
    70. Bonet R, Magarinos B, Romalde JL, Simon-Pujol MD, Toranzo AE, Congregado F. Capsular polysaccharide expressed by Pasteurella piscicida grown in vitro. FEMS Microbiol Lett,1994, 124:285-289.
    71. do Vale A, Ellis AE, Silva MT. Electron microscopic evidence that expression of capsular polysaccharide by Photobacterium damselae subsp. piscicida is dependent on iron availability and growth phase. Dis Aquat Organ,2001,44:237-240.
    72. Arijo S, Borrego JJ, Zorilla I, Balebona MC, Morinigo MA. Role of the capsule of Photobacterium damselae subsp. piscicida in protection against phagocytosis and killing by gilt-head seabream (Sparus aurata, L.) macrophages. Fish Shellfish Immunol,1998,8:63-72.
    73. Acosta, F., Ellis, A.E., Vivas, J., Padilla, D., Acosta, B., Deniz, S., Bravo, J. and Real, F. Complement consumption by Photobacterium damselae subsp. piscicida in seabream, red porgy and seabass normal and immune serum. Effect of the capsule on the bactericidal effect. Fish & Shellfish Immunology,2006,20:709-717.
    74. Diaz-Rosales P, Chabrillon M, Magarinos M A, Balebona M. C. Survival against exogenous hydrogen peroxide of Photobacterium damselae subsp. piscicida under different culture conditions. Journal of Fish Diseases,2003,26:305-308.
    75. Diaz-Rosales P, Chabrillon M, Arijo S, Martinez-Manzanares E, Morinigo MA, Balebona MC. Superoxide dismutase and catalase activities in Photobacterium damselae ssp. piscicida. Journal of Fish-Diseases, 2006, 29 (6):355-364.
    76. Mietzner TA, Morse SA. The role of iron-binding proteins in the survival of pathogenic bacteria. Annual Review of Nutrition,1994,14:471-493.
    77. Weinberg ED. Patho-ecological implications of microbial acquisition of host iron. Rev Med Microbiol,1998,9:171-178.
    78. Osorio CR, Juiz-Rio S, Lemos ML. A siderophore biosynthesis gene cluster from the fish pathogen Photobacterium damselae subsp. piscicida is structurally and functionally related to the Yersinia high-pathogenicity island. Microbiology,2006,152:3327-3341.
    79. Magarinos B, Santos Y, Romalde JL, Rivas C, Barja JL, Toranzo AE. Pathogenic activities of live cells and extracellular products of the fish pathogen Pasteurella piscicida. J Gen Microbiol,1992b, 138:2491-2498.
    80. Lopez-Doriga MV, Barnes AC, dos Santos NMS, Ellis AE. Invasion of fish epithelial cells by Photobacterium damselae subsp. piscicida:evidence for receptor specificity, and effect of capsule and serum. Microbiology,2000,146:21-30.
    81. Hoshina T. On a new bacterium Paracolobactrum anguillimortiferum n. sp.. Bull. Japanese Society Scien. Fisheries,1962,28:162-164
    82 Garrity GM. Bergey's Manual of Systematic Bacteriology,2nd edn. Vol.2:The Proteobacteria New York:Springer-Verlag.2005.
    83. Kourany M, Vasquez MA, Saenz R. Edwardsiellosis in man and animals in Panama:clinical and epidemiological characteristics. Am J Trop Med Hyg,1977,26:1183-1190.
    84. Wilson J, Waterer R. Serious infections with Edwardsiella tarda. A case report and review of the literature. Arch Intern Med,1989,149:208-210.
    85 Muroga K. Viral and bacterial diseases of marine fish and shellfish in Japanese hatcheries. Aquaculture,2001,202:23-44.
    86. Mowbray EE, Buck G, Humbaugh KE, Marshall GS. Maternal colonization and neonatal sepsis caused by Edwardsiella tarda. Pediatrics,2003,111:296-298.
    87 Nougayrede P, Vuillaume A, Vigneulle M, Faivre B, Luengo S, Delprat J. First isolation of Edwardsiella tarda from diseased turbot (Scophthalmus maximus) reared in a sea farm in the Bay of Biscay. Bulletin of the European Association of Fish Pathologists,1994; 14:128-9.
    88 Sahoo PK, Mukherjee SC, Sahoo SK. Aeromonas hydrophila versus Edwardsiella tarda:a pathoanatomical study in Clarias batrachus. Journal of Aquaculture,1998,6:57-66.
    89 Sahoo PK, Swain P, Sahoo SK, Mukherjee SC, Sahu AK. Pathology caused by the bacterium Edwardsiella tarda in Anabas testudineus (Bloch). Asian Fisheries Science,2000,13:357-62.
    90 Clavijo AM, Conray G, Santander J, Aponte F. First Report of E. tarda from tilapias in Venezuela. Bulletin of the European Association of Fish Pathologists.2002,22:280-2.
    91 Horenstein S, Smolowitz R, Uhlinger K, Roberts S. Diagnosis of Edwardsiella tarda Infection in Oyster Toadfish (Opsanus tau) Held at the Marine Resources Center,2004, Volume 207:MBL
    92. Egusa S. Some bacterial diseases of freshwater fishes in Japan.1976,10:103-14.
    93. Kusuda R, Itami T, Munekiyo M, Nakajima H. Characteristics of an Edwardsiella sp from an epizootic of cultured crimson sea breams. Bulletin of the Japanese Society of Scientific Fisheries, 1977,43:129-34.
    94 Amandi A, Hiu SF, Rohovec JS, Fryer JL. Isolation and characterization of Edwardsiella tarda from fall chinook salmon (Oncorhynchus tshawytscha). Applied and Environmental Microbiology, 1982,43(6):1380-1384.
    95. Uhland FC, Helie P, Higgins R. Infections of Edwardsiella tarda among Brook Trout in Quebec. Journal of Aquatic Animal Health,2000,12(1):74-77.
    96. Sano M, Minagowa M, Sugiyama A, Nakajima K. Diseases of cultured marine fish in subtropical areas in Japan. Bulletin of National Research Institute of Aquaculture Supplement,2001,5:15-18.
    97. Plumb JA. Edwardsiella septicaemia. In Bacterial diseases of fish. V. Inglis, R. J. Roberts, and N. R. Bromage (eds.). Blackwell Scientific Publications, Oxford, England.1993. pp.61-79.
    98. Du M, Chen J, Zhang X, Li A, Li Y, Wang Y. Retention of virulence in a viable but nonculturable Edwardsiella tarda isolate. Appl. Environ. Microbiol,2007,73:1349-1354.
    99. Austin B, Austin DA. Bacterial Fish Pathogens:Diseases of Farmed and Wild Fish,4th edn. Springer-Praxis, Chichester.2007.
    100. Padros F, Zarza C, Dopazo L, Cuadrado M, Crespo S. Pathology of Edwardsiella tarda infection in turbot, Scophthalmus maximus (L.). Journal of Fish Diseases,2006,29 (2):87-94
    101 Baya AM, Romalde JL, Green DE, Navarro RB, Evans J, May EB, Toranzo, AE. Edwardsiellosis in wild striped bass from the Chesapeake Bay. Journal of Wildlife Diseases,1997,33:517-525.
    102.莫照然,茅云翔,陈师勇,张振冬,徐永立,张培军.养殖牙鲆鱼苗腹水症病原菌的鉴定及 系统发育学分析.海洋与湖沼,2003,34(2):131-141.
    103.王斌,孙岑,范薇,刘双凤,刘永波,孙颜珂.养殖大菱鲆出血性败血症病原菌致病性的研究及鉴定.大连水产学院学报,2006,21(2):100-104.
    104.白方方,兰建新,王燕,韩茵,张晓华.迟缓爱德华氏菌间接ELISA快速检测法。中国水产科学,2009,]6(4):659-665.
    105. Swain P, Nayak SK.. Comparative sensitivity of different serological tests for seromonitoring and surveillance of Edwardsiella tarda infection of Indian major carps. Fish and shellfish immunology, 2003,15 (4):333-340.
    106. Lan J, Zhang XH, Wang Y, Chen J, Han Y. Isolation of an unusual strain of Edwardsiella tarda from turbot and establish a PCR detection technique with the gyrB gene. J Appl Microbiol,2008, 105(3):644-651.
    107. Savan R, Kono T, Itami T, Sakai M. Loop-mediated isothermal amplification:an emerging technology for detection of fish and shellfish pathogens. Journal of Fish Diseases,2005,28: 573-581.
    108. Ling SHM, Wang XH, Xie L, Lim TM, Leung KY. Use of green fl uorescent protein (GFP) to track the invasive pathways of Edwardsiella tarda in the in vivo and in vitro fish models. Microbiology,2000,146:7-19.
    109. Tan YP, Lin Q, Wang XH, Joshi S, Hew CL, Leung KY. Comparative proteomic analysis of extracellular proteins of Edwardsiella tarda. Infect Immun,2002,70:6475-6480.
    110. Srinivasa Rao PS, Lim TM, Leung KY. Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis. Infect Immun,2003a,71: 1343-1351.
    111. Sakai T, Kanai K, Osatomi K, Yoshikoshi K. Identification of a 19.3-kDa protein in MRHA-positive Edwardsiella tarda:putative fimbrial major subunit. FEMS microbiology letters, 2003,226:127-133.
    112. Sakai T, Kanai K, Osatomi K, Yoshikoshi K. Identification and Characterization of a Fimbrial Gene Cluster of Edwardsiella tarda Expressing Mannose-resistant Hemagglutination. Fish Pathology,2004,39:87-93
    113. Yasunobu H, Arikawa Y, Furutsuka-Uozumi K, Dombo M, Iida T, Mahmoud MM, Okuda J, Nakai T. Induction of hemagglutinating activity of Edwardsiella tarda by sodium chloride. Fish Pathology,2006,41:29-34.
    114. Mahmoud MM, Okuda J, Nakai T. Sodium chloride-enhanced adherence of Edwardsiella tarda to HEp-2 cells. Fish Pathology,2006,41:165-170.
    115. Sakai T, Iida T, Osatomi K, Kanai K. Detection of type 1 fimbrial genes in fish pathogenic and non-pathogenic Edwardsiella tarda strains by PCR. Fish Pathology,2007,42:115-117.
    116 Janda JM, Abbott SL, Kroske-Bystrom S, Cheung WK, Powers C, Kokka RP, Tamura K Pathogenic properties of Edwardsiella species; J. Clin Microbiol,1991,29:1997-2001.
    117. Strauss EJ, Ghori N, Falkow S. An Edwardsiella tarda strain containing a mutation in a gene with homology to sglB and hpmB is defective for entry into epithelial cells in culture. Infect Immun,1997,65:3924-3932.
    118 Ling SHM, Wang XH, Lim TM, Leung KY Green fluorescent protein-tagged Edwardsiella tarda reveals portal of entry in fish. FEMS Microbiol Lett,2001,194:239-243
    119. Srinivasa Rao PS, Lim TM, Leung KY. Opsonized virulent Edwardsiella tarda strains are able to adhere to and survive and replicate within fish phagocytes but fail to stimulate reactive oxygen intermediates. Infection and Immunity,2001,69:5689-5697.
    120. Mathew JA, Tan YP, Srinivasa Rao PS, Lim TM, Leung KY. Edwardsiella tarda mutants defective in siderophore production, motility, serum resistance and catalase activity. Microbiology, 2001,147:449-457.
    121. Srinivasa Rao PS, Yamada Y, Leung KY. A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiology,2003b,149: 2635-2644.
    122. Shen YR, Chen JD. Expression of virulent genes of Edwardsiella tarda correlated with mortality of diseased-fi sh infection; J. Fish. Soc. Taiwan,2005,32:80-81
    123. Han HJ, Kim DH, Lee DC, Kim SM, Park SI. Pathogenicity of Edwardsiella tarda to olive flounder, Paralichthys olivaceus (Temminck and Schlegel); J Fish Dis,2006,29:601-609.
    124 Yamada Y and Wakabayashi H Identification of fish pathogenic strains belonging to genus Edwardsiella by sequence analysis of sodB. Fish Pathol,1999,34:145-150
    125. Kokubo T, Iida T, Wakabayashi H. Production of siderophores by Edwardsiella tarda. Fish Pathology,1990,25:237-241.
    126 Thune RL, Stanley LA, Cooper RK. Pathogenesis of gram-negative bacterial infections in warmwater fish. Annu Rev Fish Dis 1993,3:37-68.
    127. Wang F, Cheng S, Sun K, Sun L. Molecular Aanalysis of the fur (ferric uptake regulator) gene of a pathogenic Edwardsiella tarda Strain. Journal of Microbiology,2008,46 (3):350-355.
    128. Janda JM, Abbott SL. Expression of an iron-regulated hemolysin by Edwardsiella tarda. FEMS Microbiol Lett,1993,111:275-280.
    129. Chen JD, Lai SY, Huang SL. Molecular cloning, characterization and sequencing of the hemolysin gene from Edwardsiella tarda. Arch Microbiol,1996,165:9-17.
    130. Ullan MA, Arai T. Pathological activities of the naturally occurring strains of Edwardsiella tarda. Fish Pathology,1983a,18 (2):65-70.
    131. Ullan MA, Arai T. Exotoxic substances produced by Edwardsiella tarda. Fish Pathology,1983b, 18 (2):71-75.
    132. Suprapto H, Nakai T, Muroga K. Toxicity of extracellular products and intracellular components of Edwardsiella tarda in the Japanese eel and flounder. Journal of Aquatic Animal Health,1995,7 (4):292-297.
    133. Tan YP, Zheng J, Tung SL, Rosenshine I, Leung KY. Role of type III secretion in Edwardsiella tarda virulence. Microbiology,2005,151:2301-2313.
    134 Srinivasa Rao PS, Yamada Y, Tan YP, Leung KY Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis;Mol Microbiol, 2004,53:573-586.
    135. Zheng J, Tung SL, Leung KY. Regulation of a type III and a putative secretion system in Edwardsiella tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infect Immun,2005,73:4127-4137.
    136. Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev,1998,62:379-433.
    137. Zheng J, Leung KY. Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol,2007,66(5):1192-1206.
    138. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science,2006,312:1526-1530.
    139. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Heidelberg JF, et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA,2006,103:1528-1533.
    140 Bladergroen MR, Badelt K, Spaink HP. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact,2003,16:53-64.
    141. Dudley EG, Thomson NR, Parkhill J, Morin NP, Nataro JP. Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol,2006,61:1267-1282.
    142. Economou A, Christie RC, Christie PJ, Fernandez RC, Palmer T, Pugsley AP Secretion by numbers:protein traffic in prokaryotes. Mol Microbiol,2006,62:308-319.
    143 Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ. Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol,2007,9: 797-803.
    144. Yahr TL. A critical new pathway for toxin secretion? N Engl J Med,2006,355:1171-1172.
    145 Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D, et al. Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol,2007,64:1466-1485.
    146. Wang X, Wang Q, Xiao J, Liu Q, Wu H, Xu L, Zhang Y. Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invation of fish. Fish and Shellfish Immunology,2009,27:469-477
    147 Gonzalez JE, Keshavan ND. Messing with bacterial quorum sensing. Microbiol Mol Biol Rev, 2006,70:859-875.
    148. McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont R J. LuxS-based signaling in Streptococcus-gordonii: autoinducer 2 controls-carbohydrate metabolism and-biofilm formation with Porphyromonas gingivalis. J Bacteriol,2003,185:274-284.
    149. Rickard AH, Palmer RJ, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE. Autoinducer 2:a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol,2006,60:1446-1456.
    150. Lyon WR, Madden JC, Levin JC, Stein JL, Caparon MG. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol Microbiol,2001,42:145-157.
    151. Marouni MJ, Sela S. The luxS gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells. Infect Immun,2003,71:5633-5639.
    152. Ohtani K, Hayashi H, Shimizu T. The luxS gene is involved in cell-cell signaling for toxin production in Clostridium perfringens. Mol Microbiol,2002,44:171-179.
    153. Stroeher UH, Paton AW, Ogunniyi AD, Paton JC. Mutation of luxS of Streptococcus pneumoniae affects virulence in a mouse model. Infect Immun,2003,71:3206-3212.
    154. Winzer K, Sun YH, Green A, Delory M, Blackley D, Hardie KR, Baldwin TJ, Tang CM. Role of Neisseria meningitidis luxS in cell-to-cell signaling and bacteremic infection. Infect Immun,2002, 70:2245-2248.
    155. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A,2002, 99:3129-3134.
    156. Zhang M, Sun K., Sun L. Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain. Microbiology,2008,154:2060-2069.
    157. Das S, Lyla PS, Ajmal Khan, S. Marine microbial diversity and ecology:importance and future perspectives. Current science,2006,90 (10):1325-1335.
    158. Pinhassi J, Zweifel U, Hagstrom A. Dominant marine bacterioplankton species found among colony-forming bacteria. Applied and Environmental Microbiology,1997,63:3359-3366.
    159.张晓华,陈皓文.海洋原核生物名称.北京:科学出版社,2009.
    160. Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Environ.Microbiol,2009, In press.
    161. Tindall BJ. Respiratory lipoquinones as biomarkers. In "Molecular Microbial Ecology Manual", Akkermans, A. de Bruijn, F., van Elsas, D. (ed) Kluwer Publishers, Dordrecht, Netherlands. Section 4.1.5, Supplement 1 2nd edn.2005.
    162. Fox GE, Pechman KR, Woese CR. Comparative cataloging of 16s ribosomal ribonucleic acid: molecular approach to procaryotic systematics. Int J Syst Bacteriol,1977,27:44-57.
    163. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988,239:487-491
    164. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glockner, FO, Rossello-Mora R. The All-Species Living Tree project:a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol,2008,31(4):241-250.
    165. Brenner DJ, Martin MA, Hoyer BH. Deoxyribonucleic acid homologies among some bacteria. J. Bacteriol,1967,94:486-487.
    166. De Ley J, Park IW, Tijtgat R, van Ermengem J. DNA homology and taxonomy of Pseudomonas and Xanthomonas. Microbiol,1966,42:43-56.
    167. Johnson JL, Ordal EJ. Deoxyribonucleic acid homology in bacterial taxonomy:effect of incubation temperature on reaction specificity. J Bacteriol 1968,95:893-900.
    168. McCarthy BJ, Bolton ET. An approach to 1453 the measurement of genetic relatedness among organisms. Proc. Natl. Acad. Sci. U.S.,1963,50:156-164.
    169. Pace B,Campbell LL. Homology of ribosomal ribonucleic acid of diverse bacterial species with Escherichia coli and Bacillus stearothermophilus. J Bacteriol,1971,107:543-547.
    170. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M. Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol,1973,23:333-339.
    171. Grimont PAD, Popoff MY, Grimont F, Coynault C, Lemelin M. Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol,1980,4:325-330.
    172. Rossello-Mora R. DNA-DNA reassociation methods applied to microbial taxonomy and their critical evaluation. p 23-50 In "Molecular identification, systematics, and population structure of prokaryotes" Stackebrandt, E. (ed). Springer Verlag, Heildelberg, Germany.2006.
    173 Stackebrandt E. The richness of prokaryotic diversity:there must be a species somewhere. Food Technol Biotechnol,2003,41:17-22.
    174 Maiden MC. Multilocus sequence typing of bacteria. Annu Rev Microbiol,2006,60:561-88.
    175. Sawabe T, Kita-Tsukamoto K, Thompson FL. Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol,2007b,189:7932-7936.
    176. Thompson FL, Gromez-Gil B, Vasconcelos ATR, Sawabe T. Multilocus sequence analysis reveals that Vibrio harveyi and V. campbellii are distinct species. Appl Environ Microbiol,2007,73: 4279-4285.
    177. Ibarz Pavon AB, Maiden MC. Multilocus sequence typing. Methods Mol Biol,2009,551: 129-140.
    178 Zeigler DR. Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol,2003,53:1893-1900.
    179. Santos SR, Ochman H. Identification and phylogenetic sorting of bacterial lineages with-universally conserved genes and proteins. Environ Microbiol,2004,6:754-759.
    180. Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J. Phylogeny and molecular identification of vibrios on the basis of Multilocus Sequence Analysis. Syst Environ Microbiol,2005,71:5107-5115.
    181 Johnson JL, Whitman WB. Similarity analysis of DNAs. In Methods for General and Molecular Microbiology. C. A. Reddy, T. J. Beveridge, J. A. Breznak, G. Marzluf, T. M. Schmidt,& L. R. Snyder (ed.) ASM Press, Washington DC.2007. p.624-652.
    182 De Ley J. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol,1970,101:738-754.
    183 Ko CY, Johnson JL, Barnett LB, McNair HM, Vercellotti JR. A sensitive estimation of the percentage of guanine plus cytosine in deoxyribonucleic acid by high performance liquid chromatography. Anal Biochem,1977,80:183-192.
    184 Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett,1984,25:125-128.
    185 Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol,1989,39: 159-167.
    186. Kusuda R, Miura W. Characteristics of a Pasteurella sp. pathogenic for pond cultured ayu. Fish Pathol,1972,7:51-57.
    187. Magarinos B, Toranzo AE, Romalde JL. Phenotypic and pathobiological characteristics of Pasteurella piscicida. Annu. Rev. Fish Dis,1996b,6; 41-64.
    188 Toranzo AE, Santos Y, Nunez S, Barja JL. Biochemical and serological characteristics, drug resistance, and plasmid profiles of Spanish isolates of Aeromonas salmonicida. Fish Pathol,1991b, 26:55-60.
    189 Zorrilla I, Balebona MC, Morinigo MA, Sarasquete C, Borrego JJ. Isolation and characterization of the causative agent of pasteurellosis, Photobacterium damsela ssp. piscicida, from sole Solea senegalensis (Kaup). J Fish Dis,1999,22:167-171.
    190 Sambrook J, Fritsch EF, Maniatis T.. Molecular cloning:a laboratory manual,2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.1989.
    191 Austin B, Austin DA. Methods for the Microbiological Examination of Fish and Shellfish. Chichester:Ellis Horwood.1989.
    192. Wardlaw A C. Practical statistics for experimental biologists. Chichester:John Wiley and Sons. 1985.
    193. Phelan PE,Pressley ME, Witten PE, Mellon-MT, Blake S, Kim CH. Characterization of snakehead rhabdovirus infection in Zebrafish(Danio rerio). Journal of Virology,2005,79: 1842-1852.
    194 Kent ML. Characteristics and identification of Pasteurella and Vibrio pathogenic to fishes using API-20E (Analytab Products) multitube test trips. Can J Fish Aquat Sci,1982,39: 1725-1729.
    195 Thyssen A, Grisez L, van Houdt R, Ollevier F. Phenotypic characterization of the marine pathogen Photobacterium damselae subsp. piscicida. International Journal of Systematic Bacteriology,1998,48:1145-1151.
    196 Thyssen A, Ollevier F. In vitro antimicrobial susceptibility of Photobacterium damselae subsp. piscicida to 15 different antimicrobial agents. Aquaculture,2001,200:259-269.
    197. Kimura T, Kitao T.. On the causative agent of tuberculosis of yellowtail. Fish Pathol,1971,6: 8-14.
    198 Kubota S, Kimura M, Egusa S. Studies of a bacterial tuberculosis of the yellowtail-I. Symptomatology and histopathology. Fish Pathol,1970,4:11-18.
    199.程开敏,俞开康,战文斌.大菱鲆疾病的研究进展.鱼类病害研究,2001,23(2):33-38.
    200.周进.大菱鲆主要疾病及其防治.水产养殖,2003,24(1):31-32.
    201.李筠,颜显辉,陈吉祥,王印庚,李秋芬.养殖大菱鲆腹水病病原的研究.中国海洋大学报,2006,36(4):649-654.
    202.雷霁霖.海水养殖新品种介绍:大菱鲆.中国水产,2000,4:38-39.
    203. Bricknell IR, Bowden TJ, Verner-Jeffreys DW, Bruno DW, Sheilds RJ, Ellis AE. Susceptibility of juvenile and sub-adult Atlantic halibut (Hippoglossus hippoglossus L.) to infection by Vibrio anguillarum and efficacy of protection induced by vaccination. Fish Shellfish Immunol,2000,10: 319-327.
    204. Vivas J, Padilla D, Real F, Bravo J, Grasso V, Acosta F. Influence of environmental conditions on biofilm formation by Hafnia alvei strains. Veterinary Microbiology,2008 129:150-155.
    205. Budino B, Cal RM, Piazzon MC, Lamas J. The activity of several components of the innate immune system in diploid and triploid turbot. Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology,2006,145:108-113.
    206. Shin SH, Lim Y, Lee SE, Yang NW, Rhee JH. CAS agar diffusion assay for the measurement of siderophores in biological fluids. Journal of Microbiological Methods,2001,44:89-95.
    207. Janda JM, Oshiro LS, Abbott SL, Duffey PS. Virulence markers of mesophilic aeromonads: association of the autoagglutination phenomenon with mouse pathogenicity and the presence of a peripheral cell-associated layer. Infection and Immunity,1987,55:3070-3077.
    208 Abbass A, Sharifuzzaman SM, Austin B. Cellular components of probiotics control Yersinia ruckeri infection in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 2010,33:31-37.
    209 Hancock IC, Poxton IR. Bacterial Cell Surface Techniques. John Wiley and Sons, Chichester. 1988.
    210 Grisez, L., Olllevier F. Comparative Serology of the Marine Fish Pathogen Vibrio anguillarum. Applied and Environmental Microbiology,1995,61:4367-4373.
    211 Simonian MH, Smith JA. Spectrophotometric and colorimetric determination of protein concentration. In:Ausubel F. M., Brent R., Kingston, R. E., Moore, D. D., Seidman, J.G, Smith, J.A., Struhl, K. editors. Current protocols in molecular biology, Vol.2. New York, USA:John Wiley and Sons; 10.1A.1-10.1A.9.2006.
    212 Keler T, Nowotny A. Metachromatic assay for the quantitative determination of bacterial endotoxins. Analytical Biochemistry,1986,156:189-193.
    213. Tsai CM, Frasch CE. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Analytical Biochemistry,1982,119:115-119.
    214. Darwish AM, Newton JC, Plumb JA. Effect of incubation temperature and salinity on expression of the outer memberane protein profile of Edwardsiella tarda. Journal of Aquatic Animal Health 2001,13:269-275.
    215 Kumar Q Rathore G, Sengupta U, Singh V, Kapoor D, Lakra WS. Isolation and characterization of outer membrane proteins of Edwardsiella tarda and its application in immunoassays. Aquaculture,2007,272:98-104.
    216 Panangala VS, Shoemaker CA, McNulty ST, Arias CR, Klesius PH. Intra-and interspecific phenotypic characteristics of fish-pathogenic Edwardsiella ictaluri and E. tarda. Aquaculture Research,2006,37:49-60.
    217. Hirono 1, Tange N, Aoki T. Iron regulated hemolysin gene from Edwardsiella tarda. Molecular Microbiology,1997,24:851-856.
    218.Raetz CRH. Biochemistry of endotoxins. Annual Review of Biochemistry,1990,59:129-170.
    219. Rietschel ET, Brade H. Bacterial endotoxins. Scientific American,1992,267:54-61.
    220. Erridge C, Bennett-Guerrero E, Poxton IR. Structure and function of lipopolysaccharide. Microbes and Infections,2002,4:837-841.
    221. Iliev DB, Liarte CQ, MacKenzie S, Goetz FW. Activation of rainbow trout (Oncorhynchus mykiss) mononuclear phagocytes by different pathogen associated molecular pattern (PAMP) bearing agents. Molecular Immunology,2005,42:1215-1223.
    222. Stenvik J, Solstad T, Strand C, Leiros I, Jorgensen TT. Cloning and analyses of a BPI/LBP cDNA of the Atlantic cod (Gadus morhua L.). Developmental and Comparative Immunology,2004,28: 307-323.
    223. Sarmento A, Marques F, Anthony E, Ellis AE, Afonso A, Modulation of the activity of seabass (Dicentrarchus labrax) head kidney macrophages by macrophage activating factor(s) and lipopolysaccharide. Fish and Shellfish Immunology,2004,16:79-92.
    224. Paulsen SM, Lunde H, Engstad RE, Robertsen B. In vivo effects of beta-glucan and LPS on regulation of lysozyme activity and mRNA expression in Atlantic salmon (Salmo salar L.). Fish and Shellfish Immunology,2003,14:39-54.
    225. Selvaraj V, Sampath K, Sekar V. Extraction and characterization of lipopolysaccharide from Aeromonas hydrophila and its effects on survival and hematology of the carp, Cyprinus carpio. Asian Fisheries Science,2004,17:163-173.
    226 Rodkhum C, Hirono I, Stork M, Di Lorenzo M, Crosa JH, Aoki T. Putative virulence-related genes in Vibrio anguillarum identified by random genome sequencing. Journal of fish diseases, 2006,29:157-166.
    227 Dimitar BI, Cristina QL, Simon M, Frederick WG. Activation of rainbow trout(Oncorhynchus mykiss) mononuclear phagocytes by different pathogen associated molecular pattern (PAMP) bearing agents. Molecular Immunology,2005,42:1215-1223.
    228 Qin QW, Ototake M, Noguchi K, Soma GI, Yokomizo Y, Nakanishi T. Tumor necrosis factor alpha (TNF a)-like factor produced by macrophages in rainbow trout, Oncorhynchus mykiss. Fish and Shellfish Immunology,2001,11:245-256.
    229 Zou J, Wang T, Hirono I, Aoki T, Inagawa H, Honda T, Soma GI, Ototake M, Nakanishi T, Ellis AE, Secombes CJ. Differential expression of two tumor necrosis factor genes in rainbow trout, Oncorhynchus mykiss. Developmental and Comparative Immunology,2002,26:161-172.
    230 Saeij JP, Stret RJ, de Vries BJ, Van Muiswinkel WB, Weigertjes GF. Molecular characterization of carp TNF:a link between TNF polymorphism and trypano tolerance. Developmental and Comparative Immunology,2003,27:29-41.
    231 Secombes CJ, Fletcher T. The role of phagocytes in the protective mechanisms of fish. Annual Review of Fish Diseases,1992,2:52-71.
    232 Okuda J, Arikawa Y, Takeuchi Y, Mahmoud MM, Suzaki E, Kataoka K, Suzuki T, Okinaka Y, Nakai T. Intracellular replication of Edwardsiella tarda in murine macrophage is dependent on the type Ⅲ secretion system and induces an up-regulation of anti-apoptotic NF-κB target genes protecting the macrophage from staurosporine-induced apoptosis. Microbial Pathogenesis,2006, 41:226-240.
    233 Braun JS, Novak R, Gao G, Murray PJ, Shenep JL. Pneumolysin,a protein toxin of Streptococcus— pneumoniae, induces nitric oxide production from macrophages. Infection and Immunity,1999,67: 3750-3756.
    234 Freudenberg MA, Galanos C. Tumor necrosis factor alpha mediates lethalactivity of killed Gram-negative and Gram-positive bacteria in D-galactosamine-treated mice. Infection and Immunity,1991,59:2110-2115.
    235 Ishibe K, Yamanishi T, Wang Y, Osatomi K, Hara K, Kanai K, Yamaguchi K, Oda T. Comparative analysis of the production of nitric oxide (NO) and tumor necrosis factor-a (TNF-a) from macrophages exposed to high virulent and low virulent strains of Edwardsiella tarda. Fish and Shellfish Immunology,2009,27:386-389.
    236 Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annual Review of Immunology,1994,12:141-179.
    237 Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses. Annual Reviews of Immunology,1998,16:225-260.
    238 Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiology and Molecular Biology Review,2006,70:939-1031.
    239 Takaya A, Tomoyasu T, Tokumitsu A, Morioka M, Yamamoto T. The ATP-dependent Lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. Journal of Bacteriology,2002,184,224-232.
    240 Quentel C, de Baulny M O. Vaccination of juvenile turbot Scophthalmus maximus L against vibriosis. Aquaculture,1995,132:125-131.
    241. Zhou Y, Huang H, Su Y, Zhang B, Su YQ. Vaccination of the grouper, Epinephalus awoara, against vibriosis using the ultrasonic technique. Aquaculture,2002,203 (3-4):229-238.
    242.秦磊,姚火春,陆承平.嗜水气单胞菌与迟缓爱德华氏菌亚单位二联疫苗对小鼠的免疫效 果.中国兽医学报,2000,20(2):163-166.
    243. Rashid M, Mekuchi T, Nakai T, Muroga K A. SerolOgical study on Edwardsiella tarda strains isolted form diseased Japanese flounder(Paralichthys olivaceus). Fish Pathology, 1994, 29: 277.
    244. Gutierrez M A,:Miyazaki T. Responses of Japanese eels to oral challege with Edwardsiella tarda after vaccination with formalin-killed cells or lipopolysaccharide of the bacterium, Journal of A quatic Animal Health, t994, 6:710-117.
    245.Sallati F,Kusudu R.Chemical Composition of lipoplysaccharid form Edwardsiella tarda. Fish Pathology,1985, 20(2-3) :187-191.
    246.Nakanishi T,Kiryu I,Ototake M.Deveiopment of a new vaccine deliver method for fish: Percutaneous administration by immersion with application of a multiple puncture instrument. Vaccine, 2002,20.3764-3769.
    247. Harri JC, Cottrell SL, Plummer S, Lloyd D. Antimicrobial properties of Allium sativum (garlic). Applied Microbiotogy and Biotechnology, 2001, 57: 282-286.
    248.Nya EJ,Austin B. Use of garlic,Alltium sativum,to control Aeromonas hydrophila infection in rainbow trout, Onciorhynchus mykiss (Walbaum).Journal of Fish Diseases, 2009, 32 (11): 963-970.
    249.Huq A,Colwell RR. Vibrios in the marine and estuarine environments. J Mar Biotechnol, 1995, 3: 60-63.
    250. Gomiez-Gil B, Tron-Mayen L,Roque A,Turnbull JF,Inglis V, Guerra-Flores AL.Species of Vibrio isolated from je[atp[amcreas, haemolymph and dogestive tract of a populatior of heathy juvenile Penaeus vannamei. Aquaculture,1998,163:1-9.
    251. Sawabe T,Fujimura Y. Niwa K, Aono H.Vibrio comitans sp. nov., Vibrio rarus sp.nov. and Vibrio inusitatus sp.nov.,from the gut of the abalones Haliotis discus discus,H.gigantea, H. madaka and H, rufescens. Int J Syst Evol Microbiol, 2007a, 57: 916-922.
    252. Suantika G,Dhert P,Rombaut G,Vandenberghe J, De Wolf T, Sorgelpos P. The use of ozone in a high density.recirculation system for rotifers.Aquaculture, 2001, 201: 35-49.
    253. Borrego JJ,Castro D,Luque A,Paillard C,Maes P, Garcia MT, Ventosa A, Vibrio tapetis sp. nov., the causative agent of the brown ringi disease affecting cultured clams: Int J Syst Bacteriol, 1996,46:480-484.
    254.Riquelme CE,Jorquera MA,. Rojas AI,Avendano RE, Reyes N. Addition of inhibitor-producing bacteria to mass cultures of Argopecten purpuratus larvae (Lamarck, 1819). Aqtuacplture, 2001, 192:111-119.
    255.Verschuere L,Rombaut G, Sorgeloos P,Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Bioi Rev,2000, 64: 655-671.
    256.Farmer JJ.Janda JM,Brenner FW,Cameron DN,Birkhead KM.Genus I.Vibrio Pacini 1854, 411AL. In Brenner, D.J., Krieg, N.R.& Staley, J.T. (Editors), Bergey's Manual of Systematic Bacteriology,2nd Ed., Vol.2 The Proteobacteria, Part B The Gammaproteobacteria. The Williams & Wilkins Co., Baltimore.2005. pp.494-546.
    257. Kalina GP, Antonov AS, Turova TP, Grafova TI. Allomonas enterica gen. nov., sp. nov.: deoxyribonucleic acid homology between Allomonas and some other members of the Vibrionaceae. Int J Syst Bacteriol,1984,34:150-154.
    258. MacDonell MT, Colwell RR. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol,1985 6:171-182.
    259. Sorokin DY. Catenococcus thiocyclus gen. nov., sp. nov.-a new facultatively anaerobic bacterium from a near-shore sulphidic hydrothermal-area. J. Gen. Microbiol,1992,138: 2287-2292.
    260. Thompson FL, Hoste B, Thompson CC, Goris J, Gomez-Gil B, Huys L, De Vos P, Swings J. Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae:a new member of the family Vibrionaceae. Int J Syst Evol Microbiol,2002,52: 2015-2022.
    261 Thompson FL, Hoste B, Vandemeulebroecke K, Swings J. Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int J Syst Evol Microbiol,2003a,53:1615-1617.
    262. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol,2007,57:916-922.
    263. Thompson FL, Hoste B, Vandemeulebroecke K, Swings J. Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst App] Microbiol,2001,24:520-538.
    264. Chang HW, Roh SW, Kim KH, Nam YD, Jeon CO, Oh HM, Bae JW. Vibrio areninigrae sp. nov., a marine bacterium isolated from black sand. Int J Syst Evol Microbiol,2008,58:1903-1906.
    265. Gomez-Gil B, Fajer-Avila E, Pascual J, Macian MC, Pujalte MJ, Garay E, Roque A. Vibrio sinaloensis sp. nov., isolated from the spotted rose snapper, Lutjanus guttatus Steindachner,1869. Int J Syst Evol Microbiol,2008,58:1621-1624.
    266. Kumar NR, Nair S. Vibrio rhizosphaerae sp. nov., a red-pigmented bacterium that antagonizes phytopathogenic bacteria. Int J Syst Evol Microbiol,2007,57:2241-2246.
    267. Nam YD, Chang HW, Park JR, Kwon HY, Quan ZX, Park YH, Kim BC, Bae JW. Vibrio litoralis sp. nov., isolated from a Yellow Sea tidal flat in Korea. Int J Syst Evol Microbiol,2007,57: 562-565.
    268. Rameshkumar N, Fukui Y, Sawabe T, Nair S. Vibrio porteresiae sp. nov., a diazotrophic bacterium isolated from a mangrove-associated wild rice(Porteresia coarctata Tateoka). Int J Syst Evol Microbiol,2008,58:1608-1615.
    269 Smibert RM, Krieg NR. Phenotypic characterization. In Methods for General and Molecular Bacteriology, Edited by F. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC:American Society for Microbiology.1994. pp.607-654.
    270. Xie CH, Yokota A. Phylogenetic analysis of Lampropedia hyaline based on the 16S rRNA gene sequence. J Gen Appl Microbiol,2003,49:345-349.
    271. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. (editors) Short Protocols in Molecular Biology:a Compendium of Methods from Current Protocols in Molecular Biology,3rd edn.New York:Wiley.1995.
    272 Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK., Lim YW. EzTaxon:a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol, 2007, 57:2259-2261.
    273 Embley TM. The linear PCR reaction:a simple and robust method for sequencing rRNA genes. Lett Appl Microbiol,1991,13:171-174.
    274. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr,1989,479:297-306.
    275. Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol,2005,55:1181-1186.
    276 Alsina M, Blanch AR. A set of keys for biochemical identification of environmental Vibrio species. J Appl Bacteriol,1994,76:79-85.
    277. Noguerola I, Blanch AR. Identification of Vibrio spp. with a set of dichotomous keys. J Appl Microbiol,2008,105:175-185.
    278 Yoshizawa S, Wada M, Kita-Tsukamoto K, Ikemoto E, Yokota A, Kogure K. Vibrio azureus sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2009,59: 1645-1649.
    279 Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol,1972,110:402-429.
    280 Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol,1992,42:568-576.
    281. Gonzalez, J. M., Mayer, F., Moran, M. A., Hodson, R. E.& Whitman, W. B. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol,1997,47: 369-376.
    282. Bowman JP, McCammon SA, Brown JL, McMeekin TA. Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.:psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol,1998,48:1213-1222.
    283. Fonnesbech Vogel B, Venkateswaran K, Christensen H, Falsen E, Christiansen G, Gram L. Polyphasic taxonomic approach in the description of Alishewanella fetalis gen. nov., sp. nov., isolated from a human foetus. Int J Syst Evol Microbiol,2000,50:1133-1142.
    284 Kurahashi M, Yokota A. Agarivorans albus gen. nov., sp.nov., a [gamma]-proteobacterium isolated from marine animals. Int J Syst Evol Microbiol,2004,54:693-697.
    285 Yi H, Bae KS, Chun J. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii. Int J Syst Evol Microbiol,2004,54:571-576.
    286 Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW, Weiner RM. Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol,2005,55:1545-1549.
    287 Jeon CO, Lim JM, Park DJ, Kim CJ. Salinimonas chungwhensis gen. nov., sp. nov., a moderately halophlic bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol,2005,55:239-243.
    288 Jean WD, Chen JS, Lin YT, Shien WY. Bowmanella denitrificans gen. nov., sp. nov., a denitrifying bacterium isolated from seawater of An-Ping Harbour, Taiwan. Int J Syst Evol Microbiol,2006,56:2463-2467.
    289 Lim JM, Jeon CO, Lee JC, Song SM, Kim KY, Kim CJ. Marinimicrobium koreense gen. nov., sp. nov. and Marinimicrobium agarilyticum sp. nov., novel moderately halotolerant bacteria isolated from tidal flat sediment in Korea. Int J Syst Evol Microbiol,2006,56:653-657.
    290 Urios L, Intertaglia L, Lesongeur F, Lebaron P. Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol,2008a,58: 1233-1237.
    291 Urios L, Agogue H, Intertaglia L, Lesongeur F, Lebaron P. Melitea salexigens gen. nov., sp. nov., a gammaproteobacterium from the Mediterranean Sea. Int J Syst Evol Microbiol,2008b,58: 2479-2483.
    292 Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology. C. A. Reddy, T. J. Beveridge, J. A. Breznak, G. Marzluf, T. M.2007. pp.330-393.
    293 Mast J, Nanbru C, van den Berg T, Meulemans G. Ultrastructural changes of the tracheal epithelium after vaccination of day-old chickens with the La Sota strain of Newcastle disease virus. Vet Pathol,2005,42:559-565.
    294 Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in Actinomycetes and Corynebacteria. J Gen Microbiol,1977,100:221-230.
    295. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol,1983,54:31-36.
    296 Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., Parlett JH. An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods,1984,2:233-241.
    297 Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol, 1987,19:161-203.
    298 Van Trappen S, Tan TL, Yang JF, Mergaert J, Swings J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol,2004,54:1157-1163.
    299 Martinez-Checa F, Bejar V, Llamas I, Moral A, Quesada E. Alteromonas hispanica sp. nov., a polyunsaturatedfatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol,2005,55:2385-2390.
    300 Chiu HH, Shieh WY, Lin SY, Tseng CM, Chiang PW, Wagner-Dobler I. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol,2007,57:1209-1216.
    301 Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A, Faimali M, Vos PD, Vandamme P. Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al.1972 (Approved Lists 1980). Int J Syst Evol Microbiol,2008,58:2589-2596.
    302 Van Gemerden H, Kuenen JG. Strategies for growth and evolution of microorganisms in oligotrophic habitats. In Heterotrophic Activity in the Sea. NATO Conference Series IV. Marine Sciences, vol.15, pp.25-54. Edited by J. E. Hobbie & P. J. Williams. New York:Plenum.1984.
    303 Baker PW, Ito K, Watanabe K. Marine prosthecate bacteria involved in the ennoblement of stainless steel. Environ Microbiol,2003,5:925-932.
    304 Mergaert J, Verhelst A, Cnockaert MC, Tan TL, Swings J. Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences. Syst Appl Microbiol,2001,24:98-107.
    305 Yoon JH, Kim IG, Kang KH, Oh TK, Park YH. Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol,2003,53:1625-1630.
    306 Yoon JH, Yeo SH, Oh TK, Park YH. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol,2004,54:1197-1201.
    307 Chen YG, Xiao HD, Tang SK, Zhang YQ, Borrathybay E, Cui XL, Li WJ, Liu YQ. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek,2009b,96:259-266.
    308 Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM, Sergeev AF, Mikhailov W. Alteromonas addita sp. nov. Int J Syst Evol Microbiol,2005,55:1065-1068.
    309 Romanenko LA, Zhukova NV, Rohde M, Lysenko AM, Mikhailov W, Stackebrandt E. Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int J Syst Evol Microbiol, 2003,53:647-651.
    310 Ivanova EP, Zhukova NV, Svetashev VI, Gorshkova NM, Kurilenko W, Frolova GM, Mikhailov VV. Evaluation of phospholipid and fatty acid compositions as chemotaxonomic markers of Alteromonas-like Proteobacteria. Curr Microbiol,2000,41:341-345.
    311 Chen LP, Xu HY, Fu SZ, Fan HX, Liu YH, Liu SJ, Liu ZP. Glaciecola lipolytica sp. nov., isolated from seawater near tianjin city, China. Int J Syst Evol Microbiol,2009a,59:73-76.
    312 Yong JJ, Park SJ, Kim HJ, Rhee SK. Glaciecola agarilytica sp. nov., an agar-digesting marine bacterium from the East Sea, Korea. Int J Syst Evol Microbiol,2007,57:951-953.
    313 Wayne LG, Brenner DJ, Colwell RR,9 other authors Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987,37:463-464.
    314 Stackebrandt E, Goebel BM. Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol,1994, 44:846-849.
    315 Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria:emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol,2004,54:1773-1788.
    316 Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Golyshin PN. Thalassolituus oleivorans gen. nov., sp. nov., a marine bacterium confined to the utilization of hydrocarbons. Int J Syst Evol Microbiol,2004,54:141-148.
    317 Dimitriu PA, Shukla SK, Conradt J, Marquez MC, Ventosa A, Maglia A, Peyton BM, Pinkart HC, Mormile M. Nitrincola lacisaponensis gen. nov., sp., nov., a novel alkaliphilic bacterium isolated from an alkaline, saline lake. Int J Syst Evol Microbiol,2005,55:2273-2278.
    318 Arahal DR, Lekunberri I, Gonzalez, JM, Pascual J, Pujalte MJ, Pedros-Alio C, Pinhassi J. Neptuniibacter caesariensis gen. nov., sp. nov., a novel marine genome-sequenced gammaproteobacterium. Int J Syst Evol Microbiol,2007,57:1000-1006.
    319 Gartner A, Wiese J, Imhoff JF. Amphritea atlantica gen. nov., sp. nov., a gammaproteobacterium from the Logatchev hydrothermal vent field. Int J Syst Evol Microbiol,2008,58:34-39.
    320 Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Liinsdorf H, Timmis KN, Golyshin PN. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol,2003,53: 779-785.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700