高性能交流驱动控制关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交流电机是一个电场、磁场、力场多变量强耦合的复杂系统,对于三相交流异步和三相交流同步电机来说,有三个主要的共性特征是非线性、强耦合和不确定性。要使交流驱动性能有更大的提升,关键是要克服这三个特征对电机控制所带来的不利影响。本文在973数字化制造基础研究项目“高速数控机床动态行为演变及其高精度控制”及国家自然科学基金项目“基于分级模糊递阶理论的直线驱动机电系统控制策略的研究”的资助下,就高性能交流驱动中的关键技术开展研究,论文主要研究内容与创新点归纳如下:
     1.通过在理想条件下电机的动力学建模,分析了电机三个共性问题产生的根源。为了最大程度上减少交流电机的转矩和励磁两个方向的强耦合,完成了电机的理想模型从静止坐标系向旋转坐标系下的转换,在深刻理解电机工作机理的基础上,提出了矢量控制方法和直接转矩控制方法两种先进的电机控制方式,并且针对原理型直接转矩控制方法的缺点,提出了与SVPWM相结合的改进型直接转矩控制方式。仿真和实验结果充分证明了其正确性和有效性。
     2.针对不确定性的问题,本文把它分为内部和外部两个方面,分别采取参数在线估计和先进的控制策略来解决。
     内部的不确定性主要由交流电机参数慢时变的特性所造成的,应用基于拉格朗日算子简化的遗忘因子最小二乘在线参数估计的方法,来跟踪参数的变化。同时,研究了采用扩展卡尔曼滤波的方法实现参数的在线估计,虽然运算量较最小二乘法要大,但其最大的优点是在于对噪音的抗干扰能力。因此,为了减少运算量,需尽可能地减少待估参数。实际控制中,只对决定磁链和电磁力矩的定子电阻进行在线估计,而把其它参数的变化当成是系统的噪音。仿真和实验的结果同样都证实,以上两种在线估计方法不但能满足估计的精度,而且能满足实时性的要求。
     外部的不确定性主要是来自电机受到的外部扰动力矩,滑模控制因其对扰动的卓越鲁棒性能倍受关注。理论证明,只要满足一定的条件,滑模控制器对扰动是完全自适应的,本文对于这种自适应的控制器作了深入研究分析。
     3.针对非线性的问题,本文采取了模糊自适应控制方法,模糊控制器是一种对系统模型依赖性小的控制器,对于交流电机这样的非线性系统,采用模糊控制器可以有效地克服系统的非线性性,实现最优控制。同时,单纯形迭代搜索的方法可以很简单地实现控制参数的搜索,进一步优化控制性能。模糊控制和滑模控制相结合的自适应控制方法吸收了各自控制的优点,进而使得交流电机的控制精度和抗干扰能力都能得到很大程度的改善。
     4.另外一种克服非线性的办法是利用现代微分几何的工具,对非线性的交流电机系统进行等价反馈线性化同胚矩阵转换,成为一个虚拟的线性系统,应用成熟的线性系统的控制器设计手段,对虚拟的线性系统进行设计,同时也实现了电机力矩和磁链两个方向的动态解耦。对交流同步和异步电机的仿真结果也证实了其高性能的动态特性和应用前景。
     5.本文采用的控制平台主要由以TMS320F2812为核心的主控电路和以智能模块IPM为核心的逆变主回路所组成,同时也包括了电流、电压以及温度采样电路以及其它一些报警电路,有机地构成交流驱动系统的硬件平台。
     6.在应用部分,将前面理论研究部分,即关于解决交流电机强耦合、不确定性、非线性的理论研究成果,运用到高速电主轴为代表的三相异步电机和直线电机为代表的三相同步永磁电机的交流驱动系统上。实验证明,针对电机三个共性问题的理论解决方案很大程度上提升了交流电机的性能,取得了令人满意的结果。
     在本课题研究进行的同时,所取得的部分成果已用于生产实际中,取得了良好的经济效益。
The AC motors are nonlinear complex system with electric fields,magnetic fields and force fields complected strongly, Three main characteristics of the AC motors are nonliear, coupling and slow time-varying, For the sake of further exaltation performance, key issues are how to overcome or represse the problems brought by the three characteristics of the motors. Supported by the 973 National High Technology Research and Development Program "high speed numeric machine dynamic mode and their high precision control", this dissertation concentrates its attention on the key Techniques of high performance AC drive system. The main research contents include a few aspects:
     1. Build up ideal models for synchronous and asynchronous AC motors in static reference frame and rotary reference frame respectively. Based on the ideal models, vector control and direct torque control method were applied on AC driver system, decouple between the rotor torque and the rotor flux linkage are realized in great degrees. And then, an extension of the DTC scheme is also provided based on the conventional way. The main features of the conventional DTC are fully preserved, namely, its simplicity and its excellent dynamics performance. Moreover, the amplitudes of the motor quiver have also been bated by means of the space-vector modulation (SVPWM) function. Simulation and experimental results are given which confirm the validity of this approach.
     2. Parameters of the AC motors have slow time-varying characteristics, on-line parameters estimation based on forgetting factor least square method can track the variation, Another method of on-line parameters estimation based on extended Kalman filter(EKF) method is also presented, only rotor resistor is real-time estimated, and variation of other parameters of the motor are considered as system noise, experimental results demonstrated that the two methods have not only satisfied the demand of the motion precision, but also the Real-time demand.
     3. To the nonlinear motor system, one method is finding a controller which is not depended on or slightly depended on the controlled system. Fuzzy control is just belonging to this class. To find the optimal parameters for the fuzzy control, and the accelerated simplex search algorithm can help fuzzy controller to find the optimal fuzzy parameters. The most advantage of the sliding control is its robness of the disturbance, so the adaptive control from fuzzy and sliding control combination can enhance the accuracy and sensitive response for the AC motor.
     4. Another method solving nonlinear problem of the AC motor is transforming the nonlinear system to equivalent fictitious linear multi-input and multi-output system (MIMO) via differential geometry tools. And then controller can be designed by classic linear control theory. Meantime, decouple between the rotor torque and the rotor flux linkage is realized in the dynamical state. Simulation results show that this kind of servo controller has good dynamic performance and actual application value.
     5. The control circuit is based on the TMS320F2812 which can realize the motor control algorithm in C language. IPM is the core part of the main circuit which includes inverter and the motor driving circuits and other detected circuit. Current、voltage and temperature sample circuit are also designed to buildup the integrity hardware platform for AC servo system.
     6. In application part, the above mentioned theory such as DTC、EKF、FFLS、Fuzzy Slide Adaptive Control(FSAC) were successfully applied in the speed control of the motorized spindle and position control of the linear AC motors. And experimental results approve their validity and efficiency.
     During the research period, parts of research obtains are already used for produce, achieve a good economic benefit.
引文
[1]钱学森,工程控制论[M],科学出版社,1958
    [2]陈吉红,发展我国伺服驱动产业的探讨[J],航空制造技术,2006,8:46-49
    [3]http://www.syms.com.cn
    [4]宋宝,唐小琦,吴建昆,全数字交流伺服驱动器设计与研究[J],机械与电子,2004,1:39-42
    [5]Texas Instruments Incorporated,TMS3202812 Digital Signal Processors,Texas Instruments[M],2003,7
    [6]Texas Instruments Incorporated,张卫宁编译,TMS320C28X系列DSP的CPU与外设(上,下)[M],清华大学出版社,2005,1
    [7]Xilinx,PowerPC 405 Processor Block Reference Guide[J],www.xilinx.com
    [8]Altera Corporation,Mercury Programmable Logic Device Family Data Sheet[J],http://www.altera.com
    [9]潘松,黄继业,EDA技术与VHDL[M],清华大学出版社,2006,7
    [10]Richard Jensen and Qiang Shen,Semantics-Preserving Dimensionality Reduction,Rough and Fuzzy-Rough-Based Approaches[J],IEEE Trans.on knowledge and data engineering,2004,16(12):98-105
    [11]YAO Xifan,PENG Yonghong,CHEN Tongjian,LI Weiguang,Intelligent control in machining process based on Fuzzy-Chip[J],Modular Machine Tool & Automatic Manufacturing Technique,2000(12):12-19
    [12]Shen L.,Zhu Y.-J.,Xu H.-E.,Chen X-D.,Fuzzy inference coprocessor chip[J],Acta Automatica Sinica,v 27,n 4,2001:543-551
    [13]De Jesus Navas-Gonzalez,Rafael;Vidal-Verdu,Femando;Rodriguez-Vazquez,Angel,Neuro-Fuzzy Chip to Handle Complex Tasks with Analog Performance,IEEE Transactions on Neural Networks,v14,n 5,September,2003,HARDWARE IMPLEMENTATIONS:1375-1392
    [14]Chiu Chih Hui,Chen Wei Yu,A chip based fuzzy logic controller[C],IEEE International Conference on Mechatronics and Automation,ICMA 2005,IEEE International Conference on Mechatronics and Automation,ICMA 2005,2005:2194-2199
    [15]Panda Sharmistha,Patra Sarat Kumar,Fuzzy based chip level based receiver for direct sequence-code division multiple access communication system[C],2004 International Conference on Signal Processing and Communications,SPCOM,2004:149-153
    [16]Majumdar G.,Minato T.,Recent and future IGBT evolution[C],Fourth Power Conversion Conference-NAGOYA,PCC-NAGOYA 2007-Conference Proceedings,2007:355-359
    [17]陈坚,电力电子变换和控制技术[M],高等教育出版社,2004,12
    [18]Majumdar,G.,Recent technologies and trends of power devices[J],2007 International Workshop on Physics of Semiconductor Devices(IWPSD'07),2007:787-92
    [19]HITACHI,PMS050J Silicon N-channel power MOSFET Module[J],HITACHI,2007
    [20]MITSUBISHI,PMSORLA060 FLAT-BASE TYPE INSULATED PACKAGE[J],MITSUBISHI,2004.4
    [21]杨大江,姚振华,朱长纯,新型功率器件(IGCT)的工作原理及其设计技术[J],电力电子技术,1999,10:55-57
    [22]Araki Toni,Integration of power devices-next tasks[C],2005 European Conference on Power Electronics and Applications,v 2005:166-172
    [23]De Magle,R.Austin,P.Mussard,L.Elghazouani,M.Richardeau,F.Schanen,A trench IGBT distributed model with thermo-sensible parameters[C],2005 European Conference on Power Electronics and Applications,v 2005:533-540
    [24]JOHANNES HEIDENHAIN Gmbh,Brochure:Exposed linear Encoders[J],www.heidenhain.de
    [25]葛宝明,王祥珩,苏鹏声,蒋静坪,交流传动系统控制策略综述[J],电气传动自动化,2001,23(4):3-9
    [26]杨耕,罗应立等,电机与运动控制[M],清华大学出版社,2005
    [27]Xu Xiaoyan,Yu Wanneng,Application of neuron-based adaptive control system to the operation of marine water pumps[C],Canadian Conference on Electrical and Computer Engineering,v 2005,Canadian Conference on Electrical and Computer Engineering 2005,2005:1355-1358
    [28]Hurt Lionel,Vollrath Donald,Casey,Modern VVVF drives[J],Elevator World,v 52,n 7,July,2004:108-112
    [29]Ping Yang,Yang Shiping,An improved algorithm for harmonic suppression of VVVF[C],IEEE International Conference on Mechatronics and Automation,ICMA 2005:1429-1432
    [30]Ohishi Kiyoshi,Hayasaka Emiko,Nagano Tetsuaki,Harakawa Masaya,High-performance speed servo system considering voltage saturation of a vector-controlled induction motor[J],IEEE Transactions on Industrial Electronics,v 53,n 3,June,2006:795-802
    [31]Cupertino Francesco,Mininno Ernesto,Salvatore Luigi,Zigmund Branislav,A novel technique to estimate rotor time constant in vector controlled induction motor drives[C],2005 European Conference on Power Electronics and Applications,v 2005:166-169
    [32]Uddin,M.Nasir,Development,implementation and performance analysis of intelligent controllers for IPM synchronous motor drive systems[J],Control and Intelligent Systems,v 35,n1,2007:24-31
    [33]MDepenbrock,Directself controlled(DSC) of inverter-fed induction machine[J],IEEE Trans.Power Electronics,1988,3(4):24-33
    [34]I.Takahashi,T.Noguchi,A new quick response and high efficiency control strategy of an induction motor[J],IEEE Trans.Ind.Appl.,,1986.9,vol.22:820-827
    [35]Ortega Carlos,Arias Antoni,Del Toro,Xavier Aldabas,Emiliano,Novel direct torque control for induction motors using short voltage vectors of matrix converters[C],IECON Proceedings(Industrial Electronics Conference),v 2005,IECON 2005:31st Annual Conference of IEEE Industrial Electronics Society,2005:1353-1358
    [36]Cao Chengzhi,Wu Yingnan,Zhang Hui,A new direct torque control strategy with improved the system performance in the low speed region[C],Proceedings of SPIE-The International Society for Optical Engineering,v 6358 Ⅱ,Sixth International Symposium on Instrumentation and Control Technology:Sensors,Automatic Measurement,Control,and Computer Simulation,2006:635-645
    [37]Arias Antoni,Romeral Luis,Aldabas Emiliano,Jayne Marcel,Stator flux optimised Direct Torque Control system for induction motors[J],Electric Power Systems Research,v 73,n 3,March,2005:257-265
    [38]郭庆鼎,王成元,周美文,孙廷玉,直线交流伺服系统的精密控制技术[M],机械工业出版社,2000
    [39]A.J.Crener,On the equivalence of control systems and the linearization of nonlinear systems[J],SIAM Journal of Control and Optimization,1973(11):670-676
    [40]H.Sussmann,Lie brackets,real analyticity and geometric control.Differential Geometric Control Theory[J],R.Brckett,R.Millman and H.Sussmann,eds.1-116,Birkhauser,1983.
    [41]B.Jakubczyk,W.Repondek,On linearization of control systems[J],Bull.Acad.Polonaise Sci.Ser.Sci.Math.,1980,28:pp517-522
    [42]R.Su,On the linear equivalents of nonlinear systems[J],Syst.Contr.Lett.,1982(2):48-52
    [43]L.R.Hunt,R.su,G.meyer,Design for multi-input nonlinear systems.Differential Geometric Control Theory[J],R.Brckett,R.Millman and H.Sussmann,eds.,Birkhauser,1983:268-298
    [44]W.P.Dayawansa,W.M.Boothby,D.Elliott,Global state and feedback equivalence of nonlinear systems[J],Syst.Contr.Lett.,1985(6):229-234
    [45]H.G.Lee,A.Arapostathis,S.I.Marcus,Linearization of discrete-time systems[J],Int.J.Contr.,1986(45):1082-1083
    [46]MIlic Spong,TJ E.Miller,S.RMacminn,J.S.Thorp,Instantaneous torque control of electric motordrives[J],IEEETrans.Power Electron.,1987(2):55-64
    [47]Krzeminski Z.,Nonlinear control of induction motor[J],Porc.of IFAC'87,3:349-354.
    [48]Hao Wu,yongji Wang,Jiansheng Xu,Adaptive neural network nonlinear control for BTT missile based on the differential geometry method[J],Proc.of SPIE vol.6788(22),2007:198-205
    [49]Changhoon Kim,Jae H.Chung,Modeling and Control of a New Robitic Deburring system[J],Transactions of the ASME,vol.129,2007:965-972
    [50]Chen Jinli,Li Donghai,Sun Xianfang,Dynamic feedback lineadzation control of spacecraft with flexible appendages based on extended state observer[J],proc.of SPIE vol.6358,2006:63-72
    [51]Gibson J E,Nonlinear Automatic Control[M],McGraw-Hill,1962
    [52]Camara Helder T.,Grudling Hilton A.,A RMRAC applied to speed control of an induction motor without shaft encoder[C],Proceedings of the IEEE Conference on Decision and Control,v 4,2004 43rd IEEE Conference on Decision and Control(CDC),2004:4429-4434
    [53]Szamel,Laszlo,Model reference adaptive control of ripple reduced SRM drives[J],Periodica Polytechnica,Electrical Engineering,v 46,n 3-4,2004:163-174
    [54]Mohamed,Yasser Abdel-Rady Ibrahim,Direct instantaneous torque control in direct drive permanent magnet synchronous motors-A new approach[J],IEEE Transactions on Energy Conversion,v 22,n 4,December,2007:829-838
    [55]Ohyama,Kazuhiro Asher,Greg M.;Sumner,Mark,Comparative analysis of experimental performance and stability of sensorless induction motor drives[J],IEEE Transactions on Industrial Electronics,v 53,n 1,February,2006:178-186
    [56]Mohamed,Yasser Abdel-Rady Ibrahim,Lee Tsing K.,Adaptive self-tuning MTPA vector controller for IPMSM drive system[J],IEEE Transactions on Energy Conversion,v 21,n 3,September,2006:636-644
    [57]Liu Ziqian,Self-tuning control of electrical machines using gradient descent optimization[J],Optimal Control Applications and Methods,v 28,n 2,March/April,2007:77-93
    [58]Cupertino Francesco,Mininno Ernesto,Naso David,Elitist compact genetic algorithms for induction motor self-tuning control[C],2006 IEEE Congress on Evolutionary Computation,CEC 2006,2006:3057-3063
    [59]高为炳,变结构控制理论基础[M],中国科学技术出版社,1990
    [60]姚琼荟,黄继起,吴汉松,变结构控制系统[M],重庆大学出版社,1997
    [61]高为炳,程勉,变结构控制的品质控制[J],控制与决策,1989,4(4):23-28
    [62]Senol Ibrahim,Demirtas Metin,Rustemov Sabir,Gumus Bilal,Position control of induction motor a new-bounded fuzzy sliding mode controller[J],COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,v 24,n 1,2005:145-157
    [63]Wai Rong-Jong,Fuzzy sliding-mode control using adaptive tuning technique[J],IEEE Transactions on Industrial Electronics,v 54,n 1,February,2007:586-594
    [64]Lin Faa-Jeng,Shen Po-Hung,Robust fuzzy neural network sliding-mode control for two-axis motion control system[J],IEEE Transactions on Industrial Electronics,v 53,n 4,June,2006:1209-1225
    [65]Topalov,Andon Venelinov,Sliding mode ncuro-adaptivc control of electric drives[J],IEEE Transactions on Industrial Electronics,v 54,n 1,February,2007:671-679
    [66]E.H.Mamdani and S.Assilian,An experiment in linguistic synthesis with a fuzzy logic controller[J],International Journal of Man-machine Studies,Vol.7,No.1,1975:1-13
    [67]Uddin M.Nasir,RadwanT.S.,Rahman M.A.,Fuzzy logic based position control of a PMSM servo drive[J],Control and Intelligent Systems,v 35,n 4,2007:293-298
    [68]Lu Zesheng,Zhang Qiang,Fuzzy-PID double mode control of ultra-precision AC servo system[J],Beijing Hangkong Hangtian Daxuc Xucbao/Journal of Beijing University of Aeronautics and Astronautics,v 33,n 3,March,2007:315-318
    [69]Wang Gou-Jen,Cheng Yin-Dar,Chang Kang J.,A new neural fuzzy control system with heuristic learning[J],International Journal of Fuzzy Systems,v 7,n 4,December,2005:158-168
    [70]Rafael Silviano,Pires A.J.,Costa Branco P.J.,An adaptive learning rate approach for an on-line neuro-fuzzy speed controller applied to a switched reluctance machine[C],IEEE International Symposium on Industrial Electronics,v Ⅲ,Proceedings of the IEEE International Symposium on Industrial Electronics 2005,ISIE 2005:941-944
    [71]Khatra,Ajit P.,A multi-layered fuzzy controller for a mobile robot[C],IEEE International Conference on Fuzzy Systems,2006:1133-1138
    [72]K.J.Hunt,D.Sbarbaro,R.Abikowski,P.J.Gawthrop,Neural network for control system—a survey[J],Automatica,1992,28(6):1083-1112
    [73]S.Haykin,Neural Networks[M],Macmillan,NY,1994
    [74]El-Sousy,Fayez F.M.,Nashed Maged N.F.,Fuzzy adaptive neural-network model-following speed control for PMSM drives[J],WSEAS Transactions on Systems,v 4,n 4,April,2005:256-259
    [75]Lin,Faa-Jeng Shen,Po-Hung;Fung,Rong-Fong,RFNN control for PMLSM drive via backstepping technique[J],IEEE Transactions on Aerospace and Electronic Systems,v 41,n 2,April,2005:620-644
    [76]M.Sumner,B.Asher,Self-Commissioning for Voltage-Referenced fed Vector Controlled Induction Motor Drives[C],Conf.Rec.1992 IEEE Power Electronics Specialists Conference:139-144
    [77]Castaldi Paolo,Tilli Andrea,Parameter estimation of induction motor at standstill with magnetic flux monitoring[J],IEEE Transactions on Control Systems Technology,v 13,n 3,May,2005:386-400
    [78]Wa Kaiyu,Chiasson John,Bodson Marc,Tolbert Leon M.,A nonlinear least-squares approach for identification of the induction motor parameters[J],IEEE Transactions on Automatic Control,v 50,n 10,October,2005:1622-1628
    [79]Barut Murat,Bogosyan Seta,Gokasan Metin,Speed-sensorless estimation for induction motors sing extended Kalman filters[J],IEEE Transactions on Industrial Electronics,v 54,n 1,February,2007:272-280
    [80]Thongam Jogendra Singh,Thoudam Vimal P.Singh,Stator flux based speed estimation of induction motor drive using EKF[J],IETE Journal of Research,v 50,n 3,May/June,2004:p 191-197
    [81]谢新民,丁锋,自适应控制系统[M],清华大学出版社,2003
    [82]Kojabadi H.Madadi,Ghribi M.,MRAS-based adaptive speed estimator in PMSM drives[C],International Workshop on Advanced Motion Control,AMC,v 2006,9th IEEE International Workshop on Advanced Motion Control,2006:569-572
    [83]Li Han,Xuhui Wen,Guilan Chen,New general MRAS adaptive scheme to estimate stator and rotor resistance of induction motors[C],Conference Record-IAS Annual Meeting (IEEE Industry Applications Society),v 4,2006:1775-1780
    [84]D.Fodor,GGriva,F.Profumo,Compensation of Parameters variations in in-duction motor drives using aneural network[J],IEEE Transactions on Automatic Control,v 10,n 8,Jan,2004:1622-1628
    [85]胡楷,交流驱动系统模型参考自适应控制技术[D],国防科学技术大学博士论文,2004
    [86]Xu Yanping,Zhong Yanru,Li Jie,Fuzzy stator resistance estimator for a direct torque controlled interior permanent magnet synchronous motor[C],ICEMS 2005:Proceedings of the Eighth International Conference on Electrical Machines and Systems,v 1,2005:438-441
    [87]Woodley Kaijam M.,Li Hui,Foo Simon Y.,Neural network modeling of torque estimation and d-q transformation for induction machine[J],Engineering Applications of Artificial Intelligence,v 18,n 1,February,2005:57-63
    [88]Hemsas K.E.,Ouhrouche Mohand,Khenfer N.,Leulmi S.,Estimation of speed,rotor resistance and rotor flux of an induction motor using neural networks and neuro-fuzzy techniques[J],WSEAS Transactions on Computers,v 4,n 6,June,2005:637-642
    [89]Karanayil Baburaj,Rahman Muhammed Fazlur,Grantham Colin,Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks[J],IEEE Transactions on Energy Conversion,v 20,n 4,December,2005:771-780
    [90]陈伯时,陈敏逊,交流调速系统[M],机械工业出版社,2005
    [91]李发海,王岩,电机与拖动基础[M],清华大学出版社,2005
    [92]辜承林,陈乔夫,熊永前,电机学[M],华中科技大学出版社,2005
    [93]Ambrozie V,Buja Giuseppe S,Menis R.,Band-constrained technique for direct torque control of induction motor[J].IEEE Transactions on Industrial Electronics,2004,51(4):776-784
    [94]Cristion Lascu,Ion Boldea,A modified Direct Torque Control for Induction Motor Sensorless Drive[J],IEEE Transaction on Industry Applications,2000,36(1):122-130.
    [95]Noguchi,Toshihiko,Yamamoto,Masaki,Enlarge Switching Frequency in Direct Torque Controlled Inverter by Means of Dithering[J],IEEE Trans on IA,1999,35(6):1358-1366.
    [96]Idris N R N,Yatim A H M.,An improved stator flux estimation in steady state operation for direct torque control of induction machines[J],IEEE Tram on IA,2002,38(1):110 116
    [97]王琛琛,李永东,高跃,基于通用多电平SVPWM算法的三电平无速度传感器矢量控制系统,电工技术学报[J],2007,22(9):107-111
    [98]Prats M,Portillo R,Carrasco J M,et al,New fast space-vector modulation for multilevel converters based on geometrical considerations[C].IECON'02.2002(4):3134-3139
    [99]Tripathi A,Khambadkone A M,Stator Flux Based Space_Vector Modulation and Closed Loop Control of the Stator Flux Vector in Overmodulation into Six_Step Mode[J],IEEE Trans.on PE,2004,19(3):775-782
    [100]Zadeh,L.A,From Circuit Theory to System Theory[C],Proc.IRE,1962,50(5):856-865
    [101]Lin Y.N.,Chen C.L,Automatic IM parameter measurement under senserless field-oriented control[J],IEEE Trans.on industrial Electronics.1999,46(1):111-118
    [102]刘军锋,交流传动系统高速化控制技术研究与应用[D],华中科技大学博士后研究工作报告,2008,3
    [103]Karl Johan Astrom,Bjorb Wittenmark,Adaptive Control(Second Edition),Springer-Verlag London Limited,2003
    [104]Bimal K.Bose,Modern Power Electronics and AC Drives[M],China Machine Press,2006
    [105]Jennifer Stephan,Marc Bodson,John Chiasson,Real-Time Estimation of the Parameters and Fluxes of Induction Motor[J],IEEE Trans.on Ind.Appl.Vol.30,(3),1994:746-758
    [106]Goodwin G C and Sin K S,Adaptive Filtering Prediction and Control[M],New Jersy:Prentice-Hall,1984
    [107]Ding F,Xie X M and Fang C Z,The convergence of the forgetting factor algorithm for identifying time-varying systems.Control Theory and Applications[J],1994,11(5):634-639
    [108]Solo V.,Stockastic adaptive control and Martingale limit theory[J],IEEE Trans.Automatic Control,1990,35(1):66-71
    [109]Godpromesse Kenne,Tarek Ahmed-Ali,Time-Varying Parameter Identification of a Class of Nonlinear Systems With Application to Online Rotor Resistance Estimation of Induction Motors[J],IEEE ISIE 2006,July 9-12,2006:301-306
    [110]SHIN M H,HYUN D S,CHO S B.Maximum torque control of stator-flux orientated induction machine drive in the field-weakening region[J],IEEE Transactions on Industry Applications.2002,38(1):117-122
    [111]Mitronikas E D,Safacas A N,Tatakis E C,A new stator resistance tuning method for stator-flux-oriented vector-controlled induction motor drive[J],IEEE Transactions on Industrial Electronics.2001,48(6):1148-1157
    [112]M.Cuibus,V.Bostan,C.I las,Luenberger,Kalman and neural network observers for sensorless induction motor control[J].IEEE Trans.Automatic Control,2005,53(6):1256-1261
    [113]张寅孩,严利平,张仲超,基于遗传算法辨识噪声模型的异步电机闭环卡尔曼速度估计[J],电机与控制学报,2005,9(2):161-165
    [114]王振永,电机的数学模型[M],水利电力出版社,1989
    [115]刘金琨,滑模变结构控制MATLAB仿真[M],清华大学出版社,2005
    [116]Wai R J,Lin C M,Hsu C F.,Adaptive fuzzy sliding mode control for electrical servo drive[J].Fuzzy Sets and Systems,2004(143):295-310
    [117]Kevin M.Passino,Stephen yurkovich,Fuzzy Control[M],Tsinghua University Press,2001
    [118]R.K.Mudi,N.R.Pal,A Robust Self-tuning Scheme for PI-and PD-Type Fuzzy Controllers[J],IEEE Transactions on Fuzzy Systems,vol.7(1) 1999:2-15
    [119]G.C.D.Sousa,B.K.Bose,and J.G.Cleland,Fuzzy logic based on-line efficiency optimization control of an indirect vector controlled induction motor drive[J],IEEE Trans.of Ind.Elec.,vol.42,1995:192-198
    [120]孔锐睿,仇汝臣,周田惠,单纯形的加速算法[J],南京理工大学学报,2003(4):209-213
    [121]Hedlund P,Gustavsson A,Design and evaluation of an effective modified simplex method[J],Analytica Chimica Acta,1999(391):257-267
    [122]朱向阳,熊有伦,单纯形置换算法的改进及其应用[J],系统工程与电子技术,1995(7):75-80
    [123]张春朋,林飞,宋文超,焦连伟,基于直接反馈线性化的异步电动机非线性控制[J],中国电机工程学报,2003,23(2):99-107
    [124]Marino R,Peresada S,Valigi P,Adaptive input-output linearzing control of induction motors[J],IEEE Trans.AC.,1993,38(2):208-221
    [125]Riccardo Marino,Partizio Tomei,Nonlinear Control Design[M],Electronics Industry Press,2006
    [126]Katsuhiko Ogata,Modern Control Engineering[M],Publishing House of Elcectronics Industry,2003
    [127]A.Isidori,C.I.Byrnes,Output regulation of nonlinear systems[J],IEEE Trans.Automatic control,vol.35,1990:131-140
    [128]A.Isidori,Nonlinear control systems[M],London:Springer-Verlag,1995
    [129]严道发,电主轴技术综述,机械研究与应用[J],2006,19(6):1-3
    [130]黄红武,熊万里,陆名彰,盛晓敏,吴耀,宓海青,高速大功率精密电主轴中的关键技术[J],湖南大学学报(自然科学版),2002,29(5):49-54
    [131]欧益宝,左健民,汪木兰,高速加工技术与电主轴[J],现代制造工程,2006,(10):104-106
    [132]Tu,J.F.and Bossmanns,B.,Unknown Thermo-Mechanical Behaviors of Motorized Tool Spindles for High Speed End Milling[C],Proceedings of the 10~(th) Workshop on Dynamics & Control,Lambrecht,Germany,1999:180-199
    [133]Hahn,R.S.,Improving Grinding Performance with Force Adaptive Monitoring of Wheel Sharpness/Workpiece Metallurgy Variations,Dearborn Michigan[C],Society of Manufacturing Engineers,1988:367-380
    [134]李叶松,尹泉,姜向龙,交流永磁同步电机全数字伺服控制器设计[J],微电机,2003,36(6):25-27
    [135]Implementation of Speed Field Oriented Control of 3-phase PMSM Motor Using TMS320LF240[M],Texas Instruments,1999
    [136]李爱英,程颖,基于三菱IPM模块的外围接口电路的设计[J],自动化与仪表,2008(1):57-60
    [137]叶云岳,国内外直线电机技术的发展与应用综述[J],电器工业,2003(1):12-16
    [138]叶云岳,现代新型直线驱动技术及其应用[J],电气技术,2005(5):1-4
    [139]Masatoyo Sogabe,High Speed Machining With Linear Motors[J],Modern Manufacturing,1997(2):112-116
    [140]夏加宽,高精度永磁直线电机端部效应推力波动及补偿策略研究[D],沈阳工业大学博士学位论文,2006
    [141]Jiachun Lin,Wei Li,Tong Zhao,Tianfeng Zhou,Xiankui Wang,Chengying Liu,A simple Force Ripple Compensation Method for Linear Motor Servo System[C],Proceedings of the 6~(th) World Congress on Intelligent Control and Automation,June21-23,2006,Dalian,China:6269-6273
    [142]K.K.Tan,T.H.Lee,H.Dou,Force ripple suppression in iron-core permanent magnet linear motors using an adaptive dither[J],Journal of the Franklin Institute-Engineering and Applied Mathematics,vol.341,no.4,2004:375-390
    [143]B.Yao and L.Xu,Adaptive robust motion control of linear motors for precision manufacturing[J],Mechatronics,vol.12,no.4,2002:595-616
    [144]张翊诚,直线电机在机床上的应用与展望[J],微特电机,2002(3):29-31
    [145]Fuerst,Ruediger,Engeriebedarf fuer die Magnetschnel lbahn Berlin-Hanmburg Power requirements of the Berlin-Hamburg maglev railway[J],Zev-Zeischrift fuer Eisenbahnwesenund Verenrstechnik-Journal for Railway and Transport,v.123 n.4 1999:153-158
    [146]Creppe Renato C,de Souza,Carlos R.,Dynamic behavior of a linear induction motor[C],Proceedings of the Mediterranean Electro-technical Confenrence,IEEE picataway,NJ,USA,98Ch36056,1998(2):1047-1051
    [147]范大鹏,尹自强,郑子文,直线电机在精密加工的应用[J],制造技术与机床,1997(5):21-25
    [148]司勇,王先逵,刘成颖等,非圆截面车削数控系统的协调控制[J],清华大学学报(自然科学版),2004,44(5):649-652
    [149]Tomizuka,M.,Chen,M.,Renn,S.,and Tsao,T-C.,1987,Tool Positioning for Noncircular cutting with a Lathe[J],ASME Journal of Dynamical Systems,Measurement and Control,Vol.109,1994:176-179
    [150]Byung_Sub Kim,Control of Multiple Degree of Freedom Fast Tool Stages for Noncircular Turning Process[D],phD thesis,University of Illinois at Urbana Champaign,2004
    [151]Yicheng Zhang,Zhihua Chen,Liangcai Yang,Jihong Chen,Xiaoqi Tang,A new method for piston ring contour cutting based on linear driving,[C]International Conference on Advanced Design And Manufacture-ICADAM 2008,Jan 2008:463-472
    [152]戴一帆,潘仲明,王世民,基于仿射原理的活塞环仿形数控加工系统[J],国防科技大学学报,1997 19(4):94-99
    [153][苏]Б.Я.金茨布尔格,谢仲群译,活塞环理论[M],机械工业出版社,1986
    [154]杨良才,陈志华,崔红娟,刘新辉,一种新型活塞环内外圆车床的可行性分析[J],组合机床与自动化加工技术,2005(1):10-13
    [155]陈幼平,张代林,艾武,周祖德,基于DSP的直线电机位置伺服控制策略研究[J],电机与控制学报,2006,10(1):61-64
    [156]韩永强,郭庆鼎,刘德君,基于干扰观测器的感应直线伺服电机解耦控制[J],沈阳工业大学学报,2005,27(2):179-182
    [157]Carl J.K,Seiichi Kobayashi,Disturbance observer and feedback design for a high-speed direct-dirve positioning table[J],IEE Transaction on control system technology,1999,7(5):932-938.
    [158]陈志华,非圆截面零件车削控制研究[D],国防科学技术大学博士论文,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700