多类型对地观测卫星联合任务规划关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对地观测卫星利用卫星传感器从太空对地球表面进行探测以获取信息,已广泛应用于社会经济和军事等领域。随着在轨卫星类型增加,以及人们对对地观测数据的需求类型日益复杂化,越来越需要对多类型对地观测卫星进行联合任务规划。目前关于卫星任务规划的研究大多针对单类型卫星、面向简单观测任务请求展开,考虑的卫星观测过程和载荷约束相对简化,缺乏面向多类型卫星、多类型观测任务请求、将卫星观测与数据传输联合考虑的方法和技术。
     论文面向光学、SAR、电子侦察等多种类型的中低轨对地观测卫星联合任务规划的应用需求,以多类型对地观测卫星和多类型数传资源的联合为手段,以满足多种类型的观测任务请求为出发点,在总结分析国内外相关研究工作的基础上,对多类型对地观测卫星联合任务规划关键问题进行研究。主要工作和创新点包括:
     (1)建立了多类型对地观测卫星联合任务规划层次化描述模型。由于多类型卫星联合任务规划问题的复杂性,论文系统地分析和总结了多类型卫星联合任务规划的规划要素,针对参与规划卫星载荷多样和观测任务请求多样的特点,将问题模型抽象为五个层次,并重点对资源约束、规划约束、业务组件、业务过程四个层次进行详细地建模描述;论文模型采用了组件式建模方法,约束和优化目标函数作为组件参与到模型中,在规划过程中可以根据观测任务请求特点、优化策略和规划要素约束特点动态地选择适宜的处理流程,每种流程又可以根据问题特点进行约束和优化目标函数的组合选择,从而使问题模型具有高度的可移植性和扩展性,能够较好地适应多类型卫星联合任务规划的复杂规划要求。
     (2)提出了数传资源规划数学模型和优化算法。作为卫星任务规划的重要组成部分,数传资源规划对卫星动作规划具有重要影响,需要展开研究。论文以卫星观测过程中星载存储器变化为研究切入点,建立了基于约束图的数传资源规划模型,将数传资源规划问题转化为约束图中多顶点对之间的多条路径搜索问题;并基于置换序列表示方法,引入自适应邻域搜索机制以改进邻域搜索过程,提出了自适应邻域搜索模拟退火算法,算法收敛性分析和实验验证了算法的优化性。相对于其它方法,论文模型从星地联合的角度出发,考虑了观测任务分布、卫星载荷能力、卫星实传和回放动作对规划的影响,因而能够更贴切地满足对地观测卫星的数传需求,论文算法相对于模拟退火、随机爬山和遗传算法等算法也具有更好的全局收敛性。
     (3)面向综合效益优先策略提出了基于贪婪随机自适应搜索过程算法框架的混合算法。面向综合效益优先策略的多类型对地观测卫星联合任务规划问题具有多时间窗约束车辆装卸和过载规划问题的问题特点。论文采用修复搜索问题求解机制,提出了一种新的混合算法,该算法基于贪婪随机自适应搜索过程求解框架,在构建阶段引入大邻域搜索算法,并在大邻域搜索结果保留和每一步的迭代搜索中分别应用模拟退火思想,算法同时将车辆装卸问题的三种邻域算子高效组合,提出一种新的迭代修复邻域搜索算子以改进算法搜索过程。算法收敛性分析验证了算法的全局收敛性,实验验证结果也表明算法具有更好的收敛性;该算法可对车辆装卸问题和过载规划问题提供一种新的求解思路。
     (4)面向任务优先策略提出了分层控制免疫遗传算法。任务优先下多类型对地观测卫星联合任务规划的观测任务子任务之间具有复杂关联关系,使问题成为一个复杂的约束优化问题。论文基于免疫遗传算法框架,提出了分层控制免疫遗传算法;算法采用置换序列编码和双层编码方式,求解中引入分层控制机制,对顶层编码采用遗传操作算子,对底层编码采用免疫操作算子,并在免疫操作算子中引入免疫选择、免疫更新、小生境等思想以改进搜索过程,有效解决任务优先策略下的多类型卫星联合任务规划问题。实验结果表明该算法在组合观测任务参与规划的算例下是可行有效的。
     (5)面向移动跟踪监视任务提出了多类型对地观测卫星联合任务规划流程和算法。针对移动跟踪监视任务,根据获取的先验信息的不同,提出了搜索发现+跟踪监视配合的任务规划流程:无先验信息条件下,即搜索发现阶段,对区域进行等距网格划分,假设目标位置在搜索区域内随机分布,目标运动模型为随机运动,提出了基于网格目标分布概率动态更新的搜索发现算法;部分先验信息已知条件下,即跟踪监视阶段,考虑地理信息和目标先验信息对目标运动的影响,借鉴交互多模型算法思想,引入目标运动模型的自适应更新和选择机制,提出自适应交互多模型移动目标跟踪监视算法,解决了面向移动跟踪监视任务的多类型卫星联合任务规划问题。实验验证表明上述流程和算法是可行有效的。
Earth Observing Satellites (EOSs) obtain information of the earth's surface from outer space by using satellite sensors. They are widely used in the social, economic, and military applications. In recent years, as more and more EOSs are launched to meet the needs of various complicated types of remote sensing data, the challenge to scheduling of multiple types of EOSs is increased. However, current researches focus on single type of satellite and simple requirements, which considers relatively simple earth observing procedure and restrictions, and lacks of methods and techniques for scheduling of multiple types of satellites, satisfying multiple types of requirements and combining satellite observing with data transmitting.
     To satisfy the united scheduling requirements of multiple types of low orbit satellites, including optical satellites, SAR satellites, electronic satellites, and ocean surveillance satellites, this dissertation studies the key technologies of the united scheduling of multiple types of EOSs. Research focus is put onto combining multiple types of EOSs with multiple types of data transmitting resources, thus to meet the needs of various earth observing tasks. The main work and contributions of this dissertation can be concluded as the following five parts:
     (1) We build a hierarchical description model for united scheduling of multiple types of EOSs. Due to the complexity of the united scheduling of multiple types of EOSs, the dissertation systematically analyzes and summaries the scheduling features in the target problem. Focusing on the characteristics of the scheduling workload and the diversity of the observing tasks, the dissertation concludes the problem model into five levels, and put focuses on four levels: resource constraints, scheduling constraints, business component and business process, meanwhile gives detailed description of the modeling process. The dissertation uses a component based modeling methodology to build the description model. Therefore, both the constraints and the optimization target are taken as components in the model. In the scheduling process, it is convenient to choose suitable process according to different characteristics of the observing tasks, the optimization strategy and the scheduling features. Moreover, during each process, the constraints and the optimization target functions can be combined dynamically according to different problem features. All of which make the description model highly compatible and extensible, thus could satisfy the complicated requirements of the united scheduling of multiple types of EOSs .
     (2) We propose the techniques to the scheduling of various data transmitting resources from both the satellites and ground stations. Results of the scheduling of data transmitting play an important role in satellite scheduling; therefore it must be studied first. Considering the variation of the on-satellite memorizer during the earth observing, the dissertation establishes a scheduling model for data transmitting resources based on the constraint graph, which transforms the scheduling problem into a multiple paths searching problem. By using the permutation based representation, an adaptive neighborhood searching mechanism is introduced to improve the neighborhood searching process. Moreover, a simulated annealing algorithm based on the adaptive neighborhood searching is proposed. Analysis to the convergence of the algorithm and the experimental results verify that the proposed model and algorithm are superior. Compared to other algorithms, the proposed method synthetically considers the following factors: the distribution of the earth observing tasks, the capability of the satellites' load, the effects of the real time transmission and storage data transmission to the scheduling. Therefore, the method could satisfy the data transmitting requirements more suitably. Moreover, compared to the simulated annealing algorithm, the stochastic hill-climbing algorithm and the genetic algorithm, the proposed method maintains much better global convergence.
     (3) We present a hybrid algorithm based on the GRASP (Greedy Randomized Adaptive Search Procedure, GRASP) framework for Benefit First strategy. The united scheduling problem has the similar characteristics with both the PDPMTW (Pickup and Delivery Problem with Multiple Time Windows) and oversubscribed scheduling problem. By using the mechanism of the repair search, the dissertation proposes a new hybrid algorithm which is based on the GRASP framework. The large neighborhood searching algorithm is introduced in the building phase. The simulated annealing algorithm is used at both the preservation of LNS (Large Neighborhood Search, LNS) results and each step of iterative search. The proposed method also presents a new iterative repair operator by combining the three operators of PDPTW, which has been proved to improve the search procedure effectively. Algorithm analyzing verifies the convergence of proposed method, moreover, a great deal of experimental results also show that the new hybrid algorithm maintains better global convergence.
     (4) We propose a new algorithm named HIGA (Hierarchical Immune Genetic Algorithm) for Task First strategy. There exist complicated relevancies among the earth observing sub-tasks in the united scheduling, thus makes the united scheduling a constraints optimization problem. Based on the immune genetic algorithm, the dissertation proposes a new algorithm named HIGA which adopts the permutation based coding and a two-level coding. By introducing a hierarchical control mechanism, HIGA uses the genetic operator in the upper level and the immunity operator in the low level. Moreover, in the immunity operator, the algorithm adopts gene recombination, adaptive immunity updating and the niche mechanism to improve the performance of the searching process. Experimental results show that the algorithm and the improved operators is both feasible and effective in solving the problem of multiple satellites scheduling with complicated tasks being in scheduling.
     (5) We propose the united scheduling process and algorithms for the task of moving target surveillance. Focusing on the task of moving target surveillance, the dissertation proposes a two-phase scheduling process including searching phase and surveillance phase. In the searching phase, in which condition there is no transcendental information, firstly, we uniformly partition the area using grid. Then we assume that the targets are randomly distributed in the searching area, and they are moving stochastically. Finally, we update the distribution probability of the moving target according to the historical observing results. Based on the above processes, a searching algorithm is proposed based on the dynamic updates of the distribution probability. In the surveillance phase, in which condition part of the transcendental information is observed, considering the effects of the geographical information and apriori information to the moving targets, an adaptive interactive multiple model algorithm for moving target surveillance is proposed, which supports the adaptive update and selection of the moving target movement model. Experimental results show that the proposed method is feasible and effective.
引文
[1]余金培,杨根庆,梁旭文著.现代小卫星技术与应用[M].上海科学普及出版社, 2004.
    [2]常显奇,李云芝,罗小明等著.军事航天学(第2版)[M].国防工业出版社, 2005.
    [3]姜昌,范晓玲著.航天通信跟踪技术导论[M].北京工业大学出版社, 2003.
    [4]任萱主编.军事航天技术[M].国防工业出版社. 1999.
    [5]王永刚,刘玉文.军事卫星及应用概论[M].国防工业出版社, 2003.
    [6]苑立伟,杨建军,刘海平.国外低轨道卫星综述[J].航天返回与遥感, 2004, 25(4):54-58.
    [7] Vasquez M., Hao J K., A“Logic-Constrained”Knapsack Formulation and a Tabu Algorithm for the Daily Photograph Scheduling of An Earth Observation Satellite[J]. Computational Optimization and Applications, 2001, 20(2): 137~157.
    [8] Potter W and Gasch J. A Photo Album of Earth: Scheduling Daily LandSat 7 Activities[J]. Proceedings of SpaceOps-98, Tokyo, Japan, 1998.
    [9] Sherwood R., Govindjee A., Yan D., Rabideau G., Chien S and Fukunaga A. Using ASPEN to Automate EO-1 Activity Planning[C]. Proceedings of the 1998 IEEE Aerospace Conference, Colorado, 1998.
    [10] Verfaillie G and Lemaitre M. Tutorial on Planning activities for Earth watching and observation satellites and constellations: from off-line ground planning to on-line on-board planning[C]. Proceedings of ICAPS-06, Cumbria,UK,2006.
    [11] Globus A, Crawford J, Lohn J, et al. Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach[C]. Proceedings of the 3rd International NASA Workshop on Planning and Scheduling for Space, NASA, 2002.
    [12] Potin P. End-to-End planning approach for earth observation mission exploitation[C]. In SpaceOps, 1998, Tokyo, Japan, June, 1998.
    [13] Hall N G, Magazine M J. Maximizing the value of a space mission[J]. European Journal of Operation Research, 1994, 78: 224–241.
    [14] Christopher B.J, Prosser P, Selensky E. Vehicle Routing and Job Shop Scheduling: What’s the difference[J]. Proceedings of the 13th International Conference on Artiˉcial Intelligence Planning and Scheduling. 2003, vol. 1.
    [15]航天发展“十一五”规划[Z].国防科学技术工业委员会, 2007年8月.
    [16]我国十一五将建60至70颗卫星组成的空间信息系统[EB/OL]. Http://www.gov.cn, 2007年05月16日.
    [17]岳涛,黄宇民,刘品雄等.未来中国卫星遥感器的发展分析[J].航天器工程, 2008, 17(4):77-82.
    [18]高云国.现代小卫星及其相关技术[J].光学精密工程, 1999, 7:16-21.
    [19]林来兴.现代小卫星与纳卫星技术发展[J].国际太空, 2002, 8:25-28.
    [20]马元申,于小红,尹志忠.现代小卫星技术及其发展对策[J].国防技术基础, 2003, 5:13-15.
    [21]魏晨曦,马婷婷.美国未来的侦察卫星及其关键技术[J].国际太空, 2005, 3:22-27.
    [22]张正强.基于MAS的分布式成像卫星系统任务规划与控制问题研究[D].长沙:国防科学技术大学, 2006.
    [23]高黎.对地观测分布式卫星系统任务协作问题研究[D].长沙:国防科学技术大学, 2007.
    [24] Khatib L, Frank J, Smith D, et al. Interleaved Observation Execution and Rescheduling on Earth Observing Systems[C]. Plan Execution Workshop at the 13th International Conference on Automated Planning & Scheduling, Trento, Italy, 2002.
    [25] Damiani S, Verfaillie G, Charmeau M. An earth watching satellite constellation: how to manage a team of watching agents with limited communications[C]. Proc. of the 4th International Joiont Conference on Autonomous Agents & Multi Agent Systems, the Netherlands, 2005.
    [26] NASA ESTO/AIST Sensor Web PI Workshop[EB/OL]. http://esto.nasa.gov/ sensorwebmeeting/ February 2007.
    [27] Morris R, Dungan J, Gasch J, et al. Coordinated Science Campaign Planning for Earth Observing Missions[C]. ESTC2004, NASA, 2004.
    [28] Morris R, Dungan J, Edgington W, et al. Coordinated Science Campaign Scheduling for Sensor Webs[C]. Proceedings of i–SAIRAS'05, Munchen, 2005.
    [29] Morris R, Dungan J L, Bresina J L. An Information Infrastructure for Coordinating Earth Science Observations[C]. 2nd IEEE International Conference on Space Mission Challenges for Information Technology, 2006.
    [30]冯筠,高峰,黄新宇.构建天地一体化的全球对地观测系统[J].地球科学进展, 2005, 20(12): 1327-1333.
    [31]吴立新,李德仁.未来对地观测协作与防灾减灾[J].地理与地理信息科学, 2006, 22(3): 1-8.
    [32] Frank J, Jonsson A, Morris R, et al. Planning and Scheduling for Fleets of Earth Observing Satellites[C]. Proc. of the 6th International Symposium on Artificial Intelligence, Robotics, Automation and Space, Montreal, 2002.
    [33] Dungan, J, Frank, J, Jonsson, A, Morris. Advances in Planning and Scheduling ofRemote Sensing Instruments for Fleets of Earth Orbiting Satellites[C]. Proc. of the 2nd Earth Science Technology Conference, Pasadena, CA, USA, 2002.
    [34] Globus A, Crawford J, Lohn J, et al. Scheduling Earth Observing Satellites with Evolutionary Algorithms[C]. Proceedings of Coference on Space Mission Changes for Information Technology, 2003.
    [35] Globus A, Crawford J, Lohn J. A Comparison of Techniques for Scheduling Earth Observing Satellites[C]. AAAI 2004: 836–843.
    [36] Chien S, Davises A, Tran D, et al. Using Automated Planning for Sensorweb Response[C]. In Proc. of the 4th International Workshop on Planning and Scheduling for Space(IWPSS-04), Darmstadt, Germany, 2004.
    [37] Chien S, Cichy B, Davies A, et al. An Autonomous Earth-Observing Sensorweb[C]. In Proc. of the IEEE Conference on Systems Man and Cybernetcis(IEEE-CSMC 2005), Big Island, HI , USA, 2005.
    [38] Chien S, Cichy B, Davies A, et al. An Antonomous Earth-Observing Sensorweb[J]. IEEE Intelligent Systems, 2005.
    [39] Abramson M, Carter D, Kolitz S, et al. The Design and Implementation of Draper’s Earth Phenomena Observing System (EPOS)[C]. In Proce. of the AIAA Space Conference Albuquerque, NM, USA, 2001.
    [40] Abramson M, Carter D, Kolitz S, et al. Real-Time Optimized Earth Observation Autonomous Planning[C]. 2nd NASA's Earth Science Technology Conference, 2002.
    [41] Bianchessi N. Planning and Scheduling Problems for Earth Observation Satellites:Models and Algorithms[D]. Universit`a degli studi di Milano, Milano, Italy, 2006.
    [42] Bianchessi N, Righini G. A Mathematical Programming Algorithm for Planning and Scheduling an Earth Observing SAR Constellation[C]. Proc. of 5th International Workshop on Planning and Scheduling for Space, Baltimore, 2006.
    [43] Bianchessi N, Righini G. Planning and scheduling algorithms for the COSMO-SkyMed constellation[J]. Aerospace science and technology, 2008.
    [44] Florio S D, Zehetbauer T, Neff T. Optimal Operations Planning for SAR Satellite Constellations[C]. In Low Earth Orbit. 6th International Symposium on Reducing the Costs of Spacecraft Ground Systems and Operations, Darmstadt, Germany, 2005
    [45] Florio S D. Performances Optimization of Remote Sensing Satellite Constellations: a Heuristic Method[C]. International Workshop on Planning and Scheduling for Space, 2006.
    [46]贺仁杰.成像侦察卫星调度问题研究[D].国防科技大学, 2004.
    [47]李菊芳.航天侦察多星多地面站任务规划问题研究[D].国防科技大学, 2005.
    [48]王钧.成像卫星综合任务调度模型与优化方法研究[D].国防科技大学, 2007.
    [49]白保存.考虑任务合成的成像卫星调度模型与优化算法研究[D].国防科技大学, 2008.
    [50] Lemaitre M, Verfaillie G, Jouhaud F. How to Manage the New Generation of Agile Earth Observation Satellites[C]. SpaceOPS 2000, 2000
    [51] Lemaitre M, Verfaillie G, Jouhaud F, et al. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology. 2002, 6: 367–381.
    [52] Verfaillie G, Lemaitre M. Selecting and Scheduling Observations for Agile Satellites: Some Lessons from the Constraint Reasoning Community Point of View[C]. The Seventh International Conference on Practical and Principles of Constraint Programming, 2001: 670–684.
    [53] Verfaillie G, Lemaitre G, Bataille N, et al. Management of the mission of Earth observation satellites. Challenge description[R]. Technical report, 2002.
    [54] Habet D, Vasquez M. Saturated and Consistent Neighborhood for Selecting and Scheduling Photographs of Agile Earth Observing Satellite[C]. The 5th Metaheuristics International Conference, 2003.
    [55] Habet D, Vasquez M. Solving the Selecting and Scheduling Satellite Photographs Problem with a Consistent Neighborhood Heuristic[C]. Proc. of the 16th IEEE International Conference on Tools with Artificial Intelligence, 2004.
    [56] Mancel C. A Column Generation Approach for Earth Observing Satellites[C]. Proc. of the 2nd Operational Research Peripatetic Postgraduate Programme, Lambrecht, Germany, 2003.
    [57] Benoist T, Rottembourg B. Upper bounds for revenue maximization in a satellite scheduling problem[J]. Quarterly Journal of the Belgian, French and Italian Operations Research Societies. 2004, 2: 235–249.
    [58] Walton J. Models for the Management of Satellite-based Sensors[D]. PH.D, Massachusetts Institute of Technology, 1993.
    [59] Cohen R. Automated Spacecraft Scheduling– the Aster Example[R]. Technical Report, Jet Propuision Labroratory, Ground System Architectures Workshop, 2002.
    [60] Rivett C, Pontecorvo C. Improving Satellite Surveillance Through Optimal Assignment of Assets[C]. Technical Report, Australian Government Department of Defence, 2004.
    [61]李曦.多星区域观测任务的效率优化方法研究[D].长沙:国防科技大学, 2005.
    [62]阮启明.面向区域目标的成像侦察卫星调度问题研究[D].长沙:国防科技大学, 2005.
    [63] Bianchessi N, Piuri V, Righini G, et al. An Optimization Approach to the Planning of Earth Observing Satellites[C]. Proc. of the 4th International Workshop onPlanning and Scheduling for Space, Darmstadt, Germany, 2004.
    [64] Bianchessi N, Cordeau J F, Desrosiers J, et al. A Heuristic for the Management of Multiple-Orbit Earth Observation Satellites[R]. Technical Report GERAD-2005-45, 2005.
    [65] Bianchessi N, Cordeau J F, Desrosiers J, et al. A Heuristic for the Multi-Satellite, Multi-Orbit and Multi-User Management of Earth Observation Satellites[J]. European Journal of Operational Research. 2007, 177 : 750–762.
    [66] Vasquez M, Hao J K. A“Logic-Constrained”Knapsack Formulation and a Tabu Algorithm for the Daily Photograph Scheduling of an Earth Observation Satellite[J]. Computational Optimization and Applications. 2001, 20(2): 137–157.
    [67] Lemaitre M, Verfaillie G, Bataille N. Sharing the use of a satellite: an overview of methods[C]. In Proc. Of the 5th International Symposium on Space Mission Operations and Ground Data Systems(SpaceOps-98), Tokyo, Japan, 1998.
    [68] Lemaitre M, Verfaillie G, Bataille N. Exploiting a Common Property Resource under a Fairness Constraint: a Case Study[C]. In Proc. Of the 16th International Joint Conference on Artificial Intelligence(IJCAI-99), pages 206-211, Stockholm, Sweden, 1999.
    [69] Lemaitre M, Verfaillie G, Fargier H et al. Sharing the use of Earth observation satellites[C]. In Proc. Of the 3rd NASA International Workshop on Planning and Scheduling for Space, Houston, TX, USA, 2002.
    [70] Lemaitre M, Verfaillie G, Fargier H et al. Equitable Allocation of Earth observation satellites Resources[C]. In Proc. Of the 3rd NASA International Workshop on Planning and Scheduling for Space, Houston, TX, USA, 2002.
    [71] Berry P E, Pontecorvo C, Fogg D. Optimal Search, Location and Tracking of Surface Maritime Targets by a Constellation of Surveillance Satellites[R]. DSTO-TR-1480, 2002.
    [72]慈元卓.面向移动目标搜索的多星任务规划问题研究[D].国防科技大学, 2008.
    [73]李新其,毕义明,李红霞.海上机动目标的运动预测模型及精度分析[J].火力指挥与控制, 2005, 30(4):35-37.
    [74]李新其,毕义明,李红霞.海上机动目标群威胁预警建模及仿真实现[J].情报指挥控制系统与仿真技术, 2005, 27(4):28-32.
    [75]方曼,张尚剑,陈德军,刘永智.可用于舰船运动检测的多项式拟合方法及参数选择[J].舰船科学技术, 2005, 27(2):24-26.
    [76]谭守林,李新其,唐保国.组合建模的航母战斗群威胁预警方法[J].火力与指挥控制, 2007, 32(3):37-40.
    [77] Elnagar A, Gupta K. Motion Prediction of Moving Objects Based on Autoregressive Model[J]. IEEE Transactions on Systems, Man and Cybernetics,1998, 28(6): 803-814.
    [78] Allison Bruce, Geoffrey Gordon. Better Motion Prediction for People-tracking[J]. In Proc. of the IEEE int. Conf. on Robotics and Automation. New Orleans, 2004.
    [79] Dian Vasquez, Thierry Fraichar. Motion Prediction for Moving Objects: a Statistical Approach[C]. Proceedings of the 2004 IEEE International conference on Robotics&Automation. New Orleans, 2004.
    [80]丁春山,安瑾,何佳洲.机动目标跟踪典型算法评述[J].舰船电子工程, 2006, 26(1):25-31.
    [81]何衍,蒋静坪,张国宏.基于新息偏差的自适应机动目标跟踪算法[J].信息与控制, 2001, 30(4):78-84.
    [82] Bar-Shalom Y, Birmiwal K. Variable-Dimension Filter for Maneuvering Target Tracking[J]. IEEE Transaction on Aerospace and Electronic System, 1982, AES-18:621-629.
    [83] Cloutier J R, Lin C F, Yang C. Enhanced Variable Dimension Filter for Maneuvering Target Tracking[J]. IEEE Trans. Aerospace and Electronic, 1993, 29(3):789-797.
    [84] Wang T C, Varshney P K. A Tracking Algorithm for Maneuvering Targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3).
    [85] Lee H, Tahk J. Generalized input estimation technique for tracking maneuvering targets[J]. IEEE AES, 199, 35(4).
    [86] Magill D T. Optimal Adaptive Estimation of Sampled Stochastic Processes[J]. IEEE Trans. Automatic Constrol, 1965, AC-10: 434-439.
    [87] Ackerson G A, Fu K S. On State Estimation in Switching Environments[J]. IEEE Trans. Automatic Constrol, 1970, AC-15:10-17.
    [88] Blom H, Bar-Shalom Y. The Interacting Multiple Model Algorithm for System with Markovian Switching Coefficients[J]. IEEE Trans. On Automatic Control, 1988,33(8):780-783.
    [89] Li R X, Bar-Shalmo Y. Multiple–Model Estimation with Variable Structure[J]. IEEE Trans. On Automatic Control, 1996,AC-41:478-493.
    [90] Gee W, Alex L, Khee Y. Auto-tuning Interactive multiple model[C]. Proceedings of SPIE– Vol.3365, Acquisition, Tracking, and Pointing XII, Michael K. Masten, Larry A. Stockum, Editors, 1998: 131-138.
    [91] Gooley T D. Automating the Satellite Range Scheduling Process[D]. In Masters Thesis. Air Force Institute of Technology, USA, 1993.
    [92] Colin E B. Scheduling deep-space network data transmissions: a Lagrangian relaxation approach[C]. Proc. of SPIE, 1993(1963).
    [93] Parish D A. A Genetic Algorithm Approach to Automating Satellite Range Scheduling[D]. In Masters Thesis. Air Force Institute of Technology, USA,1994.
    [94] Jang K. The Capacity of The Air Force Satellite Control Network[D]. In Masters Thesis. Air Force Institute of Technology, USA, 1996
    [95] Burrowbridge S E. Optimal Allocation of Satellite Networks Resource[D]. Virginia: Virginia Tech University, 1999.
    [96] Howe A E, Whitley L D, Watson J P, Barbulescu L. A Study of Air Force Satellite Access Scheduling[C]. Proc. of the World Automation Conference, Maui, HI, June 2000.
    [97] Howe A E, Whitley L D, Barbulescu L, Watson J P. Mixed Initiative Scheduling for the Air Force Satellite Control Network[C]. Second International NASA Workshop on Planning and Scheduling for Space, March 2000.
    [98] Barbulescu L, Howe A E, Watson J P, et al. Satellite Range Scheduling: A Comparison of Genetic, Heuristic and Local Search[C]. Proc. of the 7th International Conference on Parallel Problem Solving from Nature (PPSNVII), 2002
    [99] Barbulescu L,Watson J P,Whitley L D, Howe A E. Scheduling Space–Ground Communications for the Air Force Satellite Control Network[J]. Journal of Scheduling, 2004, 7(1): 1094-6136.
    [100] Barbulescu L, Howe A E, Whitley L D, Roberts M. Trading places: How to schedule more in a multi-resource oversubscribed scheduling problem[C]. Proc. of the International Conference on Planning and Scheduling, 2004.
    [101] Barbulescu L, Howe A E, Whitley L D, et al. AFSCN Scheduling: How the Problem and Solution Have Evolved. Mathematical and Computer Modeling[J]. Mathematical and Computer Modeling, 2006, 43(9)
    [102] Barbulescu L, Whitley L D, Howe A E. Leap Before You Look: An Effective Strategy in an Oversubscribed Scheduling Problem[C]. Proc. of the 9th National Conference on Artifficial Intelligence, 2004.
    [103] Roberts M, Whitley L D,Howe A E, Barbulescu L. Random Walks and Neighborhood Bias in Oversubscribed Scheduling[C]. 2nd Multidisciplinary International Conference on Scheduling: Theory and Applications, New York, USA, 2005.
    [104] Clement B J, Johnston M D. The Deep Space Network Scheduling Problem[C]. Proceedings of the 17th Innovative Applications of Artificial Intelligence Conference, Pittsburgh, USA,2005.
    [105] Marinelli F, Nocella S, Rossi F, et al. A Lagrangian Heuristic for Satellite Range Scheduling with Resource Constraints[R]. Technical Report TRCS 004, 2005.
    [106] Oddi A, Cesta A, Policella N, et al. Scheduling Downlink Operations in MARS-EXPRESS[C]. Proceedings of the 3rd NASA Workshop on Planning and Scheduling, Huston, 2002.
    [107] Oddi A, Policella N, Cesta A, et al. Generating High Quality Schedules for a Spacecraft Memory Downlink Problem[C]. CP 2003.
    [108] Rao J D, Soma P, Padmashree G S. Multi-Satellite Scheduling System for Leo Satellite Operations[C]. Proc. of the 5th International Conference on Space Operations, Tokyo, Japan, 1998.
    [109] Soma P, Venkateswarlu S, Santhalakshmi S, et al. Multi-Satellite scheduling using Genetic Algorithms[C]. SPACE, 2004.
    [110] Lee S, Won J C, Kim J-H. Task Scheduling Algorithm for the Communication, Ocean and Meteorological Satellite [J]. ETRI Journal, 2008, 30(1):1-12.
    [111]刘洋,陈英武,谭跃进.基于贪婪算法的卫星地面站任务规划方法[J].系统工程与电子技术, 2003, 25(10): 1239-1241.
    [112]金光,武小悦,高卫斌.卫星地面站资源调度优化模型及启发式算法[J].系统工程与电子技术, 2004, 26(12): 1839-1841.
    [113]金光,武小悦,高卫斌.卫星地面站资源配置仿真研究[J].系统仿真学报, 2004, 16(11) :2401-2403.
    [114]金光,武小悦,高卫斌.基于冲突的卫星地面站系统资源调度与能力分析[J].小型微型计算机系统, 2007, 28(2):310-312.
    [115]刘晓娣.多卫星综合任务规划关键技术研究与实现[D].长沙:国防科学技术大学, 2007.
    [116]李云峰.卫星-地面站数传调度模型及算法研究[D].长沙:国防科技大学, 2007.
    [117] Smith D E, Frank J, Jonsson A K. Bridging the Gap Between Planning and Scheduling[J]. Knowledge Engineering Review, 2000, 15(1):47-83.
    [118] Barbulescu L. Oversubscribed Scheduling Problems. Technique Report. http:// www.math.cudenver.edu/~billups/courses/ma5779 /papers / laura- proposal. pdf, 2002.
    [119] Johnston M D, Miller D. Spike: Intelligent scheduling of Hubble space telescope observations. In Michael B. Morgan, editor, Intelligent Scheduling, pages391-422. Morgan Kaufmann Publishers, 1994.
    [120] Zweben M, Daun B, Davis E, Deale M. Scheduling and rescheduling with iterative repair. IEEE Transactions on systems, man, and cybernetics. 1993, 23(6):1588-1596.
    [121] Chien S., Knight R., Stechert A., Sherwood R., Rabideau G. Using Iterative Repair to Increase the Responsiveness of Planning and Scheduling for Autonomous Spacecraft. In Proc. 5th Intl. Conf. on Artificial Intelligence Planning and Scheduling (AIPS-00), 2000.
    [122] Kramer L, Smith S F. Optimizing for change Mixed-initiative resourcemanagement with the amc barrel allocator. In Proc. 3rd Int. Workshop on Planning and Scheduling for Space, Houston, Oct 2002.
    [123] Berbeglia G, Cordeau J-F, Gribkovskaia I, Laporte G. Static pickup and delivery problems: a classification scheme and survey. Top, 2007(15): 1-31.
    [124] Ropke S, Pisinger D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science, 2006, 40:455-472.
    [125] Nanry W P, Barnes J W. Solving the pickup and delivery problem with time windows using reactive tabu search. Transportation Reseach, 2000, 34:107-121.
    [126] Li H, Lim A. A meta-heuristic for the pickup and delivery problem with time windows. In proceeding of the 13th IEEE Conference on Tools with Artificial Intelligence, ICTAI-2001,Dallas, USA, 160-170,2001.
    [127] Lim H, Lim A, Rodrigues B. Solving the pickup and delivery problem with time windows using“Squeaky Wheel”optimization with local search. Technique Report 2002, Singapore Management University, Paper No. 7-2002.
    [128] Lau H C, Liang Z. Pickup and delivery with time windows: algorithms and test case generation. In proceeding of the 13th IEEE Conference on Tools with Artificial Intelligence, ICTAI-2001, Dallas, USA, 333-340,2001.
    [129] Bent R, Van Hentenryck P. A two-stage Hybrid Algorithm for pickup and delivery vehicle routing problem with time windows. In proceedings of the International Conference on Constraint Programming (CP-2003), Lecture Notes in Computer Science 2833, 123-137.
    [130]王勇,蔡自兴,周育人,肖赤心.约束进化算法研究及其进展.软件学报, 2007, 18(11): 2691-2706.
    [131] Coello Coello C.A. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer methods in applied mechanics and engineering, 2002(191): 1245-1287.
    [132]王凌,何锲,金以慧.智能约束处理技术综述[J].化工自动化及仪表, 2008, 35(1): 1-7.
    [133]余文,李人厚.遗传算法对约束优化问题的研究综述.计算机科学, 2002, 29(6): 98-101.
    [134] Gerard V, Thomas S. Solution Reuse in Dynamic Constraint Satisfaction Problems. Proceedings of the Twelfth Conference of the American Association of Artificial Intelligence, 307–312, 1994.
    [135]刘洋.成像侦察卫星动态重调度模型、算法及应用研究[D].国防科技大学博士学位论文, 2005.
    [136]王军民.成像卫星鲁棒性调度方法及应用研究[D].国防科技大学博士学位论文, 2008.
    [137]张帆.成像卫星计划编制中的约束建模及优化求解技术研究[D].长沙:国防科学技术大学, 2005.
    [138]靳肖闪.成像卫星星地综合调度技术研究.国防科技大学, 2009.
    [139]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社, 2003.
    [140]魏钟铨.合成孔径雷达卫星.北京:科学出版社, 2001.
    [141]徐福祥.卫星工程.北京:中国宇航出版社, 2002.
    [142]孙佳.国外合成孔径雷达卫星发展趋势分析[J].装备指挥技术学院学报, 2007, 18(1): 67-70.
    [143]陈旸. RADARSAT-2的关键技术及军民应用研究.测控遥感与导航定位, 2007, 37(6):40-42.
    [144]梅国宝,吴世龙.电子侦察卫星的发展、应用及其面临的挑战.舰船电子对抗, 2005, 28(4): 28-31.
    [145]阙渭焰,林世山.电子侦察卫星能力探析.卫星应用, 2004, 12(1): 45-51.
    [146]陈茂良,徐捷.现代电子侦察卫星的应用与发展.国际太空, 2001, 10: 16-18.
    [147]焦逊,陈永光.电子侦察卫星现状及对抗技术研究[J].电子对抗技术, 2004, 1:34-42.
    [148]方炎申.中继卫星调度模型研究[D].长沙:国防科学技术大学, 2007.
    [149]江志斌. Petri网及其在制造系统建模与控制中的应用[M].北京:机械工业出版社, 2004.
    [150]袁崇义Petri网原理与应用[M].北京:电子工业出版社, 2005.
    [151]张劲松.基于受控混杂Petri网的连续过程生产调度建模及优化方法[D].济南:山东大学, 2008.
    [152] Barbulescu L. Oversubscribed Scheduling Problems[EB/OL]. Technique Report. http:// wwwmath.cudenver.edu/~billups/ courses/ma5779 /papers/ laura-proposal. pdf.
    [153]王钧,李军,陈健,郭玉华,景宁.多目标EOSs联合成像调度方法[J].宇航学报. 2007, 28(2): 354-359.
    [154] Kramer L A, Smith S F. Maximizing Flexibility: A Retraction Heuristic for Oversubscribed Scheduling Problems[C]. In Proceedings of 18th International Joint Conference on Artificial Intelligence, 2003.
    [155]王凌.智能优化算法及其应用[M].北京:清华大学出版社, 2001.
    [156]玄光男,程润伟.遗传算法与工程设计[M].北京:科学出版社, 2000.
    [157]邢文训,谢金星.现代优化方法(第2版)[M].北京:清华大学出版社, 2005.
    [158]郭玉华,李军,赵珂,王钧,景宁.多星联合任务规划中的启发式求解方法研究[J].宇航学报, 2009, 30(2): 652-658.
    [159] Gendreau M, Potvin J. Meta-heuristics in Combinatorial Optimization[J]. Annals of Operations Research, 2005, 140: 189-213.
    [160] Glover F. Future paths for integer programming and links to artificial intelligence[J]. Computers & Operations Research, 1986, 13:533-549.
    [161] VoB S. Observing logical interdependencies in tabu search: Methods and results[M]. In V.J. Rayward-Smith, I.H.Osman, C.R.Reeves, and G.D.Smith, editors, Modern Heuristic Search Methods, Chichester, 1996, pp: 41-59.
    [162] VoB S. Meta-heuristics: The State of the Art[M]. A.Narayek: Local Search for Planning and Scheduling,LNAI 2148,2001, pp. 1-23.
    [163] Festa P, Resende G C. GRASP: An Annotated Bibliography[R]. AT&T Labs Research Technical Report, 2001.
    [164] Binato S, Hery W J, Loewenstern D, and Resende M G C. A Greedy Randomized Adaptive Search Procedure for Job Shop Scheduling[C]. In P. Hansen and C.C. ribeiro, editors, Essays and Surveys on metaheuristics. Kluwer Academic Publishers, 2001.
    [165] Carreto C, Baker B. A GRASP interactive approach to the vehicle routing problem with backhauls[M]. In P. Hansen and C.C. ribeiro, editors, Essays and Surveys on metaheuristics. Kluwer Academic Publishers, 2001.
    [166] Resende M G C. Metaheuristic Hybridization with GRASP[R]. At&T Labs Research Technical Report, 2008.
    [167] Shaw P. A new local search algorithm providing high quality solutions to vehicle routing problems[R]. Techniical report., Department of Computer Science, University of Strathclyde, Scotland,1997.
    [168] Ropke S, Pisinger D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[J]. Transportation Science, 2004.
    [169] Wu M A, Lee Y Y, Ruo P, Kao R. ROCSAT-2 Imaging Planning and Shceduling[R]. Technique Report, 2003.
    [170]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社, 2002.
    [171]漆安慎,杜婵英.免疫的非线性模型[M].上海:上海科技教育出版社, 1998.
    [172]蔡自兴,龚涛.免疫算法研究的进展[J].控制与决策, 2004, 19(8): 841-846.
    [173] Jiao L, Wang L. A novel genetic algorithm based on immunity[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2000, 30(5): 552~561.
    [174]罗小平,韦巍.一种基于生物免疫遗传学的新优化方法[J].电子学报, 2003, 31(1): 59-62.
    [175] JIN Xiao-shan, LI Jun, JING Ning. On Steady State Evolutionary Scheduling for Multi-satellites Imaging. Proc.of the 27th Chinese Control Conference, Kunming,China, July, 16-18, 2008, 5: 23-27.
    [176]王志贤.最优状态估计与系统辨识[M].西安:西北工业大学出版社, 2004.
    [177]龚光鲁,钱敏平.应用随机过程教程及在算法和智能计算中的随机模型[M].北京:清华大学出版社, 2004.
    [178] Thomas H C, Charles E L, Ronald L R, Clifford S. Introduction to Algorithms, Second Edition. The MIT Press, 2001.
    [179] Ackerson G A, Fu K S. On State Estimation in Switching Environments[J]. IEEE Trans. Automatic Control, 1970, AC-15: 10-17.
    [180] Blom H A P, Bar-Shalom Y. The Interacting Multiple Model Algorithm for System with Markovian Switching Coefficients[J]. IEEE Trans. On Automatic Control, 1988, 33(8): 780-783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700